首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In adoptive T-cell transfer as an intervention for malignant diseases, retroviral transfer of T-cell receptor (TCR) genes derived from CD8(+) cytotoxic T-lymphocyte (CTL) clones provides an opportunity to generate a large number of T cells with the same antigen specificity. We cloned the TCR-alphabeta genes from a human leukocyte antigen (HLA)-A(*)2402-restricted CTL clone specific for MAGE-A4(143-151). The TCR-alphabeta genes were transduced to 99.2% of non-TCR expressing SupT1, a human T-cell line, and to 12.7-32.6% of polyclonally activated CD8(+) T cells by retroviral transduction. As expected, TCR-alphabeta gene-modified CD8(+) T cells showed cytotoxic activity and interferon-gamma production in response to peptide-loaded T2-A(*)2402 and tumor cell lines expressing both MAGE-A4 and HLA-A(*)2402. A total of 24 clones were established from TCR-alphabeta gene-transduced peripheral blood mononuclear cells and all clones were functional on a transduced TCR-dependent manner. Four clones were kept in culture over 6 months for analyses in detail. The transduced TCR-alphabeta genes were stably maintained phenotypically, functionally and genetically. Our results indicate that TCR-transduced alphabeta T cells by retroviral transduction represent an efficient and promising strategy for adoptive T-cell transfer for long term.  相似文献   

2.
Vaccines designed to protect against malaria by inducing CD8+ cytotoxic T lymphocytes (CTL) in individuals of diverse HLA backgrounds must contain multiple conserved epitopes from various preerythrocytic-stage antigens. Plasmodium falciparum sporozoite surface protein 2 (PfSSP2) is considered an important antigen for inclusion in such vaccines, because CD8+ CTL against the P. yoelii SSP2 protect mice against malaria by eliminating infected hepatocytes. To develop PfSSP2 as a component of malaria vaccines, we investigated the presence of anti- PfSSP2 CTL in two HLA-B8+ volunteers immunized with irradiated P. falciparum sporozoites and characterized their CTL responses using PfSSP2-derived 15-amino acid peptides bearing the HLA-B8-binding motif. Peripheral blood mononuclear cells from both volunteers stimulated with recombinant vaccinia expressing PfSSP2 displayed antigen-specific, genetically restricted, CD8+ T cell-dependent CTL activity against autologous target cells expressing PfSSP2. Of the five HLA-B8 motif- bearing 15-mers identified in the PfSSP2 sequence, two peptides sharing a 10-amino acid overlap sensitized HLA-B8-matched target cells from both volunteers for lysis by peptide-stimulated effectors. The CTL activity was HLA-B8 restricted and dependent on CD8+ T cells. Analysis of the three shorter peptides representing HLA-B8 motif-bearing sequences within the two positive peptides for their ability to bind to HLA-B8 in vitro, and to sensitize target cells for lysis by effectors stimulated with the 15-mers, identified two overlapping HLA-B8- restricted CTL epitopes. Available data indicate that the sequence of one CTL epitope is conserved and the other is variant among P. falciparum isolates. Circulating activated CTL against the conserved epitope could be directly identified in one of the two volunteers. The identification of two HLA-B8-restricted CTL epitopes on PfSSP2 provides data critical to developing an epitope-based anti-liver stage malaria vaccine.  相似文献   

3.
We report the isolation of a panel of CD4+ T helper type 1 autoreactive T cell clones from the spleen of unprimed nonobese diabetic mice, a murine model of human insulin-dependent diabetes mellitus. The T cell clones express a diverse repertoire of T cell receptors, three of which recognize beta islet cell autoantigen(s). The islet cell-reactive T cell clones inhibit adoptive transfer of insulin-dependent diabetes mellitus and intraislet lymphocytic infiltration. The protective capacity of the T cell clones correlates with their ability to produce a novel immunoregulatory activity that potently inhibits in vitro allogeneic mixed lymphocyte reaction. The partially purified activity significantly inhibited the adoptive transfer of diabetes. Our work provides evidence in support of the existence of T helper type 1, CD4+ T cells reactive to beta islet cell autoantigens that have acquired a protective instead of a diabetogenic effector function. These T cells mediate their protective action in part by production of an immunoregulatory activity capable of down-regulating immune responses, and they are likely to represent a population of regulatory T cells that normally plays a role in maintaining peripheral tolerance.  相似文献   

4.
Oral immunization with an attenuated Salmonella typhimurium recombinant containing the full-length Plasmodium berghei circumsporozoite (CS) gene induces protective immunity against P. berghei sporozoite challenge in the absence of antibody. We found that this immunity was mediated through the induction of specific CD8+ T cells since in vivo elimination of CD8+ cells abrogated protection. In vitro studies revealed that this Salmonella-P. berghei CS recombinant induced class I-restricted CD8+ cytotoxic T cells that are directed against the P. berghei CS peptide epitope spanning amino acids 242-253. This is the same peptide that previously was identified as the target of cytotoxic T lymphocytes (CTL) induced by sporozoite immunization. Salmonella-P. falciparum CS recombinants were constructed that contained either the full-length CS gene or a repeatless gene consisting of CS flanking sequences. Both of these vaccines were able to induce CD8+ CTL directed against P. falciparum CS peptide 371-390, which is identical to the target of CTL induced by sporozoites and vaccinia CS recombinants. These results directly demonstrate the ability of an intracellular bacteria such as Salmonella to induce class I-restricted CD8+ CTL and illustrate the importance of CD8+ CTL in immunity to malaria.  相似文献   

5.
The role of CD40 ligand (CD40L) in CD8 T cell activation was assessed by tracking antigen-specific T cells in vivo using both adoptive transfer of T cell receptor transgenic T cells and major histocompatibility complex (MHC) class I tetramers. Soluble antigen immunization induced entry of CD8 cells into the intestinal mucosa and cytotoxic T lymphocyte (CTL) differentiation, whereas CD8 cells in secondary lymphoid tissue proliferated but were not cytolytic. Immunization concurrent with CD40L blockade or in the absence of CD40 demonstrated that accumulation of CD8 T cells in the mucosa was CD40L dependent. Furthermore, activation was mediated through CD40L expressed by the CD8 cells, since inhibition by anti-CD40L monoclonal antibodies occurred after adoptive transfer to CD40L-deficient mice. However, mucosal CD8 T cells in normal and CD40(-/-) mice were equivalent killers, indicating that CD40L was not required for CTL differentiation. Appearance of virus-specific mucosal, but not splenic, CD8 cells also relied heavily on CD40-CD40L interactions. The mucosal CTL response of transferred CD8 T cells was MHC class II and interleukin 12 independent. The results established a novel pathway of direct CD40L-mediated CD8 T cell activation.  相似文献   

6.
Tumors infected with a recombinant defective adenovirus expressing interleukin 12 (IL-12) undergo regression, associated with a cytotoxic T lymphocyte (CTL)-mediated antitumor immune response. In the present study we generated anti-CT26 CTLs by short-term coculture of CT26 cells and lymph node cells obtained from mice harboring subcutaneous CT26 tumors injected with an adenoviral vector expressing IL-12 (AdCMVIL-12), control adenovirus (AdCMVlacZ), or saline. Regression of small intrahepatic CT26 tumors in unrelated syngeneic animals was achieved with CTLs derived from mice whose subcutaneous tumors had been injected with AdCMVIL-12 but not with CTLs from the other two control groups. The necessary and sufficient effector cell population for adoptive transfer consisted of CD8+ T cells that showed anti-CT26 specificity partly directed against the AH1 epitope presented by H-2Ld. Interestingly, treatment of a subcutaneous tumor nodule with AdCMVIL-12, combined with intravenous adoptive T cell therapy with short-term CTL cultures, had a marked synergistic effect against large, concomitant live tumors. Expression of IL-12 in the liver in the vicinity of the hepatic tumor nodules, owing to spillover of the vector into the systemic circulation, appeared to be involved in the increased in vivo antitumor activity of injected CTLs. In addition, adoptive T cell therapy improved the outcome of tumor nodules transduced with suboptimal doses of AdCMVIL-12. Our data provide evidence of a strong synergy between gene transfer of IL-12 and adoptive T cell therapy. This synergy operates both at the induction and effector phases of the CTL response, thus providing a rationale for combined therapeutic strategies for human malignancies.  相似文献   

7.
Insulin is a major target of the autoimmune response associated with destruction of pancreatic beta cells in type 1 diabetes. A peptide that spans the junction of the insulin B chain and the connecting (C) peptide in proinsulin has been reported to stimulate T cells from humans at risk for type 1 diabetes and autoimmune diabetes-prone NOD mice. Here we show that proinsulin B24-C36 peptide binds to I-A(g7), the MHC class II molecule of the NOD mouse, and, after intranasal administration, induces regulatory CD4(+) T cells that, in the absence of CD8(+) T cells, block the adoptive transfer of diabetes. Curiously, however, intranasal B24-C36 did not inhibit development of spontaneous diabetes in treated mice. We then determined that B24-C36, and its core sequence B25-C34, bind to K(d), the NOD mouse MHC class I molecule, and elicit CD8(+) CTLs. When the CD8(+) T lymphocyte epitope was truncated at the C34 valine anchor residue for binding to K(d), the residual CD4(+) T cell epitope, B24-C32/33, significantly inhibited diabetes development after a single intranasal dose. This study identifies a novel CTL epitope in proinsulin and demonstrates that the therapeutic potential of a "tolerogenic" autoantigen peptide can be compromised by the presence of an integral CTL epitope.  相似文献   

8.
We previously demonstrated the feasibility of generating therapeutic numbers of cytotoxic T lymphocyte (CTL) clones expressing a CD20-specific scFvFc:CD3zeta chimeric T cell receptor (cTCR), making them specifically cytotoxic for CD20+ B lymphoma cells. However, the process of generating and expanding he CTL clones was laborious, the CTL clones expressed the cTCR at low surface density, and they exhibited suboptimal proliferation and cytotoxicity. To improve the performance of the CTLs in vitro and in vivo, we engineered "second-generation' plasmid constructs containing a translational enhancer (SP163) and CD28 and CD137 costimulatory domains in cis with the CD3zeta intracellular signaling domain of the cTCR gene. Furthermore, we verified the superiority of generating genetically modified polyclonal T cells expressing the second-generation cTCR rather than T cell clones. Our results demonstrate that SP163 enhances the surface expression of the cTCR; that the second-generation cTCR improves CTL activation, proliferation, and cytotoxicity; and that polyclonal T cells proliferate rapidly in vitro and mediate potent CD20-specific cytotoxicity. This study provides the preclinical basis for a clinical trial of adoptive T cell immunotherapy for patients with relapsed CD20+ mantle cell lymphoma and indolent lymphomas.  相似文献   

9.
Cytotoxic T lymphocytes (CTL) recognize short antigenic peptides associated with cell surface class I major histocompatibility complex (MHC) molecules. This association presumably occurs between newly synthesized class I MHC molecules and peptide fragments in a pre-Golgi compartment. Little is known about the factors that regulate the formation of these antigenic peptide fragments within the cell. To examine the role of residues within a core epitope and in the flanking sequences for the generation and presentation of the newly synthesized peptide fragment recognized by CD8+ CTL, we have mutagenized the coding sequence for the CTL epitope spanning residues 202-221 in the influenza A/Japan/57 hemagglutinin (HA). In this study over 60 substitution mutations in the epitope were tested for their effects on target cell sensitization using a cytoplasmic viral expression system. The HA202-221 site contains two overlapping subsites defined by CTL clones 11-1 and 40-2. Mutations in HA residues 204-213 or residues 210-219 often abolished target cell lysis by CTL clones 11-1 and 40-2, respectively. Although residues outside the core epitope did not usually affect the ability to be lysed by CTL clones, substitution of a Gly residue for Val-214 abolished lysis by clone 11-1. These data suggest that residues within a site that affect MHC binding and T cell receptor recognition appear to play the predominant role in dictating the formation of the antigenic complex recognized by CD8+ CTL, and therefore the antigenicity of the protein antigen presented to CD8+ T cells. Most alterations in residues flanking the endogenously expressed epitope do not appreciably affect the generation and recognition of the site.  相似文献   

10.
Determinant of HIV-1 mutational escape from cytotoxic T lymphocytes   总被引:7,自引:0,他引:7       下载免费PDF全文
CD8+ class I-restricted cytotoxic T lymphocytes (CTLs) usually incompletely suppress HIV-1 in vivo, and while analogous partial suppression induces antiretroviral drug-resistance mutations, epitope escape mutations are inconsistently observed. However, escape mutation depends on the net balance of selective pressure and mutational fitness costs, which are poorly understood and difficult to study in vivo. Here we used a controlled in vitro system to evaluate the ability of HIV-1 to escape from CTL clones, finding that virus replicating under selective pressure rapidly can develop phenotypic resistance associated with genotypic changes. Escape varied between clones recognizing the same Gag epitope or different Gag and RT epitopes, indicating the influence of the T cell receptor on pressure and fitness costs. Gag and RT escape mutations were monoclonal intra-epitope substitutions, indicating limitation by fitness constraints in structural proteins. In contrast, escape from Nef-specific CTL was more rapid and consistent, marked by a polyclonal mixture of epitope point mutations and upstream frameshifts. We conclude that incomplete viral suppression by CTL can result in rapid emergence of immune escape, but the likelihood is strongly determined by factors influencing the fitness costs of the particular epitope targeted and the ability of responding CTL to recognize specific epitope variants.  相似文献   

11.
Reconstitution of protective immunity by adoptive transfer of pathogen-specific T cells has been successful in patients with compromised cellular immunity. The in vivo effectiveness of in vitro-expanded CD8 CTLs is variable, however. For example, adoptively transferred Listeria monocytogenes-specific CD8 CTLs only confer protective immunity if challenge infection occurs within 48 hours of T cell infusion. Herein we show that transferred CTLs persist in lymphoid compartments for many weeks, but that their response to bacterial challenge decreases during the first week following transfer. While T cells transferred less than 48 hours before infection proliferate, those transferred 7 days before infection die. Remarkably, treatment of mice with anti-CD40 at the time of T cell infusion reprograms transferred T cells, allowing them to proliferate and confer protective immunity upon bacterial challenge 7 days later. Our study demonstrates, for the first time to our knowledge that CD40-mediated stimuli can influence CD8 T cell activation independent of concurrent antigen exposure. The ability to modulate long-term responsiveness of CD8 T cells with a transient, nonspecific inflammatory stimulus has importation implications for adoptive immunotherapy.  相似文献   

12.
The adoptive transfer of antigen-specific T cells that have been expanded ex vivo is being actively pursued to treat infections and malignancy in humans. The T cell populations that are available for adoptive immunotherapy include both effector memory and central memory cells, and these differ in phenotype, function, and homing. The efficacy of adoptive immunotherapy requires that transferred T cells persist in vivo, but identifying T cells that can reproducibly survive in vivo after they have been numerically expanded by in vitro culture has proven difficult. Here we show that in macaques, antigen-specific CD8(+) T cell clones derived from central memory T cells, but not effector memory T cells, persisted long-term in vivo, reacquired phenotypic and functional properties of memory T cells, and occupied memory T cell niches. These results demonstrate that clonally derived CD8+ T cells isolated from central memory T cells are distinct from those derived from effector memory T cells and retain an intrinsic capacity that enables them to survive after adoptive transfer and revert to the memory cell pool. These results could have significant implications for the selection of T cells to expand or to engineer for adoptive immunotherapy of human infections or malignancy.  相似文献   

13.
The generation of an in vitro major histocompatibility complex class I specific response of CD4-CD8- T cell receptor (TCR) alpha beta cytotoxic T lymphocytes (CTL) and their allogeneic tumor rejection were investigated. Inocula of BALBRL male 1 were rejected in C57BL/6 (B6) mice treated with minimum essential medium (MEM) (control), anti-L3T4 (CD4) monoclonal antibody (mAb) or anti-Lyt-2.2 (CD8) mAb and CTL against the tumor were generated in vitro. No rejection and no induction of CTL were observed in B6 mice treated with anti-L3T4 (CD4) plus anti-Lyt-2.2 (CD8) mAb. CTL with the classical Thy-1+ CD3+CD4-CD8+ TCR alpha beta phenotype were generated in mixed lymphocyte tumor cell culture (MLTC) spleen cells from B6 mice treated with MEM (control) or anti-L3T4 (CD4) mAb, whereas CTL with an unusual Thy-1+CD3+CD4-CD8- TCR alpha beta phenotype were generated in MLTC spleen cells from anti-Lyt-2.2 (CD8) mAb-treated B6 mice. Both types of CTL were reactive with both H-2Kd and Dd (Ld) class I antigen. These findings suggest that when CD4+ cells were blocked by anti-L3T4 (CD4) mAb, CD8+ CTL mediated rejection, and when CD8+ cells were blocked by anti-Lyt-2.2 (CD8) mAb, CD4+ cells were capable of mediating rejection, although less efficiently than CD8+ cells, by inducing CD4-CD8- TCR alpha beta CTL. The finding that adoptive transfer of CD4 and CD8-depleted MLTC spleen cells, obtained from anti-Lyt-2.2 (CD8) mAb-treated B6 mice that had rejected BALBRL male 1, resulted in rejection of BALBRL male 1 inoculated into B6 nu/nu mice confirmed the above notion. CTL clones with the CD4-CD8- TCR alpha beta phenotype specific for Ld were established.  相似文献   

14.
T lymphocytes play a primary role in recovery from viral infections and in antiviral immunity. Although viral-specific CD8+ and CD4+ T cells have been shown to be able to lyse virally infected targets in vitro and promote recovery from lethal infection in vivo, the role of CD4+ T lymphocytes and their mechanism(s) of action in viral immunity are not well understood. The ability to further dissect the role that CD4+ T cells play in the immune response to a number of pathogens has been greatly enhanced by evidence for more extensive heterogeneity among the CD4+ T lymphocytes. To further examine the role of CD4+ T cells in the immune response to influenza infection, we have generated influenza virus-specific CD4+ T cell clones from influenza-primed BALB/c mice with differential cytokine secretion profiles that are defined as T helper type 1 (Th1) clones by the production of interleukin 2 (IL-2) and interferon gamma (IFN-gamma), or as Th2 clones by the production of IL-4, IL-5, and IL-10. Our studies have revealed that Th1 clones are cytolytic in vitro and protective against lethal challenge with virus in vivo, whereas Th2 clones are noncytolytic and not protective. Upon further evaluation of these clonal populations we have shown that not only are the Th2 clones nonprotective, but that pulmonary pathology is exacerbated as compared with control mice as evidenced by delayed viral clearance and massive pulmonary eosinophilia. These data suggest that virus-specific CD4+ T cells of the Th2 subset may not play a primary role in virus clearance and recovery and may lead to immune mediated potentiation of injury.  相似文献   

15.
Hung CF  Tsai YC  He L  Wu TC 《Gene therapy》2007,14(12):921-929
Cancer immunotherapy targeting mesothelin represents a potentially plausible approach for the control of ovarian cancer as most ovarian cancers express high levels of mesothelin. In the current study, we created a mesothelin-positive luciferase-expressing ovarian cancer model, MOSEC/luc. This luciferase-expressing tumor model allowed us to quantitate tumor distribution and tumor load in tumor-challenged mice using a non-invasive bioluminescence imaging system. In addition, we identified an H-2D(b)-restricted mesothelin peptide-specific cytotoxic T-lymphocyte (CTL) epitope (amino acid (aa) 406-414) that was endogenously processed and presented by MOSEC/luc tumor cells. We showed that adoptive transfer of mesothelin peptide (aa406-414)-specific CD8(+) T cells led to the control of MOSEC/luc tumor cells. The MOSEC/luc tumor model and the newly identified H-2D(b)-restricted murine mesothelin-specific CTL epitope (aa406-414) will be very useful for the development of immunotherapy for ovarian cancer as well as for the development of quantitative CD8(+) T cell-mediated immunological assays.  相似文献   

16.
CD8(+) cytotoxic T lymphocytes (CTLs) recognize antigen in the context of major histocompatibility complex (MHC) class I molecules. Class I epitopes have been classified as dominant or subdominant depending on the magnitude of the CTL response to the epitope. In this report, we have examined the in vitro memory CTL response of H-2(d) haplotype murine CD8(+) T lymphocytes specific for a dominant and subdominant epitope of influenza hemagglutinin using activation marker expression and staining with soluble tetrameric MHC-peptide complexes. Immune CD8(+) T lymphocytes specific for the dominant HA204-210 epitope give rise to CTL effectors that display activation markers, stain with the HA204 tetramer, and exhibit effector functions (i.e., cytolytic activity and cytokine synthesis). In contrast, stimulation of memory CD8(+) T lymphocytes directed to the subdominant HA210-219 epitope results in the generation of a large population of activated CD8(+) T cells that exhibit weak cytolytic activity and fail to stain with the HA210 tetramer. After additional rounds of restimulation with antigen, the HA210-219-specific subdominant CD8(+) T lymphocytes give rise to daughter cells that acquire antigen-specific CTL effector activity and transition from a HA210 tetramer-negative to a tetramer-positive phenotype. These results suggest a novel mechanism to account for weak CD8(+) CTL responses to subdominant epitopes at the level of CD8(+) T lymphocyte differentiation into effector CTL. The implications of these findings for CD8(+) T lymphocyte activation are discussed.  相似文献   

17.
Adoptive transfer of donor-derived cytomegalovirus (CMV)-specific cytotoxic T cell (CTL) clones can restore immunity in allogeneic stem cell transplant recipients, providing protection against CMV disease. Current methods for selecting and expanding CMV-specific T cell clones are technically difficult, making adoptive T cell therapy impractical for routine clinical use. In this study, we describe a method for ex vivo generation and expansion of high-purity CMV-specific CTL using peptide-pulsed dendritic cells as antigen-presenting cells. Generation of CMV-specific CTL in numbers sufficient for clinical use in the time span of 4 weeks was accomplished in 6 of 8 CMV-seropositive donors. Examination of pp65 specificity by HLA/peptide tetramer staining demonstrated that a purity of greater than 95% peptide-specific cells could be obtained after two weekly stimulations and retained after further expansion for 3-4 weeks. Median expansion of total cell number was greater than 500-fold and expansion of peptide-specific CTL by tetramer staining was greater than 1.7 x 10(5)-fold. Four weeks after initiating CTL culture, we were able to generate greater than 10(9) total cells that specifically lysed target cells loaded with CMV peptide and cells infected with CMV. This simple and rapid method for generating high-purity CMV-specific CTL for adoptive immunotherapy is currently being examined for routine clinical use for allogeneic stem cell transplantation.  相似文献   

18.
This study documents that virus-specific CTL can persist indefinitely in vivo. This was accomplished by transferring Thy-1.1 T cells into Thy-1.2 recipient mice to specifically identify the donor T cell population and to characterize its antigenic specificity and function by using a virus-specific CTL assay. Thy-1.1+ T cells from mice previously immunized with lymphocytic choriomeningitis virus (LCMV) were transferred into Thy-1.2 mice persistently infected with LCMV. The transferred LCMV-specific CTL (Thy-1.1+ CD8+) eliminate virus from the chronically infected carriers and persist in the recipient mice in small numbers, comprising only a minor fraction of the total T cells. Upon re-exposure to virus, these long-lived "resting" CD8+ T cells proliferate in vivo to become the predominant cell population. These donor CD8+ T cells can be recovered up to a year post-transfer and still retain antigenic specificity and biological function. They kill LCMV infected H-2-matched cells in vitro and can eliminate virus upon transfer into a second infected host. In addition, these long-lived CD8+ T cells appear not to be dependent on help from CD4+ T cells, since depletion of CD4+ T cells has minimal or no effect on their biological properties (proliferation, CTL response, viral clearance). These donor CTL also exhibit an immunodominance over the host-derived LCMV-specific CTL response. When both host and donor T cells are present, the donor CTL response is dominant over the potential CTL response of the cured carrier host. Taken together, these results suggest that virus-specific CTL can persist for the life span of the host as memory cells.  相似文献   

19.
CD8 T cell memory in B cell-deficient mice   总被引:7,自引:0,他引:7       下载免费PDF全文
Antigen presentation by B cells and persistence of antigen-antibody complexes on follicular dendritic cells (FDC) have been implicated in sustaining T cell memory. In this study we have examined the role of B cells and antibody in the generation and maintenance of CD8+ cytotoxic T lymphocyte (CTL) memory. To address this issue we compared CTL responses to lymphocytic choriomeningitis virus (LCMV) in normal (+/+) versus B cell-deficient mice. The CTL response to acute LCMV infection can be broken down into three distinct phases: (a) the initial phase (days 3-8 after infection) of antigen-driven expansion of virus- specific CD8+ T cells and the development of effector CTL (i.e., direct ex vivo killers); (b) a phase of death (between days 10 and 30 after infection) during which >95% of the virus-specific CTL die and the direct effector activity subsides; and (c) the phase of long-term memory (after day 30) that is characterized by a stable pool of memory CTL that persist for the life span of the animal. The role of B cells in each of these three phases of the CTL response was analyzed. We found that B cells were not required for the expansion and activation of virus-specific CTL. The kinetics and magnitude of the effector CTL response, as measured by direct killing of infected targets by ex vivo isolated splenocytes, was identical in B cell-deficient and +/+ mice. Also, the expansion of CD8+ T cells was not affected by the absence of B cells and/or antibody; in both groups of mice there was an approximately 10,000-fold increase in the number of LCMV-specific CTL and a greater than 10-fold increase in the total number of activated (CD44hi) CD8+ T cells during the first week after virus infection. Although no differences were seen during the "expansion" phase, we found that the "death" phase was more pronounced in B cell-deficient mice. However, this increased cell death was not selective for LCMV- specific CTL, and during this period the total number of CD8+ T cells also dropped substantially more in B cell-deficient mice. As a result of this, the absolute numbers of LCMV-specific CTL were lower in B cell- deficient mice but the frequencies were comparable in both groups of mice. More significantly, the memory phase of the CTL response was not affected by the absence of B cells and a stable number of LCMV-specific CTL persisted in B cell-deficient mice for up to 6 mo. Upon reinfection, B cell-deficient mice that had resolved an acute LCMV infection were able to make accelerated CTL responses in vivo and eliminated virus more efficiently than naive B cell-deficient mice. Thus, CTL memory, as assessed by frequency of virus-specific CTL or protective immunity, does not decline in the absence of B cells. Taken together, these results show that neither B cells nor antigen-antibody complexes are essential for the maintenance of CD8+ CTL memory.  相似文献   

20.
Mycobacterial antigens not only stimulate Th cells that produce macrophage-activating factors, but also CD4+ and CD8+ CTL that lyse human macrophages. The mycobacterial recombinant 65-kD hsp was previously found to be an important target antigen for polyclonal CD4+ CTL. Because of the major role of 65-kD hsp in the immune response to mycobacterial as well as autoantigens, we have studied CTL activity to this protein at the clonal level. HLA-DR or HLA-DQ restricted, CD4+CD8- T cell clones that recognize different peptides of the M. leprae 65-kD hsp strongly lysed EBV-BLCL pulsed with specific but not irrelevant peptide. No bystander lysis of B cells, T cells, or tumor cells was seen. Target cell lysis could not be triggered by PMA + Ca2+ ionophore alone and depended on active metabolism. Interestingly, these CD4+ CTL also strongly lysed themselves and other HLA-class II compatible CD4+ (TCR-alpha/beta or -gamma/delta) or CD8+ CTL clones in the presence of peptide, suggesting that CTL are not actively protected from CTL-mediated lysis. Cold target competition experiments suggested that EBV-BLCL targets were more efficiently recognized than CD4+ CTL targets. These results demonstrate that hsp65 peptide-specific HLA class II-restricted CD4+ T cell clones display strong peptide-dependent cytolytic activity towards both APCs, and, unexpectedly, CD4+ and CD8+ CTL clones, including themselves. Since, in contrast to murine T cells human T cells express class II, CTL-mediated T cell killing may represent a novel immunoregulatory pathway in man.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号