首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Exposure to drug-paired cues can trigger addicts to relapse into drug seeking. Although the molecular mechanisms underlying cue-elicited cocaine seeking are incompletely understood, the protein kinase extracellular signal-regulated kinase (ERK) is known to have an important role. Psychostimulants and their associated cues can activate ERK in medium spiny neurons of the nucleus accumbens core (AcbC). These medium spiny neurons can be classified according to their projections (to ventral pallidum and/or substantia nigra) and by their mRNA expression. The present experiments were designed to determine which distinct set of AcbC projection neurons expresses phosphorylated ERK (pERK) in response to cocaine-paired contextual cues. Combined use of the retrograde label Flurogold with immunohistochemical staining of pERK was used to show that the AcbC pERK accompanying preference for cocaine-paired contexts occurs in both the accumbens (Acb)-nigral and Acb-pallidal projections. The gene expression characteristics of the neurons expressing pERK in response to cocaine-paired cues was further investigated using combined in situ hybridization and immunocytochemistry to show that AcbC pERK+ cells correspond to D1, but not preproenkephalin, mRNA+ cells. Furthermore, intra-AcbC infusion of the D1-antagonist SCH23390 attenuated cue-induced AcbC pERK expression. In aggregate, these results indicate that (i) the D1-expressing AcbC neurons evidence long-term plasticity related to drug-cue memories and (ii) local dopamine D1 receptors are necessary for the expression of cocaine-paired cue-induced pERK in these AcbC neurons.  相似文献   

2.
Connective tissue growth factor (CTGF) is a potent pro-fibrotic factor, which is implicated in fibrosis through extracellular matrix (ECM) induction in diabetic cardiovascular complications. It is an important downstream mediator in the fibrotic action of transforming growth factor β (TGFβ) and is potentially induced by hyperglycemia in human vascular smooth muscle cells (VSMCs). Therefore, the goal of this study is to identify the signaling pathways of CTGF effects on ECM accumulation and cell proliferation in VSMCs under hyperglycemia. We found that high glucose stimulated the levels of CTGF mRNA and protein and followed by VSMC proliferation and ECM components accumulation such as collagen type 1, collagen type 3 and fibronectin. By depleting endogenous CTGF we showed that CTGF is indispensable for the cell proliferation and ECM components accumulation in high glucose-stimulated VSMCs. In addition, pretreatment with the MEK1/2 specific inhibitors, PD98059 or U0126 potently inhibited the CTGF production and ECM components accumulation in high glucose-stimulated VSMCs. Furthermore, knockdown with ERK1/2 MAPK siRNA resulted in significantly down regulated of CTGF production, ECM components accumulation and cell proliferation in high glucose-stimulated VSMCs. Finally, ERK1/2 signaling regulated Egr-1 protein expression and treatment with recombinant CTGF reversed the Egr-1 expression in high glucose-induced VSMCs. It is conceivable that ERK1/2 MAPK signaling pathway plays an important role in regulating CTGF expression and suggests that blockade of CTGF through ERK1/2 MAPK signaling may be beneficial for therapeutic target of diabetic cardiovascular complication such as atherosclerosis.  相似文献   

3.

Purpose  

The present study was undertaken to gain insight into the molecular mechanism of G2/M phase cell cycle arrest resulting from treatment of DU145 cells with diallyl trisulfide (DATS), a promising cancer chemopreventive constituent of garlic.  相似文献   

4.

Aim:

Platinum-(IV)-derivative satraplatin represents a new generation of orally available anti-cancer drugs that are under development for the treatment of several cancers. Understanding the mechanisms of cell cycle modulation and apoptosis is necessary to define the mode of action of satraplatin. In this study, we investigate the ability of satraplatin to induce cell cycle perturbation, clonogenicity loss and apoptosis in colorectal cancer (CRC) cells.

Methods:

CRC cells were treated with satraplatin, and the effects of satraplatin on apoptosis and the cell cycle were evaluated by flow cytometry. Western blot analysis was used to investigate the effects of satraplatin on cell cycle and apoptosis-related proteins. RT-qPCR was used to evaluate p53-related mRNA modulation.

Results:

Satraplatin induced an accumulation of CRC cells predominantly in the G2/M phase. Increased p53 protein expression was observed in the p53 wild-type HCT116 and LoVo cells together with p21waf1/cip1 protein up-regulation. However, p21waf1/cip1 protein accumulation was not observed in the p53 mutant HCT15, HT29, and WiDr cells, even when p53 protein expression was compromised, suggesting that the cell cycle perturbation is p53-p21waf1/cip1 independent. Following a candidate approach, we found an elevated expression of 14-3-3σ protein levels in CRC cells, which was independent of the status of p53, further supporting the role of satraplatin in the perturbation of the G2/M cell cycle phase. Moreover, satraplatin treatment induced apoptosis along with Bcl-2 protein down-regulation and abrogated the clonogenic formation of CRC cells in vitro.

Conclusion:

Collectively, our data suggest that satraplatin induces apoptosis in CRC cells, which is preceded by cell cycle arrest at G2/M due to the effect of 14-3-3σ and in a p53-p21waf1/cip1–independent manner. Taken together, these findings highlight the potential use of satraplatin for CRC treatment.  相似文献   

5.
Kwon YE  Kim KH 《Anti-cancer drugs》2006,17(5):553-558
Recently, the synthesized octahedral Pt(IV) compound trans,cis-Pt(acetato)2Cl2(1,4-butanediamine), K101, showed potent anti-tumor activity in vitro and in vivo. For the further investigation of K101-induced anti-cancer activity, we tested cytotoxicity against various cancer cell lines and performed the histoculture drug response assay (HDRA) against human colorectal tumor tissues in vitro. We investigated the signaling pathway of K101-induced apoptosis via expression of p53 and ERK1/2 in the human colon cell line HCT116. The cytotoxicity and the three-dimensional HDRA of K101 were evaluated using the MTT assay. To study the K101-induced apoptosis pathway, we performed FACS analysis and immunoblotting of p53, p21, Bax, Fas and ERK1/2 in HCT116 cells treated with or without K101. The cytotoxic IC50 values of K101 ranged from 1.15 to 2.38 micromol/l, compared to cisplatin ranging from 2.13 to 13.1 micromol/l. Among several cancer cell lines, K101 showed greater potency than cisplatin in colon cancer cell lines. In the HDRA, K101 showed 80.0-91.4% efficacy rates compared with 48.6% for cisplatin against colorectal cancer patient tissues. In the signaling pathway, the expression of p53 and phospho-ERK1/2 was increased in a time-dependent manner by treatment with K101 in the HCT116 cells. When K101 was treated with MEK inhibitor U0126, the cell death rate was increased. The octahedral Pt(IV) complex K101 could be an attractive candidate as a chemotherapeutic agent against colon cancer. ERK1/2 activation and the p53 pathway may play significant functions in mediating K101-induced apoptosis in human colon cancer cells.  相似文献   

6.
Pb(II) is a neurotoxic pollutant that produces permanent cognitive deficits in children. Pb(II) can modulate cell signaling pathways and cell viability in a variety of cell types. However, these actions are not well demonstrated on glial cells, which represent an important target for metals into the central nervous system. The present work was undertaken to determine the ability of Pb(II) in modulating the activity of mitogen activated protein kinases (MAPKs) in cultures of C6 rat glioma cells, a useful functional model for the study of astrocytes. Additionally, cell viability was analyzed by measurement of MTT reduction. Cells were exposed to lead acetate 0.1, 1, 10 μM for 24 and 48 h. MAPKs activation—in particular ERK1/2, p38MAPK and JNK1/2—were analyzed by western blotting. Results showed that 10 μM Pb(II) treatment for 24 h caused a discrete stimulation of p38MAPK phosphorylation. However, 1 and 10 μM Pb(II) treatment for 48 h provoked a significant stimulation in the phosphorylation state of p38MAPK and JNK1/2. The phosphorylation state of ERK1/2 was not modified by any Pb(II) treatment. Moreover, data indicate that at 48 h treatment even 1 μM Pb(II) can be cytotoxic, causing impairment on cell viability. Therefore, depending on a long incubation period, a significant concomitant activation of p38MAPK and JNK1/2 by Pb(II) took place in parallel with the impairment of C6 glioma cells viability.  相似文献   

7.

Rationale

Clozapine affects the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway in the brain, which plays an important role in its antipsychotic action. However, previous findings are inconsistent, and related molecular mechanisms require further clarification.

Objectives

Time- and dose-dependent effects of clozapine on the ERK1/2 pathway and its regulatory mechanism were investigated in rat frontal cortex.

Methods and results

At 15, 30, 60, and 120 min after intraperitoneal injection of clozapine (5, 10, and 20 mg/kg), changes in ERK1/2, its upstream canonical kinases (Raf1 and mitogen-activated protein kinase kinase 1/2 [MEK1/2]), and its downstream molecule (p90 ribosomal S6 kinase [p90RSK]) were investigated in rat frontal cortex. At 15 min, p-Raf1, p-MEK1/2, p-ERK1/2, and p-p90RSK all increased dose-dependently. At 30 min, p-ERK1/2 and p-p90RSK showed no significant changes, while dose-dependent increases in p-Raf1 and p-MEK1/2 were found. At 60 and 120 min, although p-ERK1/2 and p-p90RSK decreased, increases in p-Raf1 and p-MEK1/2 were maintained. A clozapine-induced reduction in ERK1/2 phosphorylation was evident at both tyrosine and threonine residues, suggesting the involvement of dual specificity phosphatases (DUSPs; mitogen-activated protein kinase phosphatases [MKPs]). mRNA expression of seven Dusps that can dephosphorylate ERK1/2 were examined; Mkp-1 (Dusp1) mRNA increased following clozapine treatment. Moreover, MKP-1 protein and phosphatase activity increased, and binding of MKP-1 to ERK1/2 was also upregulated by clozapine administration.

Conclusions

In rat frontal cortex, clozapine regulates ERK1/2 phosphorylation via MKP-1, which induces uncoupling between Raf1-MEK1/2 and ERK1/2-p90RSK activity. These findings suggest an important role of MKP-1 in the mechanism of action of clozapine.  相似文献   

8.
1. Cannabinoids are potent inhibitors of endothelium-derived hyperpolarizing factor (EDHF)-mediated relaxations. We set out to study the mechanism underlying this effect and the possible role of cannabinoid-induced changes in intercellular gap junction communication. 2. In cultured endothelial cells, Delta(9)-tetrahydrocannabinol (Delta(9)-THC) and the cannabinoid receptor agonist HU210, increased the phosphorylation of extracellular regulated kinases 1/2 (ERK1/2) and inhibited gap junctional communication, as determined by Lucifer Yellow dye transfer and electrical capacity measurements. 3. Delta(9)-THC elicited a pronounced increase in the phosphorylation of connexin 43, which was sensitive to PD98059 and U0126, two inhibitors of ERK1/2 activation. Inhibition of ERK1/2 also prevented the Delta(9)-THC-induced inhibition of gap junctional communication. 4. Delta(9)-THC prevented both the bradykinin-induced hyperpolarization and the nitric oxide and prostacyclin-independent relaxation of pre-contracted rings of porcine coronary artery. These effects were prevented by PD98059 as well as U0126. 5. In the absence of Delta(9)-THC, neither PD98059 nor U0126 affected the NO-mediated relaxation of coronary artery rings but both substances induced a leftward shift in the concentration - relaxation curve to bradykinin when diclofenac and N(omega)nitro-L-arginine were present. Moreover, PD98059 and U0126 prolonged the bradykinin-induced hyperpolarization of porcine coronary arteries, without affecting the magnitude of the response. 6. These results indicate that the cannabinoid-induced activation of ERK1/2, which leads to the phosphorylation of connexin 43 and inhibition of gap junctional communication, may partially account for the Delta(9)-THC-induced inhibition of EDHF-mediated relaxation. Moreover, the activation of ERK1/2 by endothelial cell agonists such as bradykinin, appears to exert a negative feedback inhibition on EDHF-mediated responses.  相似文献   

9.
10.
Redox changes are often reported as causative of neoplastic transformation and chemoresistance, but are also exploited as clinical tools to selectively kill tumor cells. We previously demonstrated that gastrointestinal-derived tumor histotypes are resistant to ROS-based treatments by means of the redox activation of Nrf2, but highly sensitive to disulfide stressors triggering apoptosis via the redox induction of Trx1/p38MAPK/p53 signaling pathway.Here, we provide evidence that neuroblastoma SH-SY5Y has a complete opposite behavior, being sensitive to H2O2, but resistant to the glutathione (GSH)-oxidizing molecule diamide. Consistent with these observations, the apoptotic pathway activated upon H2O2 treatment relies upon Trx1 oxidation, and is mediated by the p38MAPK/p53 signaling axis. Pre-treatment with different antioxidants, pharmacological inhibitor of p38MAPK, or small interfering RNA against p53 rescue cell viability. On the contrary, cell survival to diamide relies upon redox activation of Nrf2, in a way independent on Keap1 oxidation, but responsive to ERK1/2 activation. Chemical inhibition of GSH neo-synthesis or ERK1/2 phosphorylation, as well as overexpression of the dominant-negative form of Nrf2 sensitizes cells to diamide toxicity. In the searching for the molecular determinant(s) unifying these phenomena, we found that SH-SY5Y cells show high GSH levels, but exhibit very low GPx activity. This feature allows to efficiently buffer disulfide stress, but leaves them being vulnerable to H2O2-mediated insult. The increase of GPx activity by means of selenium supplementation or GPx1 ectopic expression completely reverses death phenotype, indicating that the response of tumor cells to diverse oxidative stimuli deeply involves the entire GSH redox system.  相似文献   

11.
To investigate the signal mechanism of (-)clausenamide ((-)-3-hydroxy-5-(hydroxy-phenyl-methyl)-1-methyl-4-phenyl-pyrrolidin-2-one, 1) and for understanding its effect on synaptic transmission, electrophysiological recording was done for basal synaptic transmission determination. Western blot analysis was employed to examine the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and cAMP responsive element-binding protein (CREB). Immunohistochemistry and tissue in situ hybridization were applied to detect the expression of Zif268. The results showed that (-)clausenamide (1) increased the population spike of hippocampal dentate gyrus. The phosphorylation of ERK1/2 in hippocampus and cortex was increased and reached the maximum at 5 min and 30 min, respectively. (-)Clausenamide (1) promoted the phosphorylation of CREB, the downstream protein of ERK1/2. The expression of Zif268 protein and mRNA increased in both hippocampal dentate gyrus and cortex. Therefore, (-)clausenamide (1) activated the ERK1/2-CREB pathway, which may provide an explanation for its effect on potentiating synaptic transmission and improving learning and memory.  相似文献   

12.

Purpose  

Present study was undertaken to gain insights into the mechanism of cell cycle arrest by ginseng saponin ginsenoside Rh2 (Rh2) using MCF-7 and MDA-MB-231 breast cancer cells.  相似文献   

13.
Overproduction of reactive oxygen and nitrogen species leads to oxidative stress and decreased total antioxidant capacity, which is responsible for high mortality from several inflammatory diseases such as endotoxic shock. Among reactive nitrogen species, nitric oxide (NO) produced by inducible NO synthase (iNOS) during endotoxemia is the major cause of vascular hyporeactivity, hypotension and multiple organ failure. This study was conducted to determine if mitogen-activated protein kinases (MAPKs) such as extracellular signal-regulated kinase (ERK1/2) contributes to endotoxin-induced hypotension as well as vascular inflammation and oxidative stress via NO production. In conscious male Wistar rats, injection of endotoxin (10 mg kg(-1), i.p.) caused a decrease in mean arterial pressure (MAP) for 4h and increased levels of nitrite in serum, aorta and mesenteric artery. These effects of endotoxin were prevented by selective inhibition of ERK1/2 phosphorylation by MAPK kinase (MEK1/2) with U0126 (5 mg kg(-1), i.p.; 1h after endotoxin). Endotoxin also caused an increase in protein levels of phosphorylated ERK1/2 in aorta which was abolished by U0126. Selective inhibition of iNOS with phenylene-1,3-bis[ethane-2-isothiourea] dihydrobromide (1,3-PBIT) (10 mg kg(-1), i.p.; 1h after endotoxin) did not change the endotoxin-induced increase in ERK1/2 activity. Myeloperoxidase activity was increased in aorta and decreased in mesenteric artery by endotoxin, which was reversed by U0126. Endotoxin-induced decrease in one of the products of lipid peroxidation, malonedialdehyde (MDA) was prevented by U0126 in mesenteric artery; however, U0126 caused a further decrease in the levels of MDA in aorta. These data suggest that increased phosphorylation of ERK1/2 by MEK1/2 contributes to the endotoxin-induced hypotension via NO production rat aorta and mesenteric artery. It is likely that ERK1/2 mediates the effect of endotoxin on MPO activity in a different degree in the tissues suggesting possible involvement of any mediator and/or mechanism which also causes neutrophil infiltration during inflammatory response at least in mesenteric artery. Moreover, ERK1/2 seems to be involved in the endotoxin-induced increase in total antioxidant capacity in mesenteric artery.  相似文献   

14.
Reactive oxygen species (ROS) production by the neutrophil NADPH oxidase plays a key role in host defense against pathogens, such as bacteria and fungi. Zymosan a cell-wall preparation from Saccharomyces cerevisiae is largely used to activate neutrophils in its opsonized form. In this study, we show that non-opsonized zymosan alone induced ROS production by human neutrophils. Zymosan-induced ROS production is higher than the formyl-methionyl-leucyl-phenylalanine (fMLF)- or the phorbol myristate acetate (PMA)-induced ROS production but is lower than the one induced by opsonized zymosan. Most of the zymosan-induced ROS production is intracellular. Interestingly, zymosan induced the phosphorylation of the NADPH oxidase cytosolic component p47phox on several sites which are Ser315, Ser328 and Ser345. Zymosan induced also the activation of the small G-protein Rac2. Phosphorylation of the p47phox as well as Rac2 activation were inhibited by genistein a broad range protein tyrosine kinase inhibitor and by wortmannin a PI3Kinase inhibitor. GF109203X a PKC inhibitor inhibited phosphorylation of p47phox on Ser315 and Ser328. SB203580 and UO126, inhibitors of p38MAPK and ERK1/2-pathway, respectively, inhibited phosphorylation of p47phox on Ser345. Zymosan-induced ROS production was completely inhibited by genistein and wortmannin and partially inhibited by SB203580, UO126 and GF109203X. These results show that zymosan alone is able to activate NADPH oxidase in human neutrophils via the phosphorylation of p47phox and Rac2 activation and that a protein tyrosine kinase, PI3Kinase, p38MAPK, ERK1/2 and PKC are involved in this process. These pathways could be potential pharmacological targets to treat zymosan- and S. cerevisiae-induced inflammation.  相似文献   

15.
Experimental and occupational exposure to Methyl Tert-Butyl Ether (MTBE) has been reported to induce neurotoxicological and neurobehavioral effects, such as headache, nausea, dizziness, and disorientation, etc. However, the molecular mechanisms involved in MTBE-induced neurotoxicity are still not well understood. In the present study, we investigated the effects of MTBE on spatial memory and the expression and function of GABAA receptor in the hippocampus. Our results demonstrated that intraventricular injection of MTBE impaired the performance of the rats in a Morris water maze task, and significantly increased the expression of GABAA receptor α1 subunit in the hippocampus. The phosphorylation of ERK1/2 decreased after the MTBE injection. Furthermore, the decreased ability of learning and the reduction of phosphorylated ERK1/2 level of the MTBE-treated rats was partly reversed by bicuculline injected 30 min before the training. These results suggested that MTBE exposure could result in impaired spatial memory. GABAA receptor may play an important role in the MTBE-induced impairment of learning and memory by regulating the phosphorylation of ERK in the hippocampus.  相似文献   

16.
Jiao S  Liu B  Gao A  Ye M  Jia X  Zhang F  Liu H  Shi X  Huang C 《Toxicology letters》2008,178(3):167-175
Benzo(a)pyrene (B(a)P) is a potent lung carcinogen mainly derived from tobacco smoking and environmental contamination, however, the molecular mechanisms by which it accelerates the cell cycle progression and induces the abnormal cell proliferation are still far away from understood. Our current analysis of human embryo lung fibroblasts (HELF) showed that B(a)P exposure was able to promote cell cycle G1–S phase transition. This effect was correlated with c-Jun activation because inhibition of c-Jun by its dominant negative mutant (TAM67) reversed B(a)P action on cell cycle with the down-regulation of expression of cyclin D1, pRb and E2F1. Further study found that overexpression of dominant negative mutants of, PI-3K or Akt, dramatically reduced B(a)P-induced the activation of c-Jun and extracellular signaling regulated kinase (ERK), but not c-Jun NH2 terminal kinase (JNK). Inhibition of p53 by either its inhibitor pifithrin- or p53 siRNA markedly increased B(a)P-induced the activation of c-Jun, Akt and ERK in this context. Take together, our results indicate that c-Jun activation by p53-dependent PI-3K/Akt/ERK pathway is responsible for B(a)P-induced cell cycle alternations in human embryo lung fibroblasts.  相似文献   

17.
The mechanisms of cadmium-induced toxicity may include oxidative stress, altered redox homeostasis, and injuries to organelles. The current study was designed to study the effect of decreased cellular glutathione (GSH) content by sulfur amino acid deprivation on cadmium toxicity and to identify the signaling pathways responsible for the cytotoxicity. GSH content was increased by cadmium in H4IIE cells prior to cell death, which was prevented by excess GSH or cysteine. Cell viability, however, was not improved by GSH or cysteine complexation of cadmium. Cadmium-induced cytotoxicity was 40-fold potentiated in cells with decreased GSH by sulfur amino acid deprivation. Cadmium in combination with decreased GSH markedly increased apoptotic cell death. Mitogen-activated protein kinases including extracellular signal-regulated kinase 1/2, p38 kinase and c-Jun N-terminal kinase (JNK) were all activated 1-12 hr after sulfur amino acid deprivation. U0126 (1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio]butadiene), which inhibited activation of extracellular signal-regulated kinase1/2 and p38 kinase in cells under sulfur amino acid deprivation, completely prevented potentiation in Cd-induced cytotoxicity and apoptosis. Potentiation of cadmium toxicity by sulfur amino acid deprivation was prevented in part by either PD98059 or SB203580, or in cells stably expressing dominant negative mutant of JNK1, and to greater extents by PD98059 in combination with either SB203580 or JNK1(-) transfection. These results demonstrated that decreased cellular GSH content potentiated cytotoxicity induced by cadmium at the level of human exposure, and that the potentiation of cytotoxicity resulted from activation of extracellular signal-regulated kinase1/2 in conjunction with p38 kinase or JNK.  相似文献   

18.
GYF-17, a 2-(2-phenethyl)-chromone derivative, was isolated from agarwood and showed superior activity of inhibiting NO production of RAW264.7 cells induced by LPS in our preliminary pharmacodynamic screening. In order to develop novel therapeutic drug for acute and chronic inflammatory disorders, the anti-inflammatory activity and underlying mechanism of GYF-17 were investigated in LPS-induced RAW264.7 cells. The results showed that GYF-17 could reduce LPS-induced expression of iNOS and then result in the decrement of NO production. More meaningful, the expression and secretion of key pro-inflammatory factors, including TNF-α, IL-6 and IL-1β, were intensively inhibited by GYF-17. Furthermore, GYF-17 also down regulated the expression of COX2 and the production of PGE2 which plays important role in causing algesthesia during inflammatory response. In mechanism study, GYF-17 selectively suppressed phosphorylation of STAT1/3 and ERK1/2 during the activation of NF-κB, MAPK and STAT signaling pathways induced by LPS. Collectively, GYF-17 can intensively suppress the production of LPS-induced inflammatory mediators in RAW264.7 cells by inhibiting STAT1/3 and ERK1/2 signaling pathways and thereby shows great potential to be developed into therapeutic drug for inflammatory diseases.  相似文献   

19.
The exposure to particulate matter with a mean aerodynamic diameter ≤10 μm (PM10) from urban zones is considered to be a risk factor in the development of cancer. The aim of this work was to determine if PM10 exposure induces factors related to the acquisition of a neoplastic phenotype, such as cytoskeletal remodeling, changes in the subcellular localization of p21CIP1/WAF1, an increase in β-galactosidase activity and changes in cell cycle. To test our hypothesis, PM10 from an industrial zone (IZ) and a commercial zone (CZ) were collected, and human adenocarcinoma lung cell cultures (A549) were exposed to a sublethal PM10 concentration (10 μg/cm2) for 24 h and 48 h. The results showed that PM10 exposure induced an increase in F-actin stress fibers and caused the cytoplasmic stabilization of p21CIP1/WAF1 via phosphorylation at Thr145 and Ser146 and the phosphorylation of ERK1/2 on Thr202. Changes in the cell cycle or apoptosis were not observed, but an increase in β-galactosidase activity was detected. The PM10 from CZ caused more dramatic effects in lung cells. We conclude that PM10 exposure induced cytoplasmic p21CIP1/WAF1 retention, ERK1/2 activation, cytoskeleton remodeling and the acquisition of a senescence-like phenotype in lung cells. These alterations could have mechanistic implications regarding the carcinogenic potential of PM10.  相似文献   

20.
目的探讨错配修复基因hMLH1、hMSH2及p53在子宫内膜癌组织中的表达及意义。方法运用免疫组织化学S-P法对99例子宫内膜癌中hMLH1、hMSH2及p53的表达进行检测。结果99例子宫内膜癌组织中hMLH1与hMSH2的阳性表达率分别为38.3%和60.6%,与内膜癌临床分期、组织类型及组织学分化程度无关(P>0.05);99例内膜癌组织中p53阳性表达率为42.4%,组织分化程度高、临床分期早的内膜癌组织中的p53阳性率明显低于分化程度低及临床分期晚者(P<0.01);hMSH2蛋白阳性组中p53表达率明显高于阴性组(P<0.01)。结论hMLH1及hMSH2基因的缺陷及p53的表达与子宫内膜癌的发生发展过程有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号