首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 15 毫秒
1.
Dietary consumption of phytosterols and certain fatty acids has been shown to reduce cholesterol absorption and plasma cholesterol concentrations. However, it has not been fully elucidated whether phytosterols or fatty acids can alter the expression of cholesterol transporters by functioning as signaling molecules. This study tested the hypothesis that various fatty acids and phytosterols commonly found in the food supply can modulate the expression of transporters including Niemann-Pick C1-like 1, low-density lipoprotein receptor, and scavenger receptor class B type I and 3-hydroxy-3-methylglutaryl-coenzyme A reductase in the intestine and liver. Caco-2 cells were used as models of enterocytes, and HepG2 cells were used as a model of hepatocytes. The cells were treated for 18 hours with 100 μmol/L of a fatty acid, or for 24 hours with 10 μmol/L of 25α-hydroxycholesterol, or 100 μmol/L of cholesterol, sitosterol, and stigmasterol to measure expression of genes involved in cholesterol transport using quantitative real-time polymerase chain reaction. Polyunsaturated fatty acids in Caco-2 cells and sterols in HepG2 cells significantly reduced the messenger RNA expression levels of Niemann-Pick C1-like 1, scavenger receptor class B type I, low-density lipoprotein receptor, and 3-hydroxy-3-methylglutaryl-coenzyme A reductase. Importantly, sitosterol and stigmasterol reduced the messenger RNA levels of genes to a similar extent as cholesterol. The data support the hypothesis that unsaturated fatty acid and phytosterols can act as signaling molecules and alter the expression of genes involved in cholesterol transport and metabolism.  相似文献   

2.
3.
Several studies have evaluated the effect of soy protein or soluble fiber on serum cholesterol in hypercholesterolemic subjects, with different results. We hypothesized that this response is associated with the presence of polymorphisms in genes encoding proteins involved in lipoprotein metabolism or reverse cholesterol transport. Thus, the aims of the present work were to study the effectiveness of a dietary portfolio consisting of a combination of soy protein and soluble fiber integrated in a low saturated fat (LSF) diet on blood lipids in a Mexican group with hyperlipidemia and to determine the association between responsiveness to the diet and the frequency of apolipoprotein (Apo) E and ApoA1 and ABCG5/8 polymorphisms. Forty-three hyperlipidemic subjects (20 men and 23 women) were given an LSF diet for 1 month, followed by an LSF diet that included 25 g of soy protein and 15 g of soluble fiber daily for 2 months. After the 3-month dietary intervention, serum total cholesterol (TC) significantly decreased by 20.6%, and serum triglycerides (TGs) decreased by 40.4%. Fifty-one percent of the subjects had a reduction more than 20% in serum TC, and 77% of the subjects had a reduction more than 20% in serum TG (hyperresponders). Approximately 14% of the hypercholesterolemic subjects had the ABCG8 (52 G/C) polymorphism, 65% had the ABCG5 (1950 C/G and G/G) polymorphism, 53.5% had the ApoA1 (−75 G/A and A/A) polymorphism, and 23.3% had the ApoE (3/4) polymorphism. Independently of genotype, the combination of cholesterol-lowering foods in an LSF diet significantly reduced serum TC and TG in Mexican hypercholesterolemic subjects.  相似文献   

4.
The purpose of our research was to test the hypothesis that silk protein hydrolysate increases glucose uptake in cultured murine embryonic fibroblasts. Insulin sensitizing activity was observed in a cell-based glucose uptake assay using 3T3-L1 embryonic fibroblasts. The treatment of 1 mg/mL of silk peptide E5K6 plus 0.2 nM insulin was associated with a significant increase in glucose uptake (124.0% ± 2.5%) compared to treatment with 0.2 nM insulin alone. When the 3T3-L1 cells were induced to differentiate into fibroblasts, fat droplets formed inside the cells. Silk peptide E5K6 reduced the formation of fat droplets at the 1-mg/mL dosage (86.1% ± 2.5%) when compared to the control (100.0% ± 5.8%). A 1 mg/mL dose of silk peptide E5K6 significantly increased GLUT 4 expression (131.5% ± 4.0%). The treatment of 1 mg/mL of silk peptide E5K6 did not present any changes for adipogenic expressed genes, but leptin expression was significantly increased by silk peptide E5K6 supplementation (175.9% ± 11.1%). From these results, silk peptide E5K6 increased glucose uptake via up-regulation of GLUT 4 and decreased fat accumulation via the up-regulation of leptin.  相似文献   

5.
Rice has many health-beneficial components for ameliorating obesity, diabetes, and dyslipidemia. However, the effect of cooked rice as a useful carbohydrate source has not been investigated yet; so we hypothesized that cooked rice may have hypolipidemic effects. In the present study, we investigated the effect of cooked rice on hyperlipidemia and on the expression of hepatic genes involved in lipid metabolism. Golden Syrian hamsters were divided into 2 groups and fed a high-fat (15%, wt/wt)/cholesterol (0.5%, wt/wt) diet supplemented with either corn starch (HFD, 54.5% wt/wt) or cooked rice (HFD-CR, 54.5% wt/wt) as the main carbohydrate source for 8 weeks. In the HFD-CR group, the triglyceride and total cholesterol levels in the serum and liver were decreased, and the total lipid, total cholesterol, and bile acid levels in the feces were increased, compared with the HFD group. In the cooked-rice group, the messenger RNA and protein levels of 3-hydroxy-3-methylglutaryl CoA reductase were significantly downregulated; and the messenger RNA and protein levels of the low-density lipoprotein receptor and cholesterol-7α-hydroxylase were upregulated. Furthermore, the expressions of lipogenic genes such as sterol response element binding protein-1, fatty acid synthase, acetyl CoA carboxylase, and stearoyl CoA desaturase-1 were downregulated, whereas the β-oxidation related genes (carnitine palmitoyl transferase-1, acyl CoA oxidase, and peroxisome proliferator-activated receptor α) were upregulated, in the cooked-rice group. Our results suggest that the hypolipidemic effect of cooked rice is partially mediated by the regulation of hepatic genes involved in lipid metabolism, which results in the suppression of cholesterol and fatty acid synthesis and the enhancement of cholesterol excretion and fatty acid β-oxidation.  相似文献   

6.
Capsaicin, a spicy component of hot peppers, has been shown to improve inflammatory disease and obesity. In this study, we tested the hypothesis that the anti-inflammatory activity of capsaicin can be used to improve free fatty acid (FFA)-induced inflammation by reducing gene expression of macrophage inflammatory protein 1 (MIP-1) and interleukin 8 (IL-8) in THP-1 (human acute monocytic leukemia cell) macrophages. To investigate whether capsaicin ameliorates palmitate-induced MIP-1 and IL-8 gene expressions, we treated THP-1 cells with palmitate in the presence or absence of capsaicin and measured MIP-1 and IL-8 by real-time polymerase chain reaction. To elucidate the mechanism by which capsaicin effects on palmitate-induced MIP-1 and IL-8 gene expressions, we performed immunoblotting with stress kinase-related antibodies and measured palmitate oxidation and palmitate oxidation-related gene expression. Palmitate and stearate but not the unsaturated FFA oleate significantly increased MIP-1 and IL-8 expressions in THP-1 macrophages. Treatment with capsaicin or FFA oxidation stimulators inhibited palmitate-induced MIP-1 and IL-8 expressions in THP-1 macrophages. Capsaicin increased the gene expression of carnitine palmitoyltransferase 1 and the β-oxidation of palmitate. Furthermore, capsaicin significantly reduced palmitate-stimulated activation of c-Jun N-terminal kinase, c-Jun, and p38. Our data suggest that the attenuation of palmitate-induced MIP-1 and IL-8 gene expressions by capsaicin is associated with reduced activation of c-Jun N-terminal kinase, c-Jun, and p38 and preserved β-oxidation activity.  相似文献   

7.
High-fat diets (HFD) promote the development of both obesity and fatty liver disease through the up-regulation of hepatic lipogenesis. Insulin resistance, a hallmark of both conditions, causes dysfunctional fuel partitioning and increases in lipogenesis. Recent work has demonstrated that systemic insulin resistance occurs in as little as the first 72 hours of an HFD, suggesting the potential for hepatic disruption with HFD at this time point. The current study sought to determine differences in expression of lipogenic genes between sexes in 3-month-old male and female Long-Evans rats after 72 hours of a 40% HFD or a 17% fat (chow) diet. Owing to the response of estrogen on hepatic signaling, we hypothesized that a sexual dimorphic response would occur in the expression of lipogenic enzymes, inflammatory cytokines, apoptotic, and cell repair and remodeling genes. Both sexes consumed more energy when fed an HFD compared with their low fat–fed controls. However, only the males fed the HFD had a significant increase in body fat. Regardless of sex, HFD caused down-regulation of lipogenic and inflammatory genes. Interestingly, females fed an HFD had up-regulated expression of apoptotic and cell repair–related genes compared with the males. This may suggest that females are more responsive to the acute hepatic injury effects caused by HFDs. In summary, neither male nor female rats displayed disrupted hepatic metabolic pathways after 72 hours of the HFD treatment. In addition, female rats appear to have protection from increases in fat deposition, possibly due to increased caloric expenditure; male rats fed an HFD were less active, as demonstrated by distance traveled in their home cage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号