首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fibronectin-binding protein A (FnBPA) and FnBPB are important adhesins for Staphylococcus aureus infection. We constructed fnbA and/or fnbB mutant strains from S. aureus SH1000, which possesses intact rsbU, and studied the role of these adhesins in in vitro and in vivo infections. In intravenous infection, all fnb mutants caused a remarkable reduction in the colonization rate in kidneys and the mortality rate of mice. fnbB mutant caused a more severe decrease in body weight than that caused by fnbA mutant. Serum levels of interleukin-6 and nuclear factor κB (NF-κB) activation in spleen cells were remarkably reduced in fnbA or fnbA fnbB mutant infections; however, there was no significant reduction in fnbB mutant infections. In in vitro cellular infection, FnBPA was shown to be indispensable for adhesion to and internalization by nonprofessional phagocytic cells upon ingestion by inflammatory macrophages and NF-κB activation. However, both FnBPs were required for efficient cellular responses. The results showed that FnBPA is more important for in vitro and in vivo infections; however, cooperation between FnBPA and FnBPB is indispensable for the induction of severe infection resulting in septic death.  相似文献   

2.
Staphylococcus aureus can stimulate activation and aggregation of platelets, which are thought to be factors in the development of infective endocarditis. Previous studies have identified clumping factor A (ClfA) and fibronectin binding proteins A and B (FnBPA and FnBPB) as potent platelet aggregators. These proteins are able to stimulate rapid platelet aggregation by either a fibrinogen- or a fibronectin-dependent process which also requires antibodies specific to each protein. Slower aggregation has been seen in other systems where specific fibrinogen binding ligands are absent and platelet aggregation is mediated by complement and specific antibodies. Bacteria expressing ClfB aggregate platelets with a longer lag time than ClfA or FnBPA and FnBPB. In order to investigate whether ClfB causes platelet aggregation in a complement- or fibrinogen-dependent manner, a non-fibrinogen-binding mutant of ClfB (ClfB Q235A) was constructed. Lactococcus lactis expressing ClfB Q235A was able to stimulate platelet aggregation in platelet-rich plasma without a significant increase in lag time. The requirements for platelet aggregation were investigated using gel-filtered platelets. Fibrinogen and specific anti-ClfB antibodies were found to be sufficient to allow platelet aggregation mediated by the wild-type ClfB protein. It seems that ClfB causes platelet aggregation by a fibrinogen-dependent mechanism. The non-fibrinogen-binding ClfB mutant was unable to stimulate platelet aggregation under these conditions. However, bacteria expressing ClfB Q235A caused platelet aggregation in a complement-dependent manner which required specific anti-ClfB antibodies.  相似文献   

3.
Staphylococcus aureus expresses two distinct but closely related multifunctional cell wall-anchored (CWA) proteins that bind to the host glycoprotein fibronectin. The fibronectin binding proteins FnBPA and FnBPB comprise two distinct domains. The C-terminal domain comprises a tandem array of repeats that bind to the N-terminal type I modules of fibronectin by the tandem β-zipper mechanism. This causes allosteric activation of a cryptic integrin binding domain, allowing fibronectin to act as a bridge between bacterial cells and the α5β1 integrin on host cells, triggering bacterial uptake by endocytosis. Variants of FnBPA with polymorphisms in fibronectin binding repeats (FnBRs) that increase affinity for the ligand are associated with strains that infect cardiac devices and cause endocarditis, suggesting that binding affinity is particularly important in intravascular infections. The N-terminal A domains of FnBPA and FnBPB have diverged into seven antigenically distinct isoforms. Each binds fibrinogen by the ‘dock, lock and latch’ mechanism characteristic of clumping factor A. However, FnBPs can also bind to elastin, which is probably important in adhesion to connective tissue in vivo. In addition, they can capture plasminogen from plasma, which can be activated to plasmin by host and bacterial plasminogen activators. The bacterial cells become armed with a host protease which destroys opsonins, contributing to immune evasion and promotes spreading during skin infection. Finally, some methicillin-resistant S. aureus (MRSA) strains form biofilm that depends on the elaboration of FnBPs rather than polysaccharide. The A domains of the FnBPs can interact homophilically, allowing cells to bind together as the biofilm accumulates.  相似文献   

4.
Fibronectin-binding proteins (FnBP) are surface adhesins of Staphylococcus aureus documented to be virulence attributes in, for example, endovascular infections. By using mutants of S. aureus defective in the FnBPA and B genes we have investigated whether these adhesins affect cytokine expression in human umbilical vein endothelial cells (HUVEC). S. aureus expressing FnBPA and B adhered to and were internalized into HUVEC to a greater extent compared to mutants defective in expression of FnBP. Production and release of IL-6 was higher from endothelial cells infected with the parent FnBP-expressing strain compared to the FnBP-defective mutants. These results indicate that adhesion to and invasion of S. aureus into endothelial cells are important regulators of cytokine expression.  相似文献   

5.
Staphylococcus aureus fibronectin-binding proteins (FnBPs) play a critical role in S. aureus pathogenesis. FnBPs mediate adhesion to fibronectin and invasion of mammalian cells, including epithelial, endothelial, and fibroblastic cells, by fibronectin bridging to the host cell fibronectin receptor integrin (alpha(5))beta(1). Strain Newman is a laboratory strain frequently used for genetic, functional, and in vivo studies. However, despite pronounced production of FnBPs, strain Newman is only weakly adherent to immobilized Fn and weakly invasive. We examined whether these effects are due to a structural difference of FnBPs. Here, we show that both fnbA(Newman) and fnbB(Newman) contain a centrally located point mutation resulting in a stop codon. This leads to a truncation of both FnBPs at the end of the C domain at identical positions. Most likely, the stop codon occurred first in fnbB(Newman) and was subsequently transferred to fnbA(Newman) by replacement of the entire region encompassing the C, D, and W domains with the respective sequence of fnbB(Newman). Using heterologous expression in Staphylococcus carnosus, we found that truncated FnBPs were completely secreted into the culture medium and not anchored to the cell wall, since they lack the sortase motif (LPETG). Consequently, this led to a loss of FnBP-dependent functions, such as strong adhesion to immobilized fibronectin, binding of fibrinogen, and host cell invasion. This mutation may explain some of the earlier reported conflicting data with strain Newman. Thus, care should be taken when drawing negative conclusions about the role of FnBPs as a virulence factor in a given model.  相似文献   

6.
Endovascular infections caused by Staphylococcus aureus involve interactions with fibronectin present as extracellular matrix or surface ligand on host cells. We examined the expression, structure, and binding activity of the two major S. aureus fibronectin-binding proteins (FnBPA, FnBPB) in 10 distinct, methicillin-resistant clinical isolates from patients with either persistent or resolving bacteremia. The persistent bacteremia isolates (n = 5) formed significantly stronger bonds with immobilized fibronectin as determined by dynamic binding measurements performed with atomic force microscopy. Several notable differences were also observed when the results were grouped by clonal complex 5 (CC5) strains (n = 5) versus CC45 strains (n = 5). Fibronectin-binding receptors on CC5 formed stronger bonds with immobilized fibronectin (P < 0.001). The fnbA gene was expressed at higher levels in CC45, whereas fnbB was found in only CC5 isolates. The fnbB gene was not sequenced because all CC45 isolates lacked this gene. Instead, comparisons were made for fnbA, which was present in all 10 isolates. Sequencing of fnbA revealed discrete differences within high-affinity, fibronectin-binding repeats (FnBRs) of FnBPA that included (i) 5-amino-acid polymorphisms in FnBR-9, FnBR-10, and FnBR-11 involving charged or polar side chains, (ii) an extra, 38-amino-acid repeat inserted between FnBR-9 and FnBR-10 exclusively seen in CC45 isolates, and (iii) CC5 isolates had the SVDFEED epitope in FnBR-11 (a sequence shown to be essential for fibronectin binding), while this sequence was replaced in all CC45 isolates with GIDFVED (a motif known to favor host cell invasion at the cost of reduced fibronectin binding). These complementary sequence and binding data suggest that differences in fnbA and fnbB, particularly polymorphisms and duplications in FnBPA, give S. aureus two distinct advantages in human endovascular infections: (i) FnBPs similar to that of CC5 enhance ligand binding and foster initiation of disease, and (ii) CC45-like FnBPs promote cell invasion, a key attribute in persistent endovascular infections.  相似文献   

7.
Defining the role of Staphylococcus aureus adhesins in disease pathogenesis may depend on the use of bacteria grown in culture media that more closely reflect the human milieu than conventional broth. This study examined the functional effect on S. aureus adhesins following growth in an ex vivo medium containing a complex mixture of human proteins (used peritoneal dialysate) relative to growth in Todd-Hewitt broth. The adherence of S. aureus, cultured in dialysate, to fibronectin and fibrinogen was markedly reduced despite the expresion of full-length ClfA, ClfB, and fibronectin-binding proteins. Growth in dialysate resulted in the acquisition of a surface coat, as visualized by transmission electron microscopy, which was shown to contain fibronectin, fibrinogen, and immunoglobulins. Adherence of S. aureus to fibrinogen following growth in dialysate was significantly reduced by expression of protein A but was restored following growth in immunoglobulin-depleted dialysate. We conclude that bacterial adherence to solid-phase protein is critically dependent on the culture medium, that S. aureus adhesins may become saturated with target protein prior to contact with solid surfaces, and that there is an interaction between fibrinogen-binding proteins and immunoglobulin bound to protein A following contact with host proteins. These findings have important implications for future studies of S. aureus adhesins.  相似文献   

8.
Staphylococcus aureus Cowan I and a clinically isolated coagulase-negative Staphylococcus strain, S. saprophyticus 10312, were found to have two fibronectin binding proteins, FnBPA and FnBPB. While both staphylococci bound to serum fibronectin to a similar extent, fibronectin binding significantly increased the phagocytic activity of macrophages against S. aureus (by ca. 150%) but not against S. saprophyticus. This enhancing effect of fibronectin was inhibited by an RGD sequence-containing peptide and also by anti-very late antigen 5 antibody. This suggests that the effect is mediated by very late antigen 5 expressed on macrophages. In macrophages ingesting fibronectin-bound Cowan I, alpha(5) and beta(1) chains were associated with the cytoskeleton. Cytosolic signaling factors such as paxillin, c-Src, and c-Csk were also associated with the cytoskeleton. On the contrary, beta(3) integrin transiently disappeared from the cytoskeleton when macrophages ingested the fibronectin-treated S. aureus Cowan I. Furthermore, the Src kinase family tyrosine kinase Lyn dissociated from the cytoskeleton. These cellular components did not respond in a fibronectin-dependent manner when macrophages phagocytosed S. saprophyticus. This means that only fibronectin-treated S. aureus Cowan I induces the accumulation of very late antigen 5, which in turn induces the association of paxillin and tyrosine kinases. It is thought that the phagocytic activity of macrophages against fibronectin-treated S. aureus was increased by signaling via the activation of very late antigen 5.  相似文献   

9.
Staphylococcus aureus is among the most important human pathogens and causes various superficial and systemic infections. The ability of S. aureus to be internalized by, and survive within, host cells, such as keratinocytes, may contribute to the development of persistent or chronic infections and may finally lead to deeper tissue infections or dissemination. To examine the mechanisms of internalization of S. aureus by keratinocytes, isogenic mutants lacking fibronectin-binding proteins (FnBPs), a recombinant protein consisting of the fibronectin-binding domain of S. aureus FnBPs, and an anti-alpha5beta1 antibody were used in cocultures with immortalized keratinocytes and primary keratinocytes. We found that internalization of S. aureus by immortalized keratinocytes requires bacterial FnBPs and is mediated by the major fibronectin-binding integrin alpha5beta1. In contrast to internalization by immortalized keratinocytes, internalization of S. aureus by primary keratinocytes could occur through FnBP-dependent and -independent pathways. S. aureus clumping factor B (ClfB), which was recently determined to bind to epithelial cells, was not involved in the uptake of this bacterium by keratinocytes. The identification of an alternate uptake pathway, which is independent of S. aureus FnBPs and host cell alpha5beta1, has important implications for the design of therapies targeted to bacterial uptake by host cells.  相似文献   

10.
11.
The Staphylococcus aureus MSCRAMM (microbial surface components recognizing adhesive matrix molecules) protein clumping factor A (ClfA) has been shown to be a critical virulence factor in several experimental models of infection. This report describes the generation, characterization, and in vivo evaluation of a murine monoclonal antibody (MAb) against ClfA. Flow cytometric analysis revealed that MAb 12-9 recognized ClfA protein expressed by all of the clinical S. aureus strains obtained from a variety of sources. In assays measuring whole-cell S. aureus binding to human fibrinogen, MAb 12-9 inhibited S. aureus binding by over 90% and displaced up to 35% of the previously adherent S. aureus bacteria. Furthermore, a single infusion of MAb 12-9 was protective against an intravenous challenge with a methicillin-resistant strain of S. aureus in a murine sepsis model (P < 0.0001). These data suggest that anti-ClfA MAb 12-9 should be further investigated as a novel immunotherapy for the treatment and prevention of life-threatening S. aureus infections.  相似文献   

12.
Staphylococcus aureus expresses several surface proteins that promote adherence to host cell extracellular matrix proteins, including fibronectin (Fn). Since this organism has recently been shown to be internalized by nonprofessional phagocytes, a process that typically requires high-affinity binding to host cell receptors, we investigated the role of its Fn binding proteins (FnBPs) and other surface proteins in internalization by the bovine mammary gland epithelial cell line (MAC-T). Efficient internalization of S. aureus 8325-4 required expression of FnBPs; an isogenic mutant (DU5883), not expressing FnBPs, was reduced by more than 95% in its ability to invade MAC-T cells. Moreover, D3, a synthetic peptide derived from the ligand binding domain of FnBP, inhibited the internalization of the 8325-4 strain in a dose-dependent fashion and the efficiency of staphylococcal internalization was partially correlated with Fn binding ability. Interestingly, Fn also inhibited the internalization and adherence of S. aureus 8325-4 in a dose-dependent manner. In contrast to internalization, adherence of DU5883 to MAC-T was reduced by only approximately 40%, suggesting that surface binding proteins, other than FnBPs, can mediate bacterial adherence to cells. Adherence via these proteins, however, does not necessarily result in internalization of the staphylococci. An inhibitor of protein tyrosine kinase, genistein, reduced MAC-T internalization of S. aureus by 95%, indicating a requirement for a host signal transduction system in this process. Taken together, these results indicate that S. aureus invades nonprofessional phagocytes by a mechanism requiring interaction between FnBP and the host cell, leading to signal transduction and subsequent rearrangement of the host cell cytoskeleton.  相似文献   

13.
Staphylococcus aureus experimental endocarditis relies on sequential fibrinogen binding (for valve colonization) and fibronectin binding (for endothelial invasion) conferred by peptidoglycan-attached adhesins. Fibronectin-binding protein A (FnBPA) reconciles these two properties—as well as elastin binding—and promotes experimental endocarditis by itself. Here we attempted to delineate the minimal subdomain of FnBPA responsible for fibrinogen and fibronectin binding, cell invasion, and in vivo endocarditis. A large library of truncated constructs of FnBPA was expressed in Lactococcus lactis and tested in vitro and in animals. A 127-amino-acid subdomain spanning the hinge of the FnBPA fibrinogen-binding and fibronectin-binding regions appeared necessary and sufficient to confer the sum of these properties. Competition with synthetic peptides could not delineate specific fibrinogen- and fibronectin-binding sites, suggesting that dual binding arose from protein folding, irrespective of clearly defined binding domains. Moreover, coexpressing the 127-amino-acid subdomain with remote domains of FnBPA further increased fibrinogen binding by ≥10 times, confirming the importance of domain interactions for binding efficacy. In animals, fibrinogen binding (but not fibronectin binding) was significantly associated with endocarditis induction, whereas both fibrinogen binding and fibronectin binding were associated with disease severity. Moreover, fibrinogen binding also combined with fibronectin binding to synergize the invasion of cultured cell lines significantly, a feature correlating with endocarditis severity. Thus, while fibrinogen binding and fibronectin binding were believed to act sequentially in colonization and invasion, they appeared unexpectedly intertwined in terms of both functional anatomy and pathogenicity (in endocarditis). This unforeseen FnBPA subtlety might bear importance for the development of antiadhesin strategies.  相似文献   

14.
Staphylococcus aureus has surface structures with affinity to human IgG, fibrinogen, and fibronectin. Besides the binding of the Fc-terminal part of IgG from a range of mammalian species, S. aureus protein A binds some IgM, IgA, and IgE molecules. Furthermore, it seems also able to bind immunoglobulins via their Fab-terminal parts. Protein A (Mr 42,000) is the only well-characterized S. aureus cell wall protein, and its structure is known in detail. A considerable number of biological properties of protein A has been demonstrated. Most of these properties seem to be a consequence of the complement activation induced by protein A-IgG complexes. The role of protein A in the phagocytosis of S. aureus is complex. By complement consumption protein A has been found to inhibit the phagocytosis of staphylococci by polymorphonuclear leucocytes. However, it has been demonstrated that protein A-containing staphylococci bind to surface IgG on human alveolar and peritoneal macrophages and thereby promote phagocytosis by these cells. This phenomenon might explain the increased virulence of S. aureus in the presence of human IgG in experimental peritonitis in mice. Fibrinogen binds to a surface structure on S. aureus, designated clumping factor as the binding results in clumping of whole bacteria. Recently, a glycoprotein (Mr of about 400,000) has been isolated from S. aureus. This glycoprotein seems to be the clumping factor. It binds to fibrinogen, inhibits the fibrinogen induced clumping, and seems to be a S. aureus specific, surface component. The isolated component activates human complement in vitro. Also, it induces protection against S. aureus peritonitis in immunized mice. The presence of fibrinogen and an unknown human plasma component increases the virulence of S. aureus in experimental peritonitis in mice, but the role of fibrinogen in human S. aureus infection is unknown. Fibronectin binds to a surface protein on S. aureus, and this binding also results in the clumping of the bacteria. The binding site(s) for fibronectin is different from the binding sites for fibrinogen and IgG. A fibronectin-binding protein (Mr 197,000) has been isolated from S. aureus by affinity chromatography. This protein binds fibronectin and inhibits the fibronectin induced S. aureus clumping. No other biological properties of this protein have yet been demonstrated. The binding of fibronectin to S. aureus opsonize the bacteria for polymorphonuclear leucocytes. The opsonic capacity is, however, low compared to other serum opsonins. It has been suggested that fibronectin plays a role in the attachment of S. aureus, but further studies are needed.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
The fibronectin-binding proteins (FnBPs) of Staphylococcus aureus are believed to be implicated in the pathogen's adherence to and colonization of bovine mammary glands, thus leading to infectious mastitis. In vitro studies have shown that FnBPs help the adhesion of the pathogen to bovine mammary epithelial cells. However, the importance of FnBPs for the infection of mammary glands has never been directly established in vivo. In this study with a mouse model of mastitis, the presence of FnBPs on the surface of S. aureus increased the capacity of the bacterium to colonize mammary glands under suckling pressure compared to that of a mutant lacking FnBPs.  相似文献   

16.
The fnbA and fnbB genes of Staphylococcus aureus 8325-4 encode fibronectin (Fn) binding proteins FnBPA and FnBPB, which promote adherence to host tissues. Each adhesin contains three copies of a repeated D motif that binds Fn and is a target for vaccine development. In this study, we assess variability within the Fn-binding domain of the FnBP adhesins and evaluate factors that promote variance in Fn binding among clinical isolates. Based on variation in the number of fnb genes or the number of D motifs, we identified five polymorphism groups. S. aureus 8325-4 and 91% of methicillin-resistant S. aureus (MRSA) isolates belong to polymorphism group I, with two fnb genes and three copies of the D motif. Polymorphism group II contained one fnb gene with only two D motifs and was associated with the epidemic CMRSA-4 strain, which exhibited high protease activity and low Fn binding. Polymorphism group III was unique to the epidemic CMRSA-1 strain, defined by the presence of a fourth D motif that exhibited antigenic variation within a conserved sequence that is essential for Fn binding. However, the sequence of the D motifs was otherwise highly conserved among the other polymorphism groups. Variation in Fn binding among MRSA isolates was inversely related to protease activity but not to the number of fnb genes or the number of D motifs. Therefore, the fnb locus is polymorphic in a small number of strains, but this does not contribute to variation in Fn binding. The antigenic variation that was observed only in the epidemic CMRSA-1 strain may have evolved in response to a host immune response encountered during successive cycles of colonization, transmission, and infection in the nosocomial environment.  相似文献   

17.
Staphylococcus epidermidis has been reported to bind to a number of host cell extracellular matrix proteins, including fibronectin. Here we report the identification of a fibronectin-binding protein from S. epidermidis. A phage display library of S. epidermidis genomic DNA was constructed and panned against immobilized fibronectin. A number of phagemid clones containing overlapping inserts were identified, and one of these clones, pSE109FN, contained a 1.4-kb insert. Phage pSE109FN was found to bind to fibronectin but not to collagen, fibrinogen, laminin, or vitronectin. However, pSE109FN also bound to heparin, hyaluronate, and plasminogen, although to a lesser extent than it bound to fibronectin. Analysis of The Institute for Genomic Research S. epidermidis genome sequence database revealed a 1.85-kb region within a putative 30.5-kb open reading frame, to which the overlapping DNA inserts contained within the fibronectin-binding phagemids mapped. We have designated the gene encoding the fibronectin-binding domain embp. A recombinant protein, Embp32, which encompassed the fibronectin-binding domain of Embp, blocked the binding of S. epidermidis, but not the binding of Staphylococcus aureus, to fibronectin. In contrast, a recombinant protein, FnBPB[D1-D4], spanning the fibronectin-binding domain of the S. aureus fibronectin-binding protein FnBPB, blocked binding of S. aureus to fibronectin but had a negligible effect on the binding of S. epidermidis.  相似文献   

18.
The adherence of Staphylococcus aureus to soluble proteins and extracellular-matrix components of the host is one of the key steps in the pathogenesis of staphylococcal infections. S. aureus presents a family of adhesins called MSCRAMMs (microbial surface components recognizing adhesive matrix molecules) that specifically recognize host matrix components. We examined the influence of biofilm-associated protein (Bap) expression on S. aureus adherence to host proteins, epithelial cell cultures, and mammary gland sections and on colonization of the mammary gland in an in vivo infection model. Bap-positive strain V329 showed lower adherence to immobilized fibrinogen and fibronectin than isogenic Bap-deficient strain m556. Bacterial adherence to histological sections of mammary gland and bacterial internalization into 293 cells were significantly lower in the Bap-positive strains. In addition, the Bap-negative strain showed significantly higher colonization in vivo of sheep mammary glands than the Bap-positive strain. Taken together, these results strongly suggest that the expression of the Bap protein interferes with functional properties of the MSCRAMM proteins, preventing initial bacterial attachment to host tissues and cellular internalization.  相似文献   

19.
20.
Fibrinogen-dependent interactions of Staphylococcus aureus are believed to contribute to bacterial virulence by promoting bacterial attachment to fibrinogen-coated surfaces and inducing the formation of bacterial clumps that are likely resistant to phagocytosis. Although S. aureus produces several fibrinogen-binding proteins, the cell wall-associated protein clumping factor (encoded by clfA) appears to be most important in bacterial interactions with immobilized or soluble purified fibrinogen. We have compared bacterial clumping in several strains of S. aureus, including isogenic ClfA+ and ClfA- Newman strains, in the presence of purified rabbit fibrinogen, human plasma, and inflammatory fluid and examined the effect of clumping on bacterial sensitivity to mammalian group IIA phospholipase A2 (PLA2). This enzyme is the major extracellular bactericidal agent in inflammatory fluid active against S. aureus. Both ClfA-dependent and ClfA-independent bacterial clumping was observed, depending on the source and fibrinogen content of the biological fluid. In each case, clumping only partially reduced the antibacterial activity of PLA2, suggesting that this extracellular enzyme can substantially penetrate dense bacterial clumps. Bacterial clumps could be dispersed by added proteases, restoring full antibacterial activity to PLA2. Thus, the extracellular mobilization of group IIA PLA2 during inflammation may provide a mechanism by which the host can control the proliferation and survival of S. aureus even after bacterial clumping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号