首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Park BK  Kim B  Ko K  Jeong SY  Kwon GY 《European radiology》2006,16(3):642-647
Objectives To assess the accuracy of CT for the diagnosis of histologically confirmed adrenal adenoma and nonadenoma using CT numbers. Materials and methods Our study included 91 adrenal masses in 83 patients; histopathological diagnoses were 45 adenomas, 31 pheochromocytomas, 6 hyperplasias, 4 metastasis, and 5 miscellaneous lesions. Unenhanced CT in 46 patients and unenhanced and delayed contrast-enhanced (DCE) CT in 37 patients were retrospectively reviewed to examine the correlation between CT findings and those on pathological examination and to obtain diagnostic accuracy. Results Sensitivity, specificity, and accuracy for adenoma were 40% (18/45), 91% (42/46), and 66% (60/91) with unenhanced CT, and 96% (24/25), 61% (11/18), and 81% (35/43) with DCE CT. Adrenal masses falsely diagnosed as adenoma on unenhanced CT included three hyperplasias and one endothelial cyst, and those falsely diagnosed as adenoma on DCE CT were five pheochromocytomas, one oncocytic coritical tumor, and one primary pigmented nodular adrenocortical dysplasia. Twenty-five lipid-poor adenomas were falsely diagnosed as nonadenomas on unenhanced CT and one degenerated adenoma both on unenhanced CT and on DCE CT. Conclusion Diagnosing adenoma merely on CT numbers can lead to misdiagnosis. The lower specificity than expected is due to pheochromocytomas presenting as false positives. An erratum to this article can be found at  相似文献   

2.
3.

Objective

To provide a systematic overview of the effects of various parameters on contrast enhancement within the same population, an animal experiment as well as a computer-aided simulation study was performed.

Materials and Methods

In an animal experiment, single-level dynamic CT through the liver was performed at 5-second intervals just after the injection of contrast medium for 3 minutes. Combinations of three different amounts (1, 2, 3 mL/kg), concentrations (150, 200, 300 mgI/mL), and injection rates (0.5, 1, 2 mL/sec) were used. The CT number of the aorta (A), portal vein (P) and liver (L) was measured in each image, and time-attenuation curves for A, P and L were thus obtained. The degree of maximum enhancement (Imax) and time to reach peak enhancement (Tmax) of A, P and L were determined, and times to equilibrium (Teq) were analyzed. In the computed-aided simulation model, a program based on the amount, flow, and diffusion coefficient of body fluid in various compartments of the human body was designed. The input variables were the concentrations, volumes and injection rates of the contrast media used. The program generated the time-attenuation curves of A, P and L, as well as liver-to-hepatocellular carcinoma (HCC) contrast curves. On each curve, we calculated and plotted the optimal temporal window (time period above the lower threshold, which in this experiment was 10 Hounsfield units), the total area under the curve above the lower threshold, and the area within the optimal range.

Results

A. Animal Experiment: At a given concentration and injection rate, an increased volume of contrast medium led to increases in Imax A, P and L. In addition, Tmax A, P, L and Teq were prolonged in parallel with increases in injection time The time-attenuation curve shifted upward and to the right. For a given volume and injection rate, an increased concentration of contrast medium increased the degree of aortic, portal and hepatic enhancement, though Tmax A, P and L remained the same. The time-attenuation curve shifted upward. For a given volume and concentration of contrast medium, changes in the injection rate had a prominent effect on aortic enhancement, and that of the portal vein and hepatic parenchyma also showed some increase, though the effect was less prominent. A increased in the rate of contrast injection led to shifting of the time enhancement curve to the left and upward. B. Computer Simulation: At a faster injection rate, there was minimal change in the degree of hepatic attenuation, though the duration of the optimal temporal window decreased. The area between 10 and 30 HU was greatest when contrast media was delivered at a rate of 2-3 mL/sec. Although the total area under the curve increased in proportion to the injection rate, most of this increase was above the upper threshould and thus the temporal window was narrow and the optimal area decreased.

Conclusion

Increases in volume, concentration and injection rate all resulted in improved arterial enhancement. If cost was disregarded, increasing the injection volume was the most reliable way of obtaining good quality enhancement. The optimal way of delivering a given amount of contrast medium can be calculated using a computer-based mathematical model.  相似文献   

4.
RATIONALE AND OBJECTIVES: The purpose of this study was to determine whether the interval change in hepatic colorectal metastases as assessed with serial computed tomographic (CT) scans without contrast material enhancement differs from that as assessed using serial, portal dominant phase, contrast-enhanced CT scans. MATERIALS AND METHODS: Unenhanced and contrast-enhanced abdominal CT scans were obtained in 28 patients. Three radiologists separately reviewed serial unenhanced and contrast-enhanced studies to assess the interval change in liver metastases. These radiologists recorded total number of lesions, bidimensional measurements of the largest lesions (as many as three), and overall impressions regarding the interval change (none, worse, or better). RESULTS: Among the 84 judgments (28 patients x 3 radiologists), comparisons of unenhanced and contrast-enhanced CT studies were concordant in 60 assessments (71%). Nineteen (23%) showed mild disagreement. Of these, contrast-enhanced CT studies demonstrated disease stability when unenhanced CT studies demonstrated otherwise in 11 judgments, whereas unenhanced CT studies demonstrated stability when contrast-enhanced CT studies demonstrated otherwise in eight assessments. Furthermore, of the five marked disagreements, two resulted from a conclusion of interval improvement on unenhanced CT studies and a conclusion of interval worsening on contrast-enhanced CT studies, whereas three demonstrated the opposite. Neither set of serial CT studies systematically resulted in under- or overestimation of disease progression (McNemar Q test, P < .25). CONCLUSION: The authors found no consistent pattern to demonstrate that serial unenhanced or contrast-enhanced CT studies resulted in over- or underestimation of disease progression.  相似文献   

5.
RATIONALE AND OBJECTIVES: The purpose of this study was to determine the feasibility of using iodinated liposomes as blood pool agents for computed tomography (CT) in nonhuman primates. MATERIALS AND METHODS: Five normal adult baboons (15-21 kg) were anesthetized and intravenously injected with iopromide containing soy phosphatidyl glycerol liposomes with a diameter of 195 nm. Each animal received a dose of 300 mg total iodine per kilogram (46% encapsulation). RESULTS: The animals tolerated the injections well, experiencing no measurable electrocardiographic changes, and recovered uneventfully from anesthesia. Sequential helical CT scans of the baboons from the base of the skull to the symphysis pubis acquired up to 40 minutes after injection showed persistent blood pool enhancement. Maximum mean enhancement of major vascular structures was 106 HU at 1 minute after contrast medium injection. Mean blood pool enhancement was 76, 72, and 67 HU at 10, 20, and 40 minutes after injection, respectively. Liver and spleen were enhanced by 40 and 41 HU, respectively, 40 minutes after injection. No significant enhancement was measured in the brain and pancreas. CONCLUSION: Soy phosphatidyl glycerol with iopromide liposomes produces prolonged vascular enhancement and has potential as a blood pool CT contrast agent in primates.  相似文献   

6.
RATIONALE AND OBJECTIVES: The authors investigated the feasibility of using computed tomography (CT) with CO2 gas as a negative contrast agent for detecting pulmonary emboli in a porcine model. MATERIALS AND METHODS: Seven pigs with or without pulmonary emboli underwent thoracic imaging with multi-detector row spiral CT. To identify optimal injection and scanning protocols, the first four pigs were scanned repeatedly in the supine and prone positions with different scan delays (10, 15, and 20 seconds) and different volumes of CO2 (60, 120, 180, and 240 mL), which were hand infused (each infusion took 10-15 seconds). The last five pigs with emboli were scanned with iodinated contrast medium and then rescanned with 120 or 180 mL of CO2. The CO2 volumes and scan delays were qualitatively assessed. The supine and prone CT scans and the number and location of thrombi depicted in the CO2- and contrast material-enhanced CT scans were compared. RESULTS: Because the pulmonary artery in pigs is in the posterior anatomy, the prone position was more effective than the supine position with CO2 enhancement. An infusion of 120 mL of CO2 was sufficient to enhance the entire pulmonary artery, and scanning timed to coincide with the completion of infusion was the most effective. Both the CO2- and contrast-enhanced CT scans demonstrated all thrombi. Thrombi were more apparent on the CO2-enhanced CT scans than on the contrast-enhanced scans because of the high contrast interface between soft tissue and gas. However, two of the seven pigs with thrombi experienced abrupt cardiac arrest after CO2-enhanced scanning and could not be resuscitated. The cause of these events was not determined in the current study. CONCLUSION: The CT depiction of pulmonary emboli is feasible with CO2 gas as a negative contrast agent and may even be superior to that with iodinated contrast media. Further studies are required to evaluate the safety of this method and to develop an improved delivery of CO2 gas for this application.  相似文献   

7.
RATIONALE AND OBJECTIVES: The authors compared the time course and blood pool and hepatic enhancement of three different doses of liposomal iodixanol with those of iohexol. MATERIALS AND METHODS: A liposomal iodixanol formulation was prepared with 200 mg of iodine per milliliter total and 80 mg of iodine per milliliter encapsulated. Twelve normal New Zealand white rabbits divided into four groups received 75-, 100-, or 150-mg encapsulated iodine per kilogram doses of liposomal iodixanol or 2 mL/kg iohexol with 300 mg of iodine per milliliter. A liver section was scanned with serial computed tomography (CT) before the injection, immediately afterward, and at 1-minute intervals for 10 minutes. Region-of-interest measurements of the aorta and liver were plotted at each time point, and contrast enhancement was plotted as a function of time and iodine dose. RESULTS: All liposomal iodixanol doses produced greater liver enhancement than iohexol. Results were significant (P < .05) for 100 mg and 150 mg iodine per kilogram dose groups at time points beyond 2 minutes. Peak hepatic enhancement (change in attenuation) was 54.9 HU +/- 7.6 with iohexol, compared with 59.6 HU +/- 6.1, 73.3 HU +/- 3.6, and 104.1 HU +/- 8.8 for 75, 100, and 150 mg encapsulated iodine per kilogram doses, respectively. Hepatic enhancement increased rapidly after injection of liposomal iodixanol, plateauing 2-3 minutes later. Blood pool enhancement decreased rapidly. Steady-state liver enhancement with liposomal iodixanol increased linearly with dose. Aortic enhancement was greater with iohexol. CONCLUSION: Liposomal iodixanol yielded greater hepatic enhancement at lower total iodine doses than iohexol. Although liver enhancement occurred rapidly after injection, blood pool enhancement was brief.  相似文献   

8.
9.
10.

Aim

To analyze the influence of contrast dose adjusted by weight vs. fixed contrast dose in the attenuation and cost of abdominal computed tomography (CT).

Materials and methods

A randomised, consecutive, parallel group study was conducted in 151 patients (74 men and 77 women, age range 22–67 years), studied with the same CT helical protocol. A dose at 1.75 ml/kg was administered in 101 patients while 50 patients had a fixed dose of 120 ml of same non-ionic contrast material (320 mg/ml). Mean enhancements were measured at right hepatic lobe, superior abdominal aorta and inferior cava vein. Statistical analysis was weight-stratified (<60, 61–70, 71–80 and >81 kg).

Results

Aortic attenuation was significantly superior (p < 0.05) in the dose adjusted by weight group than in the fixed dose group. Patients who weighed >61 kg in dose-adjusted group, presented higher hepatic attenuation, being statistically significant in those >81 kg (p < 0.01). In dose-adjusted group, there was a savings of €4.1 per patient in patients weighing <80 kg. In patients weighing >80 kg, there was an over cost of €10.7 per patient.

Conclusions

An injection volume of 1.75 ml/kg offers an optimal diagnostic quality with a global savings of €1.34 per patient.  相似文献   

11.
Advances in cardiac imaging with 16-section CT systems   总被引:21,自引:0,他引:21  
RATIONALE AND OBJECTIVES: The authors present advances in electrocardiographically (ECG) gated cardiac spiral scanning with recently introduced 16-section computed tomographic (CT) equipment. MATERIALS AND METHODS: The authors discuss the technical principles of ECG-gated cardiac scanning. They give an overview on system properties and on the detector design. They describe ECG-gated scan- and image-reconstruction techniques and ECG-controlled dose modulation ("ECG pulsing") for a reduction of the patient dose. They discuss key parameters for image quality and present simulation and phantom studies and they give preliminary values for the patient dose. RESULTS: An extension of the adaptive cardiac volume reconstruction for ECG-gated spiral CT provides adequate image quality for up to 16 sections. With the smallest reconstructed section width (about 0.83 mm) and overlapping image reconstruction, cylindrical holes 0.6-0.7 mm in diameter can be resolved in a transverse resolution phantom independent of the heart rate. For coronary CT angiography, the influence of transverse resolution is most pronounced for coronary segments that are only slightly tilted relative to the scan plane. In this case, visualization of stents and plaques is considerably improved with 1.0-mm or smaller section width. For 0.42-second gantry rotation time, temporal resolution reaches its optimum (105 msec) at a heart rate of 81 beats per minute. Effective patient dose for the standard protocols recommended by the manufacturer ranges from 0.45 mSv (male) for ECG-triggered calcium scoring to 7.1 mSv (male) for high-resolution ECG-gated coronary CT angiography. With ECG pulsing, the dose is reduced by 30%-50% depending on the patient's heart rate. CONCLUSION: Clinical experience will be needed to evaluate fully the potential of 16-section technology for cardiac imaging.  相似文献   

12.
RATIONALE AND OBJECTIVES: Because of the increased clinical use of computed tomography (CT) for imaging the abdominal vasculature and urinary tract, there is a need for negative contrast agents. The authors undertook this study to assess the suitability of simethicone-coated cellulose (SCC), which is approved for use as an oral contrast agent in sonography, for use as a negative oral contrast agent in abdominal CT. MATERIALS AND METHODS: This prospective study involved 40 adult patients scheduled to undergo abdominal CT for the evaluation of hematuria. Prior to scanning, 20 subjects received 800 mL of SCC and 20 received 800 mL of water as an oral contrast agent. Imaging was performed with a multi-detector row helical scanner in two phases, according to the abdominal CT protocol used for hematuria evaluation at the authors' institution. The first, "early" phase began an average of 15 minutes after the ingestion of contrast material; the second, "late" phase began an average of 45 minutes after the ingestion of contrast material. Blinded analysis was performed by three abdominal radiologists separately, using a three-point scale (0 = poor, 1 = acceptable, 2 = excellent) to assess the effectiveness of SCC for marking the proximal, middle, and distal small bowel. Average scores for enhancement with SCC and with water were obtained and compared. Statistical analysis was performed with a Wilcoxon signed-rank test. RESULTS: SCC was assigned higher mean scores than water for enhancement in each segment of the bowel, both on early-phase images (0.8-1.35 for SCC vs 0.6-1.1 for water) and on late-phase images (1.1-1.4 vs 0.81-0.96). Bowel marking with SCC, particularly in the jejunum and ileum, also was rated better than that with water in a high percentage of patients. The differences between the scores for water and for SCC, however, were not statistically significant (P > .05). CONCLUSION: SCC is effective as a negative oral contrast agent for small bowel marking at CT.  相似文献   

13.
14.

Objective

This study was designed to determine the optimal mixture ratio of gadolinium and iodinated contrast agent for simultaneous direct MR arthrography and CT arthrography.

Materials and Methods

An in vitro study was performed utilizing mixtures of gadolinium at six different concentrations (0.625, 1.25, 2.5, 5.0, 10 and 20 mmol/L) and iodinated contrast agent at seven different concentrations (0, 12.5, 25, 37.5, 50, 75 and 92-99.9%). These mixtures were placed in tissue culture plates, and were then imaged with CT and MR (with T1-weighted sequences, proton-density sequences and T2-weighted sequences). CT numbers and signal intensities were measured. Pearson''s correlation coefficients were used to assess the correlations between the gadolinium/iodinated contrast agent mixtures and the CT numbers/MR signal intensities. Scatter diagrams were plotted for all gadolinium/iodinated contrast agent combinations and two radiologists in consensus identified the mixtures that yielded the optimal CT numbers and MR signal intensities.

Results

The CT numbers showed significant correlation with iodinated contrast concentrations (r = 0.976, p < 0.001), whereas the signal intensities as measured on MR images showed a significant correlation with both gadolinium and iodinated contrast agent concentrations (r = -484 to -0.719, p < 0.001). A review of the CT and MR images, graphs, and scatter diagram of 42 combinations of the contrast agent showed that a concentration of 1.25 mmol/L gadolinium and 25% iodinated contrast agent was the best combination for simultaneous CT and MR imaging.

Conclusion

A mixture of 1.25 mmol/L gadolinium and 25% iodinated contrast agent was found to be optimal for simultaneous direct MR arthrography and CT arthrography.  相似文献   

15.
The aim of the study was to implement an abdominal CT angiography protocol using 100 kVp and to compare SNR and CNR, as well as subjective image quality, to a standard CT angiography protocol using 120 kVp on a 16 detector-row CT scanner. Forty-eight patients were referred for routine abdominal CT angiography on a 16 detector-row CT scanner. Patients were scanned using either 120 or 100 kVp at constant mAs settings. Vessel opacification was provided by automated contrast injection using similar injection protocols. Density measurements were performed along the aorto-iliac axis with SNR and CNR calculation. In addition, the estimated effective patient radiation dose was calculated. Results of both protocols were compared. The 100-kVp protocol (432±80 HU) showed a significantly higher vessel density than the 120-kVp (333±90 HU; P<0.001) protocol, corresponding to an average increase in signal intensity of 30.7%. SNR (36.0 vs 37.0) and CNR (31.1 vs 31.7) for the 100-kV protocol were not significantly lower that those for the standard protocol (P=0.79 and P=0.87), whilst the average estimated dose was significantly lower using the 100-kVp protocol (6.7±0.4 vs 10.1±1.2 mSv; P<0.0001). Tube kVp reduction from 120 to 100 kVp allows for significant reduction of patient dose in abdominal CT angiography, without significant change in SNR,CNR and image quality.  相似文献   

16.
We describe a case of clinically unsuspected bilateral ectopic pheochromocytomas in a young woman. The bilateral retroperitoneal masses were located in the lower sympathetic ganglia at the level of the organ of Zuckerkandl. Computed tomography (CT) accurately identified the location and vascular characteristics of these neoplasms and provided access for percutaneous biopsy. Sonographic correlation is also presented.  相似文献   

17.
Yang ZG  Guo YK  Li Y  Min PQ  Yu JQ  Ma ES 《European radiology》2006,16(9):2031-2036
The aim of the present study is to determine imaging criteria for differentiating tuberculosis from primary tumors in the adrenal gland on contrast-enhanced CT. Non-contrast and contrast-enhanced CT features in 108 patients with adrenal tuberculosis (n=34) and primary tumor (n=74) were retrospectively assessed for the location, size, calcification and enhancement patterns. The primary tumors included 41 adenomas, 11 pheochromocytomas, 4 carcinomas, 3 lymphomas, 6 myelolipomas, 6 ganglioneuromas, 2 neurilemmomas and 1 ganglioneuroblastoma. Biochemical investigation was performed for all patients. Of the tuberculosis cases, 31 (91%) invaded with bilateral involvement, while 7 (9%) of the primary tumors invaded with bilateral involvement (P<0.001). Tuberculosis often showed calcification (20 of 34; 59%), whereas primary tumors infrequently showed calcification (6 of 74; 8%; P<0.001). Low attenuation in the center with peripheral rim enhancement was more commonly seen in tuberculosis (16 of 34; 47%) than in primary tumors (7 of 74; 9%; P<0.001). In the determination of tuberculosis, the highest sensitivity (91%) and accuracy (91%) were obtained with bilateral involvement, and the highest specificity (99%) was obtained with the contour preserved. In the determination of primary tumors using a combination of having unilateral involvement and being mass-like, the outcome was a sensitivity of 91%, specificity of 94% and accuracy of 92%. CT findings can differentiate tuberculosis from a primary tumor of the adrenal glands with high sensitivity and an acceptable specificity when combined with the endocrinological examination.  相似文献   

18.

Objective

To determine which multidetector-row helical CT scanning technique provides the best-quality reconstructed 3D images, and to assess differences in image quality according to the levels of the scanning parameters used.

Materials and Methods

Four objects with different surfaces and contours were scanned using multidetector-row helical CT at three detector-row collimations (1.25, 2.50, 5.00 mm), two pitches (3.0, 6.0), and three different degrees of overlap between the reconstructed slices (0%, 25%, 50%). Reconstructed 3D images of the resulting 72 sets of data were produced using volumetric rendering. The 72 images were graded on a scale from 1 (worst) to 5 (best) for each of four rating criteria, giving a mean score for each criterion and an overall mean score. Statistical analysis was used to assess differences in image quality according to scanning parameter levels.

Results

The mean score for each rating criterion, and the overall mean score, varied significantly according to the scanning parameter levels used. With regard to detector-row collimation and pitch, all levels of scanning parameters gave rise to significant differences, while in the degree of overlap of reconstructed slices, there were significant differences between overlap of 0% and of 50% in all levels of scanning parameters, and between overlap of 25% and of 50% in overall accuracy and overall mean score. Among the 18 scanning sequences, the highest score (4.94) was achieved with 1.25 mm detector-row collimation, 3.0 pitch, and 50% overlap between reconstructed slices.

Conclusion

Comparison of the quality of reconstructed 3D images obtained using multidetector-row helical CT and various scanning techniques indicated that the 1.25 mm, 3.0, 50% scanning sequence was best. Quality improved as detector-row collimation decreased; as pitch was reduced from 6.0 to 3.0; and as overlap between reconstructed slices increased.  相似文献   

19.

Objective

This preliminarily study was designed to determine and to compare the efficacy of two commercially available barium-based fecal tagging agents for CT colonography (CTC) (high-density [40% w/v] and low-density [4.6% w/v] barium suspensions) in a population in Korea.

Materials and Methods

In a population with an identified with an average-risk for colorectal cancer, 15 adults were administered three doses of 20 ml 40% w/v barium for fecal tagging (group I) and 15 adults were administered three doses of 200 ml 4.6% w/v barium (group II) for fecal tagging. Excluding five patients in group I and one patient in group II that left the study, ten patients in group I and 14 patients in group II were finally included in the analysis. Two experienced readers evaluated the CTC images in consensus regarding the degree of tagging of stool pieces 6 mm or larger. Stool pieces were confirmed with the use of standardized CTC criteria or the absence of matched lesions as seen on colonoscopy. The rates of complete fecal tagging were analyzed on a per-lesion and a per-segment basis and were compared between the patients in the two groups.

Results

Per-lesion rates of complete fecal tagging were 52% (22 of 42; 95% CI, 37.7-66.6%) in group I and 78% (28 of 36; 95% CI, 61.7-88.5%) in group II. The difference between the two groups did not reach statistical significance (p = 0.285). The per-segment rates of complete tagging were 33% (6 of 18; 95% CI, 16.1%-56.4%) in group I and 60% (9 of 15; 95% CI, 35.7%-80.3%) in group II; again, the difference between the two groups did not reach statistical significance (p = 0.171).

Conclusion

Barium-based fecal tagging using both the 40% w/v and the 4.6% w/v barium suspensions showed moderate tagging efficacy. The preliminary comparison did not demonstrate a statistically significant difference in the tagging efficacy between the use of the two tagging agents, despite the tendency toward better tagging with the use of the 4.6% w/v barium suspension.  相似文献   

20.
A molecular CT blood pool contrast agent   总被引:1,自引:0,他引:1  
RATIONALE AND OBJECTIVES: A molecular-based computed tomographic (CT) contrast agent with prolonged vascular residence time is needed for vascular and tumor imaging. No particulate agents have reached clinical practice due to nonspecific macrophage activation. The authors' objective was to synthesize a water-soluble macromolecular agent. MATERIALS AND METHODS: Dysprosium-DTPA-dextran was synthesized through activation of the hydroxyl units of dextran PM40 with allylbromine and subsequent reaction with amino ethanethiol to produce amino-terminated leashes. These leashes were then coupled to DTPA by means of the mixed anhydride method. Complexation of dysprosium by DTPA-dextran was achieved in an acidic solution of 0.2 M dysprosium chloride. One rabbit with a VX2 tumor was imaged with [Dy]DTPA-dextran (0.5 mL, 3.1 g, 1.15 mmol of dysprosium per kilogram). Transaxial scans were acquired through the liver and tumor for 45 minutes. A second healthy rabbit was imaged with Optiray-320 (6.0 mL, 5.0 mmol of iodine per kilogram) at 1-minute intervals for 10 minutes and again at 20 minutes. RESULTS: Each dextran PM40 molecule (diameter, 8.8 nm) contained 95 [Dy]DTPA groups, increasing its average molecular weight from 40,500 to 101,537 g/mol. The baseline-corrected inferior vena cava (IVC) enhancement for [Dy]DTPA-dextran decreased, with an 8-minute half-time during the first 15 minutes followed by a nearly zero slope for the rest of the observation period. The IVC remained brighter than liver throughout the observation period. The solid portion of the tumor was enhanced by 5-10 CT numbers, rendering areas of necrosis more apparent. The baseline-corrected IVC curve for Optiray-320 also demonstrated two phases, with half-times of 2.5 and 45 minutes. The IVC became less dense than liver within 5-8 minutes. CONCLUSION: [Dy]DTPA-dextran is water soluble and can be synthesized without intermolecular cross-linking to carry a high load of dysprosium. It provides blood pool enhancement characteristics with a long intravascular dwell time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号