首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transport of 35S-labeled sulfobromophthalein [35S]BSP was studied in short-term cultured rat hepatocytes incubated in bovine serum albumin. At 37 degrees C, initial uptake of [35S]BSP was 5-10-fold that at 4 degrees C, linear for at least 15 min, saturable, inhibited by bilirubin, and reduced by greater than 70% after ATP depletion or isosmotic substitution of sucrose for NaCl in medium. Replacement of Na+ by K+ or Li+ did not alter uptake, whereas replacement of Cl- by HCO-3 or gluconate- reduced uptake by approximately 40%. Substitution of Cl- by the more permeant NO-3 enhanced initial BSP uptake by 30%. Efflux of [35S]BSP from cells to media was inhibited by 40% after ATP depletion or sucrose substitution. To confirm these results in a more physiologic system, transport of [3H]bilirubin was studied in isolated livers perfused with control medium or medium in which Cl- was replaced by gluconate-. Perfusion data analyzed by the model of Goresky, revealed 40-50% reductions in influx and efflux with gluconate- substitution. These results are consistent with existence of a Cl-/organic anion-exchange mechanism similar to that described by others in renal tubules.  相似文献   

2.
Turnover of hepatic glutathione in vivo in the rat is almost entirely accounted for by cellular efflux, of which 80-90% is sinusoidal. Thus, sinusoidal efflux play a major quantitative role in homeostasis of hepatic glutathione. Som preliminary observations from our laboratory (1983. J. Pharmacol. Exp. Ther. 224:141-147.) and circumstantial evidence in the literature seemed to imply that the raising of the hepatic glutathione concentration above normal was not accompanied by a rise in the rate of sinusoidal efflux. Based on these observations, we hypothesized that the sinusoidal efflux was probably a saturable process and that at normal levels of hepatic glutathione the efflux behaved as a zero-order process (near-saturation). We tested our hypothesis by the use of isolated rat livers perfused in situ, single pass, with hemoglobin-free, oxygenated buffer medium at pH 7.4 and 37 degrees C. Preliminary experiments established a range of perfusion rates (3-4 ml/min per g) for adequacy of oxygenation, lack of cell injury, and minimization of variability contributed by perfusion rates. Hepatic glutathione was lowered to below normal by a 48-h fast, diethylmaleate (0.1-1.0 ml/kg i.p.), and buthionine sulfoximine (8 mmol/kg i.p.), and raised to above normal by 3-methylcholanthrene (20 mg/kg x 3 d i.p.) and cobalt chloride (0.05-0.27 g/kg-1 subcutaneously). Steady state sinusoidal efflux from each liver was measured over a 1-h perfusion, during which the coefficient of variation of glutathione in perfusates stayed within 10%. Hepatic glutathione efflux as a function of hepatic concentration was characterized by saturable kinetics with sigmoidal (non-hyperbolic) features. The data were fitted best with the Hill model and the following parameter values were estimated: Vmax = 20 nmol/min per g, Km = 3.2 mumol/g, and n = 3 binding/transport sites. The efflux could be inhibited reversibly by sulfobromophthalein-glutathione conjugate but was not affected by the addition of glutathione to the perfusion medium. The results support our hypothesis that sinusoidal efflux of glutathione is near saturation (approximately equal to 80% of Vmax) at normal (fed and fasted) liver glutathione concentrations. The phenomenon of saturability coupled with the ability to inhibit the efflux leads us to propose that sinusoidal efflux from hepatocytes appears to be a carrier-mediated process. Some recent studies by others, using sinusoidal membrane-enriched vesicles, also support these conclusions.  相似文献   

3.
4.
Bilirubin uptake by the liver is a rapid process of high specificity that has kinetic characteristics which suggest carrier-mediation. In the circulation, bilirubin is readily bound to albumin, from which it is extracted by the liver. Although several studies suggested that it is the small, unbound fraction of bilirubin which interacts with hepatocytes and is removed from the circulation, recent experiments have been interpreted as suggesting that binding to albumin facilitates ligand uptake. A liver cell surface receptor for albumin has been postulated. The present study was designed to examine directly whether albumin facilitates the hepatic uptake of bilirubin and whether uptake of bilirubin depends on binding to albumin. Rat liver was perfused with a protein-free fluorocarbon medium, and single-pass uptake of 1, 10, or 200 nmol of [3H]bilirubin was determined after injection as an equimolar complex with 125I-albumin, with 125I-ligandin, or free with only a [14C]sucrose reference. Uptake of 10 nmol of [3H]bilirubin was 67.5 +/- 3.7% of the dose when injected with 125I-albumin, 67.4 +/- 6.5% when injected with 125I-ligandin, and 74.9 +/- 2.4% when injected with [14C]sucrose (P greater than 0.1). At 200 nmol, uptake fell to 46.4 +/- 3.1% (125I-albumin) and 63.3 +/- 3.4% [( 14C]sucrose) of injected [3H]bilirubin (P less than 0.01), which suggests saturation of the uptake mechanism. When influx was quantitated by the model of Goresky, similar results were obtained. When [3H]bilirubin was injected simultaneously with equimolar 125I-albumin and a [14C]sucrose reference, there was no delay in 125I-albumin transit as compared with that of [14C]sucrose. This suggested that the off-rate of albumin from a putative hepatocyte receptor would have to be very rapid, which is unusual for high affinity receptor-ligand interaction. There was no evidence for facilitation of bilirubin uptake by binding to albumin or for interaction of albumin with a liver cell surface receptor. These results suggest that the hepatic bilirubin uptake mechanism is one of high affinity which can extract bilirubin from circulating carriers such as albumin, ligandin, or fluorocarbon.  相似文献   

5.
1. Renal mechanisms of conjugated bilirubin excretion have been studied in isolated rat kidneys perfused with a protein-free dextran medium, containing conjugated bilirubin isolated from human bile. 2. In nine perfused kidneys with a low glomerular filtration rate (GFR) (less than 0.5 ml/min) and depressed tubular function, there was a significant linear correlation between conjugated bilirubin clearance and GFR (r = 0.97). 3. In contrast, nine kidneys with a normal GFR (greater than 0.8 ml/min) and good tubular function exhibited substantial tubular reabsorption of filtered conjugated bilirubin (mean 74%). Reabsorption was proportional to the filtered conjugated bilirubin load and a tubular transport maximum was not observed even at high concentrations (144 mumol/1). 4. The fractional reabsorption of bilirubin was unchanged by the addition of sodium aminohippurate to the medium. Perfusion with an albumin medium (10 g/1) resulted in a tenfold reduction in conjugated bilirubin clearance. 5. These observations indicate that non-protein-bound conjugated bilirubin is freely filtered by the glomeruli and then largely reabsorbed in the tubules. Evidence of tubular secretion was not obtained. 6. Chromatographic separation of bilirubin conjugates showed that the proportion of di- to mono-conjugates in the urine was greater than in the perfusate. Whether this incicated further conjugation by the kidney of the monoconjugates or differential clearance of the conjugates was not established.  相似文献   

6.
The kinetic parameters of the cytostatic agent 5-fluoro-2'-deoxyluridine (FUDR) were studied in isolated rat hepatocytes and in the isolated perfused rat liver. In both experimental setups a dose dependency of the elimination parameters, half-life and clearance, was observed with a calculated turning point around 250 microM. In the medium of rat hepatocytes incubated at low (0.1 microM) to high (2000 microM) FUDR, the majority of the metabolites consisted of the catabolite alpha-fluoro-beta-alanine. The nucleobase metabolites, 5-fluorouracil and its primary product 5,6-dihydro-5-fluorouracil, approached apparent steady-state levels comprising 10 to 15% of the initial concentration. In the intracellular phase of hepatocytes incubated at 300 microM FUDR almost 90% of the FUDR-derived material was alpha-fluoro-beta-alanine, whereas essentially no unchanged FUDR could be detected. Similar results were obtained at extracellular FUDR concentrations exceeding 300 microM. In the isolated perfused rat liver, the clearance decreased to 15 to 20% of the corresponding values when the initial concentration was raised from 24 to 2400 microM. At the end of perfusion alpha-fluoro-beta-alanine comprised 90 to 95% of FUDR-derived total radioactivity in the tissue even at initially 2400 microM FUDR, although at this FUDR dosage 20% of the substrate remained unmetabolized in the medium. These results suggest that the limitation of hepatic FUDR elimination is not due to saturable hepatic metabolism but must be due to saturable uptake of these pyrimidine derivatives across the cellular membrane of parenchymal liver cells.  相似文献   

7.
8.
The rate of efflux of ketone bodies has been studied in isolated hepatocytes prepared from starved rats and preloaded with D-3-[14C]hydroxybutyrate. Efflux of ketone bodies was temperature-dependent, saturable and inhibited by alpha-cyano-3-hydroxycinnamate and phloretin. The rate of efflux was also reduced by 6 mmol/l lactate and pyruvate added to the external medium. Under conditions of simulated metabolic acidosis in the hepatocyte suspension medium, ketone body efflux rate was reduced. The experimental data suggest that hepatic plasma membrane ketone body transit is carrier-mediated.  相似文献   

9.
In the liver, the accumulation of hepatobiliary contrast agents is a crucial issue to understand the images of liver scintigraphy or magnetic resonance (MR) imaging. Thus, depending on the regulation of uptake and exit membrane systems in normal and injured hepatocytes, these contrast agents will accumulate differently within cells. Gadobenate dimeglumine (Gd-BOPTA) is a hepatobiliary MR contrast agent that distributes to the extracellular space and enters into rat hepatocytes through the sinusoidal transporters, organic anion-transporting polypeptides. Gd-BOPTA is not metabolized during its transport to the canalicular membrane where it is excreted into bile through multiple resistance protein-2 (Mrp2). It is not well known how Gd-BOPTA accumulates in normal livers and in livers lacking Mrp2. We perfused livers from normal rats and from rats lacking Mrp2 with (153)Gd-BOPTA at increasing concentrations and assessed the hepatic accumulation of this agent using a gamma probe placed above the livers. By use of a pharmacokinetic model that best described the amounts of Gd-BOPTA in perfusate, bile, and hepatic tissue over time, we showed how increasing concentrations and the absence of Mrp2 modify the hepatic accumulation of the contrast agent. It is noteworthy that despite the absence of Gd-BOPTA bile excretion and a similar efflux back to sinusoids in livers lacking Mrp2, the maximal hepatic accumulation of contrast agent was similar to normal rats. We also showed how hepatic accumulation relies on the concomitant entry into and exit from hepatocytes. Such information improves our understanding of liver imaging associated with the perfusion of hepatobiliary contrast agents, which was recently introduced in clinical practice.  相似文献   

10.
We assessed the impact of zonal factors on the hepatic reduced glutathione (GSH) conjugation of ethacrynic acid (EA). Uptake of EA by enriched periportal (PP) and perivenous (PV) rat hepatocytes was characterized by both saturable (V(max)(uptake) = 3.4 +/- 1.7 and 3. 2 +/- 0.8 nmol/min/mg protein and K(m)(uptake) = 51 +/- 13 and 44 +/- 15 microM) and nonsaturable (12 +/- 5 and 12 +/- 3 microl/min/mg protein) components. Values for the overall GSH conjugation rates of EA (200 microM) were similar among the zonal hepatocytes and resembled those for the influx transport rates. In the absence of the hepatocyte membrane, GSH conjugation in PV and PP hepatocyte cytosol was similar, but a higher perivenous GSH conjugation activity toward EA (PV/PP of 2.4) that mirrored the higher PV/PP ratios of immunodetectable GSTs Ya (1.7) and Yb2 (2.5) was found in cell lysates obtained by the dual-digitonin-pulse perfusion technique. The GSH conjugation rates in the subcellular fragments were, however, much greater than those observed for intact hepatocytes. Efflux rates of the glutathione conjugate EA-SG from zonal hepatocytes were similar, as were levels of the immunodetectable multidrug-resistance protein 2/canalicular multispecific organic anion transporter (Mrp2/cMoat) in the 100,000g pellets. The composite results suggest that the GSTs responsible for EA metabolism are more abundant in the PV region, albeit that the gradient of enzymatic activities is shallow. Despite the existence of zonal metabolic activity, the overall GSH conjugation rate of EA is homogeneous among cells because the reaction is rate limited by uptake, which occurs evenly. Results on EA-SG efflux suggest the acinar homogeneity in Mrp2/cMoat function for canalicular transport.  相似文献   

11.
In cultured rat hepatocytes, cystine led to an inhibition of GSH efflux by lowering the Vmax by approximately 35% without affecting the Km. The cystine-mediated inhibition of GSH efflux was rapid in onset (< 1 h), with near maximum effect at 0.1 mM. Inhibition was still observed when cystine uptake was prevented. Cystine and sulfobromophthalein-GSH, a selective inhibitor of sinusoidal transport of GSH, did not exhibit additive inhibitory effects on GSH efflux. Depletion of ATP or membrane depolarization after cystine treatment were excluded as potential mechanisms. DTT not only reversed the cystine-mediated inhibition of GSH efflux, it stimulated GSH efflux up to 400-500%. The DTT effect was immediate in onset, reaching maximum after 30 min, and was partially reversed by cystine, suggesting that the two share a common site(s) of action. DTT treatment did not alter cellular ATP levels or change the membrane potential. In cultured hepatocytes, DTT treatment increased the Vmax of GSH efflux by approximately 500% without affecting the Km. Inhibition of microtubular function and vesicular acidification did not affect basal or DTT stimulated efflux. Both cystine and DTT effects on sinusoidal GSH efflux were confirmed in perfused livers. In summary, the capacity of the sinusoidal GSH transporter is markedly influenced by thiol-disulfide status.  相似文献   

12.
13.
1. Colony-stimulating activity appeared in the perfusate of the isolated rat liver during perfusions with either whole rat blood, rat plasma or an artificial perfusate of Eagle's medium and albumin. 2. Dialysable inhibitors of colony formation were also released during perfusions. 3. Colony-stimulating activity in artificial perfusate could be enhanced by the addition of rat plasma in vitro. Concentrations of cycloheximide that inhibited albumin synthesis by the liver did not inhibit the release of colony-stimulating activity.  相似文献   

14.
Most previous compartmental models describing bilirubin transport and metabolism in the liver have been validated solely by analysis of the plasma disappearance of radiolabeled bilirubin in human subjects. We now have determined the transport kinetics of a bilirubin tracer pulse by analysis of plasma, liver, and bile radioactivity data from 30 intact rats. Plasma [3H]bilirubin disappearance was best described by the sum of three exponentials, and a six-compartment model, derived by simulation analysis, was necessary and adequate to describe all experimental data. Examination of the injected radiolabeled bilirubin by extraction with hexadecyltrimethylammonium bromide and thin-layer chromatography revealed that 6.6% (mean) of the original pigment had been degraded to labeled nonbilirubin derivatives during preparation of the tracer dose. This material exhibited a significantly longer half-life (mean 50.6 min) of the plasma terminal exponential than that of authentic radiobilirubin (20.6 min). In isolated perfused rat liver, the kinetics of [3H]bilirubin in perfusate and bile readily fitted the proposed model. Compatibility of the model with the data obtained, both in the isolated liver and in vivo, required that a fraction of bilirubin conjugated in the liver be deconjugated and returned to the plasma. Deconjugation of bilirubin glucuronides was evaluated directly by infusion of bilirubin monoglucuronides, containing 14C in the glucuronosyl group, into rats with an external bile fistula. Since metabolic degradation of hydrolyzed 14C-labeled glucuronic acid yields 14CO2, this was measured in expired air. Whereas 86% of the administered labeled pigment was recovered in bile, 7% of the label appeared in 14CO2. These findings directly validate a portion of the proposed kinetic model and suggest that hepatic deconjugation of a small fraction of bilirubin glucuronides is a physiological event. Deconjugation may also account, at least in part, for the presence of increased concentrations of unconjugated bilirubin in the plasma of patients with cholestasis.  相似文献   

15.
The isolated perfused rat liver was investigated as a potential model to analyze binding of 17 beta-[3H]estradiol (E2) to cytosolic and nuclear estrogen receptors. Viability of the isolated perfused liver was monitored by measuring leakage of cytosolic enzymes into the perfusate. These studies indicated that the liver remained viable for at least a 90-min perfusion period although significant decreases in cytosolic estrogen receptor concentrations occurred during this perfusion period. Estrogen receptor loss was minimized by supplementing the red blood cell-free perfusion medium with 5 micrograms of insulin per ml. Uptake of [3H]E2 by hepatic cytosolic estrogen receptors of the isolated perfused liver was rapid as measured by partial purification of radiolabeled ligand receptor complexes after varying times of perfusion. Peak liver concentrations of receptor-bound E2 were achieved 15 min after the onset of perfusion when using livers from either male or female rats. After 15 min, radiolabeled cytosolic ligand receptor complexes decreased rapidly, reaching lowest concentrations at 60 min. Radiolabeled salt-extractable nuclear-binding sites increased up to 30 min and then decreased slightly between 30 and 90 min. Both 4S and 5S forms of nuclear binding sites were detected in the isolated perfused livers as evaluated by sedimentation analysis on 5 to 20% sucrose density gradients. Concentrations of radiolabeled cytosolic and nuclear receptors were greater in females than males at all perfusion periods examined when the initial concentration of [3H]E2 was 4 nm. Sex differences in receptor uptake were not as great when higher concentrations of [3H]E2 were added to the perfusion medium. These studies suggest that the isolated perfused liver is a suitable model to investigate short-term uptake of estrogens by cytosolic and nuclear receptors.  相似文献   

16.
We investigated microcirculatory changes and hepatocellular injury due to hypoxia/reoxygenation and the effects of nicardipine, a calcium channel blocker, using the isolated perfused rat liver technique. Liver perfusion was carried out in three consecutive phases: 30-min pre-hypoxia perfusion, 120-min hypoxia perfusion and 30-min reoxygenation perfusion in two groups, a control (n = 5) group and a nicardipine group (n = 5). In the nicardipine group, nicardipine (2 x 10(-6) M) was added to the perfusate prior to the hypoxia perfusion. Intrahepatic volumes, sinusoidal volume and extravascular volume accessible to albumin, were assessed by the multiple indicator dilution technique. Though 120-min hypoxia per se caused only a slight increase in the lactate dehydrogenase (LDH) release and no significant alterations in perfusion pressure and intrahepatic volumes, reoxygenation elicited hepatocellular injury assessed by the LDH level in the perfusate along with a substantial increase in perfusion pressure and an increase in extravascular volume. Nicardipine pretreatment attenuated the increase in LDH level, perfusion pressure and intrahepatic volumes after reoxygenation, but there were no difference in liver microcirculation during 120-min hypoxia. The data of the current study emphasized the crucial role of Ca2+ influx in hypoxic/reoxygenation hepatocellular injury and suggested that a direct vasodilating effect of nicardipine on the intrahepatic vasculature during hypoxia is unlikely as the mechanism for its cytoprotective effects.  相似文献   

17.
18.
19.
In the present studies we sought to address the following questions: do chronically transplanted intrahepatic islets (IHI-Tx) secrete insulin in a coordinate pulsatile manner, and, if so, is reestablishment of this coordinate pulsatility a function of time after transplantation? We studied isolated perfused livers at 10 mM glucose from 27 rats rendered diabetic with streptozotocin and then transplanted with approximately 2 x 10(3) islets, 2 (n = 5), 7 (n = 5), 30 (n = 5), and 200 (n = 12) d after transplantation. 12 out of 12 of the 200-d IHI-Tx secreted insulin in coordinate pulses (frequency 3.9 +/- 0.3 pulses/h, amplitude 15.2 +/- 2.4 nmol/min). In contrast, one out of five 2-d, zero out of five 7-d, and one out of five 30-d IHI-Tx showed pulsatile insulin secretion. Insulin secretion was markedly greater (76 +/- 13 vs 13 +/- 3 nmol/min, P < 0.0001) in the 200-d versus early IHI-Tx. Pentobarbital 25 micrograms/ml had no effect on total (13.9 +/- 3.9 vs 15.9 +/- 3.9 nmol/min), nonpulsatile (12.9 +/- 3.5 vs 14.1 +/- 3.3 nmol/min), or pulsatile (pulse amplitude 17.6 +/- 4.5 vs 20.0 +/- 4.2 nmol/min, pulse frequency 4.1 +/- 0.3 vs 4.0 +/- 0.7 pulses/h) insulin secretion. Using synaptophysin, islet innervation was documented in 12 out of 12 200-d IHI-Tx but in none of the early IHI-Tx. We conclude that established (approximately 200 d) IHI-Tx secrete insulin in a coordinate pulsatile manner and that establishment of coordinate pulsatile insulin secretion by IHI-Tx is accompanied by increased total insulin secretion and is associated with islet reinnervation.  相似文献   

20.
A Oliven  H M Bassan 《Chemotherapy》1986,32(2):159-165
The effect of the antitubercular drugs rifampin and isoniazid on the function of the isolated, perfused rat liver was evaluated by monitoring the rate of bile flow and sulfobromophthalein (BSP) clearance. The effect of rifampin on bile flow was biphasic: rifampin concentration of 100 micrograms/ml increased the flow to 134% of baseline, while 1,000 micrograms/ml decreased the flow to 58% of baseline (p less than 0.01 for both). Rifampin also caused a dose-dependent inhibition of BSP removal from the perfusate and excretion in the bile. Isoniazid had no adverse effect on bile flow and BSP clearance, and the combination of isoniazid and rifampin had the same effects on the perfused liver as rifampin alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号