首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 877 毫秒
1.
目的用microRNA-373(miR-373)的模拟物转染人脂肪来源Flk1+间充质干细胞(MSC),探讨microRNA-373对Flk1+MSC成骨分化的影响。方法利用脂质体作为载体,用miR-373模拟物瞬时转染Flk1+MSCs,然后对其进行成骨诱导,碱性磷酸酶(ALP)染色和茜素红染色观察成骨情况,real-time PCR技术检测成骨标志性基因的表达。结果 ALP染色和茜素红可见明显差异;real-time PCR检测结果显示,实验组(miR-373组)成骨标志基因runt相关转录因子2(RUNX2)(0.543±0.021)、ALP(0.556±0.024)和骨钙蛋白(OC)(0.499±0.017)的表达都明显低于对照组(NC组)(P<0.05)。结论 miR-373参与调控Flk1+MSC向骨细胞分化。  相似文献   

2.
目的 探究维甲酸(RA)对乳鼠真皮成纤维细胞(DFB)及脂肪源干细胞(ADSCs)成骨诱导分化的影响。 方法 分别离体培养5~7 d龄乳鼠DFB及ADSCs。对DFB进行波形蛋白的免疫荧光鉴定,对ADSCs进行成骨、成脂肪诱导并做表面标记物鉴定。用RA及传统成骨诱导液分别对两类细胞进行成骨诱导2周,茜素红染色检测细胞内钙结节的形成,酶标仪检测细胞诱导后ALP 的OD值。 结果 两类细胞在常规成骨诱导及RA诱导成骨后,均有钙结节形成。传统成骨诱导与RA成骨诱导组与各自对照组相比,ALP活性均升高。在DFB组中,RA诱导的ALP活性比传统成骨诱导高,而在ADSCs组中,结果相反。 结论 RA可以促进DFB及ADSCs的成骨分化,并且因细胞种类不同而显著效果不同。  相似文献   

3.
Mesenchymal stem cells (MSCs) have a great therapeutic potential resulting from their ability to differentiate into multiple tissues when cultured under specific conditions. However, it has not been clearly demonstrated whether or not MSCs exhibit a multidifferentiation potential in three-dimensional collagen gel cultures. This study was conducted to explore the multidifferentiation potential of MSCs cultured in three-dimensional collagen gels. Human MSCs were cultured in 0.3% collagen gel for 20 days in chondrogenic differentiation medium (CDM), and for 14 days in osteogenic differentiation medium (ODM). Increases in GAG deposits, intensity of toluidine blue staining, and mRNA expressions of chondrogenic markers (type II collagen and type X collagen) were found in human MSCs cultured in the collagen gel maintained in CDM. Positive staining for alkaline phosphatase (ALP) activity and alizarin red, and increases in mRNA expressions of osteogenic markers (type I collagen, bone sialoprotein and ALP) were noted in the MSCs maintained in ODM. These findings emphasize that human MSCs have an ability to differentiate into both bone and cartilaginous tissues in three-dimensional collagen gel cultures, indicating potential clinical applications of MSC transplant therapy with collagen gel as a scaffold for bone or cartilage regeneration in complicated tissue defects.  相似文献   

4.
目的比较成人骨髓间充质干细胞(BMSCs)、人脐带间充质干细胞(UC-MSCs)和人胎盘间充质干细胞(P-MSCs)的成骨能力。方法用含10%胎牛血清的DMEM/Ham's F-12培养液培养3种MSCs,CCK8法检测增殖能力,流式细胞仪鉴定3种细胞。碱性磷酸酶(ALP)和茜素红染色观察细胞经成骨诱导后成骨分化蛋白-ALP的分泌和矿化钙结节的沉积。实时荧光定量PCR(RT-q PCR)法检测MSCs骨再生相关基因的表达。Western blot方法检测MSCs成骨再生相关基因的蛋白表达。结果 MSCs在第3天进入对数增殖期。3种细胞的表面标志物阳性率:CD44、CD90和CD105均高于98%。3种MSCs成骨诱导9 d时,3种MSCs的实验组均表达大量成骨分化蛋白-ALP,成骨诱导18 d时3种MSCs均呈现较好的矿化能力;3种MSCs成骨诱导9 d时,实验组RUNX2和ALP基因显著性高表达(P0.05),成骨诱导18 d时,实验组RUNX2和骨钙素(OCN)亦显著性高表达(P0.05);3种MSCs成骨诱导9 d时,实验组均检测到RUNX2和ALP的蛋白表达;成骨诱导18 d时,实验组细胞亦检测到RUNX2和OCN的蛋白表达。结论 UC-MSCs和P-MSCs具有良好的成骨分化能力,有望作为骨组织工程的种子细胞用于治疗骨缺损。  相似文献   

5.
Little is known of the effect of material surfaces on stem cell differentiation. The present study has addressed the hypothesis that the interaction of mesenchymal stem cells (MSCs) with material surfaces modified by glow discharge plasma is a major regulator of osteogenic differentiation. We found that biaxially oriented polypropylene (BOPP) plasma treated in ammonia significantly reduced up-regulation of expression of osteogenic marker genes, such as alkaline phosphatase (ALP), bone sialoprotein (BSP) and osteocalcin (OC). In contrast, ALP expression was up-regulated when cultured on treated Nylon-6 polyamide (Ny-t) but was substantially reduced when cultured on its pristine counterpart (Ny-p) on day 3. On day 7, ALP expression was down-regulated with MSCs cultured on Ny-t although its expression level was up again on day 14. BSP was expressed weakly on day 3, but was up-regulated when cultured on Ny-t and Ny-p. Its expression reached its maximum on day 14 when cultured on a polystyrene control, while it was cyclically up-regulated on Ny-t. Similarly, there was a slight increase in OC expression when MSCs were cultured on Ny-t and Ny-p on day 3, when compared to control. Thus, the nature of the surface can directly influence MSCs differentiation, ultimately affecting the quality of new tissue formation with BOPP-t suppressing osteogenic differentiation.  相似文献   

6.
《Acta histochemica》2022,124(6):151926
This study was conducted to investigate the impact of the microRNA (miR)-25–3p/ITGB3 axis on the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) from patients with osteoporosis (OP). BMSCs isolated from the bone marrow of healthy controls and OP patients were identified by flow cytometry, in which ITGB3 mRNA and miR-25–3p expression was detected by RT-qPCR and ITGB3, Runx2, OPN, ALP, and OSX protein expression by western blot. The binding between ITGB3 and miR-25–3p was assessed by dual-luciferase reporter gene and Ago2-RIP assays. BMSC osteogenic differentiation was observed by alizarin red staining and ALP activity. The differentiation of BMSCs to adipocytes and chondrocytes was measured by oil red O staining and alcian blue staining, respectively. BMSCs were successfully isolated from the bone marrow of healthy controls (normal-BMSCs) and OP patients (OP-BMSCs). ITGB3, Runx2, OPN, ALP, and OSX expression was poorer and miR-25–3p expression was higher in OP-BMSCs than in normal-BMSCs. Mechanistically, ITGB3 was negatively targeted by miR-25–3p. After osteogenic, adipogenic, and chondrogenic differentiation of BMSCs were successfully induced, adipogenic differentiation increased and osteogenic and chondrogenic differentiation decreased in OP-BMSCs compared with normal-BMSCs. Overexpression of ITGB3 facilitated mineralized nodule formation and elevated ALP activity and Runx2, OPN, and ALP expression in OP-BMSCs. miR-25–3p upregulation diminished mineralized nodule formation, ALP activity, and Runx2, OPN, and ALP expression in OP-BMSCs and normal-BMSCs, which was annulled by additional ITGB3 overexpression. miR-25–3p targets ITGB3, thereby suppressing osteogenic differentiation of BMSCs from OP patients.  相似文献   

7.
8.
目的 探讨新型壳聚糖基网络复合膜诱导骨髓间充质干细胞(MSCs)定向成骨分化的可行性.方法 采用仿生学方法,壳聚糖、明胶、果胶按照一定比例制作成新型壳聚糖基仿生网络复合膜.设计4个组:实验组1(复合膜+常规培养基),对照组1(常规培养基),实验组2(复合膜+成骨诱导(OS)培养基),对照组2(OS培养基).通过倒置相差显微镜、四甲基偶氮唑盐(MTT)法、扫描电镜(SEM)检测细胞在复合膜上的生长和增殖情况;通过测定碱性磷酸酶(ALP)活性来评价MSCs在复合膜上的成骨分化能力;通过特殊染色和能谱分析(EDX)来评定钙盐的沉积.结果 MSCs在网络复合膜上贴附、生长良好且增殖旺盛.MTr法检测细胞活力显示实验组吸光度(OD)值与对照组比较无统计学意义(P>0.05).SEM观察到细胞在支架材料表面呈聚集生长,分泌大量的细胞外基质,可见散在的结节形成.实验组1的ALP活性明显增高,与实验组2、对照组比较有统计学意义(P<0.01).茜素红和Von Kossa染色可见实验组细胞分化后形成的钙化结节;ALP染色可见胞浆内蓝染颗粒;EDX检测到Ca、P沉积.结论 新型壳聚糖基网络复合材料具有良好的生物相容性,在不添加诱导剂的条件下,可以诱导MSCs定向成骨分化.  相似文献   

9.
兔BMSCs体外培养及其向成骨细胞分化的实验研究   总被引:3,自引:0,他引:3  
目的 探讨培养兔骨髓基质干细胞向成骨细胞的分化,为骨组织工程研究提供种子细胞。方法 取 2月龄新西兰大耳白兔,麻醉后取骨髓,直接进行原代培养,传代后观察其生长特性,绘制生长曲线并加诱导液使其 向成骨细胞方向分化,并分别用钙钴法检测碱性磷酸酶,茜素红染色检测钙结节,免疫组化染色检测Ⅰ型胶原,透 射电镜观察胞质中钙质成分。结果 原代培养中出现大量细胞克隆,传代后细胞呈旋涡状密集生长,加入诱导液 后细胞形态发生改变并向成骨细胞分化,胞质内见有呈黑色的碱性磷酸酶颗粒和Ⅰ型胶原反应产物,并见有多个 细胞形成的钙化结节,电镜下观察到胞质中含有许多基质小泡,几天内成骨细胞数可达1×106/L。结论 培养兔 骨髓基质干可向成骨细胞方向分化,作为骨组织工程的种子细胞。  相似文献   

10.
Human mesenchymal stem cells (MSCs) were cultured on polystyrene surfaces modified with photoreactive azidophenyl-derivatives of three different chargeable polymers, poly(acrylic acid) (PAAc), polyallylamine (PAAm), and poly(ethylene glycol) (PEG). The MSCs adhered and spread both on a PAAm-modified surface and on PAAc-modified and polystyrene (control) surfaces. However, the cells adhered more easily to the PAAm-modified surface. The MSCs did not attach to the PEG-modified surface and aggregated to form pellets immediately after cell seeding. The cells proliferated on the PAAc-, PAAm-modified and control surfaces with culture time, formed a monolayer, and aggregated to form pellets. The cells in the pellets that formed on the PAAm- and PEG-modified surfaces after 2 weeks culture had a round morphology and the extracellular matrices were positively stained by safranin O and toluidine blue, while those that formed on the PAAc-modified and control surfaces had a spindle, fibroblast-like morphology and were not positively stained by safranin O and toluidine blue. The pellets that formed on the PAAm- and PEG-modified surfaces contained significantly higher levels of sulfated glycosaminoglycans than did those that formed on the PAAc-modified and control surfaces. Type II collagen and cartilage proteoglycan were immunohistologically detected in the pellets that formed on PAAm- and PEG-modified surfaces, but not those that formed on the PAAc-modified and control surfaces. The MSCs cultured on the PAAm- and PEG-modified surfaces expressed a high level of cartilaginous genes encoding type II collagen and aggrecan, while the MSCs cultured on the PAAc-modified and control surfaces did not express these genes. These results suggest that the PAAm-modified surface supported cell adhesion and proliferation and also promoted chondrogenic differentiation of the MSCs. The PAAc-modified and polystyrene surfaces supported cell adhesion and proliferation, but not chondrogenic differentiation. The PEG-modified surfaces did not support cell adhesion, but did promote chondrogenic differentiation. The adhesion, proliferation, and differentiation of the MSCs could be controlled by surface chemistry.  相似文献   

11.
12.
背景:目前有关脐血间充质干细胞的生物学特性及分化能力的研究较少。 目的:观察人脐血间充质干细胞的生物学特性,及其向成骨、成脂肪细胞分化的能力。 方法:从不同胎龄脐血中分离间充质干细胞,对其进行原代和传代培养,并诱导其向成骨及成脂肪细胞分化。 结果与结论:倒置相差显微镜下见分离培养的脐血间充质干细胞贴壁生长,呈成纤维细胞样外观,细胞呈螺旋状排列;透射电镜下可见脐血间充质干细胞胞核比例大,细胞器少,为低分化细胞;原代及传代培养的脐血间充质干细胞生长曲线均呈S型,第3,5代细胞增殖能力最强,低胎龄的脐血间充质干细胞集落形成能力最强。流式细胞仪检测结果显示,脐血间充质干细胞稳定表达间充质干细胞相关抗原CD29,CD44 和CD90,不表达造血细胞标志CD34和CD45。成骨诱导后3 周,碱性磷酸酶染色为强阳性,茜素红染色可见大量钙化基质的形成;成脂诱导3周,油红O染色可检测到胞质中脂滴的形成。提示脐血间充质干细胞具有间充质干细胞的形态特征、生长增殖特点及细胞表面标志物等生物学特性,可向成骨细胞及脂肪细胞分化。  相似文献   

13.
背景:目前临床对于慢性腱病缺乏有效的治疗手段,原因在于其发病机制至今尚未阐明。 目的:研究体外骨形态发生蛋白2对胶原酶诱导的大鼠慢性腱病模型髌腱来源肌腱干细胞的成骨、成软骨分化的作用。 方法:从大鼠慢性腱病模型的髌腱中分离培养出原代肌腱干细胞,传代培养至第3代细胞,行成骨、成脂、成软骨诱导分化鉴定其干细胞的特性。将肌腱干细胞(P3)单层培养至细胞融合,用重组人骨形态发生蛋白2干预。7 d后分别行茜素红染色,并行茜素红染色定量分析。将肌腱干细胞体外三维微球培养后分为2组,诱导组用重组人骨形态发生蛋白2干预,对照组不进行干预。21 d后三维微球行苏木精-伊红染色,阿利辛蓝染色以及Sox9和Ⅱ型胶原免疫组织化学染色。 结果与结论:慢性腱病大鼠来源原代肌腱干细胞体外培养呈克隆样集落生长,传代后细胞主要表现为多突的纺锤形和星形的扁平细胞,具有成纤维细胞样的特征。肌腱干细胞(P3)成脂诱导10 d,油红O染色阳性;成骨诱导7 d,茜素红染色阳性;成软骨诱导14 d,苏木精-伊红染色阳性可见软骨样细胞,Ⅱ型胶原免疫组化染色阳性。单层培养的肌腱干细胞用重组人骨形态发生蛋白2诱导7 d茜素红染色阳性,对照组为阴性,茜素红染色定量检测显示差异有显著性意义。重组人骨形态发生蛋白2诱导肌腱干细胞21 d,苏木精-伊红染色可见软骨样细胞形成、阿利辛蓝染色可见细胞内糖胺多糖沉积、Sox9和Ⅱ型胶原免疫组织化学染色均呈阳性。可见体外重组人骨形态发生蛋白2可以诱导慢性腱病来源的肌腱干细胞成骨、成软骨分化。这为进一步研究慢性腱病的发病机制提供了细胞生物学依据。中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程全文链接:  相似文献   

14.
15.
In this study, we introduce a novel nanoparticle-enhanced biophysical stimulus based on the photoacoustic (PA) effect. We demonstrate that the PA effect differentiates bone marrow-derived marrow stromal cells (MSCs) grown on poly(lactic-co-glycolic acid) (PLGA) polymer films toward osteoblasts. We further show that the osteodifferentiation of the MSCs due to PA stimulation is significantly enhanced by the presence of single-walled carbon nanotubes (SWCNTs) in the polymer. MSCs, without the osteogenic culture supplements (0.01?M β-glycerophosphate, 50?mg/L ascorbic acid, 10(-8) M dexamethasone), were seeded onto plain glass slides, glass slides coated with PLGA, or glass slides coated with SWCNT-PLGA films and photoacoustically stimulated by a 527?nm Nd:YLF pulse laser, with a 200?ns pulse duration, and 10?Hz pulse frequency for 10?min a day for 15 consecutive days. The study had four control groups; three baseline controls similar to the three experimental groups but without PA stimulation, and one positive control where MSCs were grown on glass slides without PA stimulation but with osteogenic culture supplements. The osteogenic differentiation of all the groups was evaluated using quantitative assays (alkaline phosphatase, calcium, osteopontin) and qualitative staining (alizarin red). After 15 days, the PA stimulated groups showed up to a 350% increase in calcium content when compared with the non-PA stimulated positive control. Further, within the PA stimulated group, the PLGA-SWCNT group had 130% higher calcium values than the PLGA film without SWCNTs. These results were further corroborated by the analysis of osteopontin secretion, alkaline phosphatase expression, and qualitative alizarin red staining of extracellular matrix calcification. The results indicate that PA stimulation holds promise for bone tissue engineering and that the nanomaterials which enhance the PA effect should allow the development of biophysical rather than biochemical strategies to induce osteoinductive properties into tissue engineering scaffolds.  相似文献   

16.
白雯  尹硕  崔磊  江明 《中国组织工程研究》2011,15(27):4984-4987
背景:脂肪源干细胞可分泌众多的免疫调节因子,不引起T细胞的细胞毒作用,并可通过调整T淋巴细胞的种类和数量。 目的:探讨人脂肪源干细胞在体外分离培养扩增的方法及向成骨细胞诱导分化的能力。 方法:以0.1%的Ⅰ型胶原酶通过组织消化的方法分离人脂肪组织中的干细胞,体外扩增培养至第2代后检测其表面抗原的表达,并在成骨诱导液中促进其向成骨细胞的分化,通过碱性磷酸酶染色、茜素红染色及对碱性磷酸酶的RT-PCR检测来明确其分化能力。 结果与结论:体外分离培养的脂肪源干细胞生长稳定,扩增速度快。流式细胞仪检测结果显示其高表达干细胞相关抗原。向成骨细胞诱导后经免疫组化染色可见矿化结节形成,RT-PCR检测发现碱性磷酸酶表达阳性。提示脂肪源干细胞在体外分离培养方法简单,扩增速度快,并具有定向分化的能力,是可靠的组织修复和细胞治疗的种子细胞来源。  相似文献   

17.
Abstract

Electrospraying of hydroxyapatite (HA) nanoparticles onto the surface of polymer nanofibers provides a potentially novel substrate for the adhesion, proliferation and differentiation of mesenchymal stem cells (MSCs) into bone tissue regeneration. HA nanoparticles (4%) were electrosprayed on the surface of electrospun polycaprolactone (PCL) nanofibers (420 ± 15 nm) for bone tissue engineering. PCL/HA nanofibers were comparatively characterized with PCL/Collagen (275 ± 56 nm) nanofibers by FT-IR analysis to confirm the presence of HA. Fabricated PCL/HA and PCL/Collagen nanofibers and TCP (control) were used for the differentiation of equine MSC into osteogenic lineages in the presence of DMEM/F12 medium supplemented with β-glycerophosphate, ascorbic acid and dexamethasone. Cell proliferation and differentiation into an osteogenic lineage was evaluated by MTS assay, SEM observation, ALP activity, ARS staining, quantification of mineral deposition and expression of osteocalcin. Proliferation of MSCs increased significantly (P ? 0.05) up to 12% in PCL/Collagen (day 15) compared to PCL/HA nanofibrous substrate. ALP activity was increased 20% in PCL/HA by day 10 confirming the direction of osteogenic lineage from MSCs differentiation. PCL/HA stimulated an increased mineral secretion up to 26% by day 15 on ARS staining compared to PCL/Collagen nanofibers and showing cuboidal morphology by expressing osteocalcin. These results confirmed that the specifically fabricated PCL/HA composite nanofibrous substrate enhanced the differentiation of MSCs into osteogenesis.  相似文献   

18.
This study introduces a novel three-dimensional biomatrix obtained from the marine hydrocoral Millepora dichotoma as a scaffold for hard tissue engineering. Millepora dichotoma was biofabricated under field and laboratory conditions. Three-dimensional biomatrices were made in order to convert mesenchymal stem cells (MSCs) to exemplify osteoblastic phenotype. We investigated the effect of the biomatrices on MSCs proliferation and differentiation at 2, 3, 4, 7, 10, 14, 21, 28, and 42 days. Different analyses were made: light microscopy, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), calcium incorporation to newly formed tissue (alizarin red), bone nodule formation (von Kossa), fat aggregate formation (oil red O), collagen type I immunofluorescence, DNA concentrations, alkaline phosphatase (ALP) activity, and osteocalcin concentrations. MSCs seeded on Millepora dichotoma biomatrices showed higher levels of calcium and phosphate incorporation and higher type I collagen levels than did control Porites lutea biomatrices. ALP activity revealed that MSCs seeded on M. dichotoma biomatrices are highly osteogenic compared to those on control biomatrices. The osteocalcin content of MSCs seeded on M. dichotoma remained constant up to 2 weeks before rising to surpass that of seeded P. lutea biomatrices after 28 days. Our study thus showed that M. dichotoma biomatrices enhance the differentiation of MSCs into osteoblast and hence have excellent potential as bioscaffold for hard tissue engineering.  相似文献   

19.
Cellular activities of human osteoblasts (HOBs) and mesenchymal stem cells (MSCs) on a silicon-releasable scaffold, siloxane-doped poly(lactic acid) and vaterite composite coated with hydroxycarbonate apatite (SPV-H), were estimated using a medium with or without organic factors, such as dexamethasone (Dex) and beta-glycerophosphate (beta-GP), for inducing mineralization or differentiation. As a control, a composite film containing no silicon (denoted by PV-H) was prepared using poly(lactic acid) and vaterite. HOBs cultured on SPV-H formed some agglomerates, bone nodules, after a 21-day culture in a medium without the organic factors, whereas no agglomerate was observed on PV-H. Laser Raman spectra implied that calcium phosphate precipitated in HOBs on the SPV-H. The silicon species in SPV-H stimulated HOBs to mineralization. The culture tests using MSCs show that the level of alkaline phosphatase (ALP) activity in the cells cultured on SPV-H increased during the 21-day culture in a medium without Dex and beta-GP. The level was unchanged in MSCs cultured on PV-H. In the case of supplementing Dex and beta-GP to the medium, the level of ALP activity in MSCs cultured on SPV-H was higher than that on PV-H at all time points during the 21-day culture. The silicon species in SPV-H were regarded to induce and enhance the osteogenic differentiation of MSCs.  相似文献   

20.
In this article, the chitosan/gelatin/pectin (CGP) network films were prepared to build appropriate physicochemical and mechanical microenvironment for attachment, proliferation, and differentiation of mesenchymal stem cells (MSCs). Results suggested that the hydrophilicity and mechanical character of CGP composites films could be modulated via adjusting the pectin content in the composites. The investigations of attachment and proliferation behaviors of mesenchymal stem cells (MSCs) on the CGP films were carried out. The morphology of cells was observed with hematoxylin/eosin staining (HE) and scanning electron microscope (SEM). The osteogenic differentiation of MSCs was investigated via ALP and polymerase chain reaction (PCR). Results suggested that the CGP films have excellent biocompatibility. MSCs seeded on CGP (0.1) film show higher proliferation capacity compared with other samples. Moreover, osteogenic differentiation of MSCs also depends on the properties of the substrate. The MSCs seeded on CGP (0.5) expressed the highest ALP activity, osteogenic gene expression and mineral formation capacity. These results suggest that the composition of the CGP network films could effectively modulate their physicochemical and mechanical properties and further regulate the cell behaviors of MSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号