首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rosemary, Rosmarinus officinalis L. (Labiatae) has several therapeutic applications in folk medicine in curing or managing a wide range of diseases, including depression. In this study, the effect of the hydroalcoholic extract of the stems and leaves of this plant was investigated in two behavioral models, the forced swimming test (FST) and tail suspension test (TST) in mice. The extract of R. officinalis produced an antidepressant-like effect, since the acute treatment of mice with the extract by p.o. route significantly reduced the immobility time in the FST (100 mg/kg) and TST (10–100 mg/kg), as compared to a control group, without accompanying changes in ambulation in the open-field test. Moreover, the repeated administration (14 days) of the hydroalcoholic extract of R. officinalis by p.o. route also produced an antidepressant-like effect in the TST (100–300 mg/kg). The pretreatment of mice with p-chlorophenylalanine (PCPA, 100 mg/kg, i.p., an inhibitor of serotonin synthesis, for 4 consecutive days), NAN-190 (0.5 mg/kg, i.p., a 5-HT1A receptor antagonist), ketanserin (5 mg/kg, i.p., a 5-HT2A receptor antagonist), 1-(m-chlorophenyl) biguanide (mCPBG, 10 mg/kg, i.p., a 5-HT3 receptor agonist), prazosin (1 mg/kg, i.p., an α1-adrenoceptor antagonist), SCH23390 (0.05 mg/kg, s.c., a dopamine D1 receptor antagonist) or sulpiride (50 mg/kg, i.p., a dopamine D2 receptor antagonist), but not yohimbine (1 mg/kg, i.p., an α2-adrenoceptor antagonist) was able to reverse the anti-immobility effect of the extract (10 mg/kg, p.o.) in the TST. The combination of MDL72222, (0.1 mg/kg, i.p., a 5-HT3 receptor antagonist) with a sub-effective dose of the extract of R. officinalis (1 mg/kg, p.o.) produced an anti-immobility effect in the TST. The results suggest that the antidepressant action of the extract of R. officinalis is mediated by an interaction with the monoaminergic system and that this plant should be further investigated as an alternative therapeutic approach for the treatment of depression.  相似文献   

2.
The purinergic P2X(7) receptor is a ligand-gated ion channel found on peripheral macrophages and microglia in the nervous system. Activation of P2X(7) receptors results in the rapid release of interleukin-1 beta (IL-1 beta). Cytokines like IL-1 beta are suggested to be involved in the pathophysiology of depression. The aim of this study was to behaviorally profile P2X(7) receptor knockout (KO) mice in behavioral models of depression- and anxiety-like behaviors. P2X(7) receptor KO and wild type (WT) mice were tested in multiple models including; forced swim test, tail suspension test, elevated plus maze, novelty suppressed feeding, spontaneous locomotor activity, and food intake. P2X(7) receptor KO mice exhibited an antidepressant-like profile in tail suspension test and forced swim test; an effect that was not associated with changes in spontaneous locomotor activity. In addition, P2X(7) receptor KO mice showed higher responsivity to a subefficacious dose of the antidepressant drug imipramine (15 mg/kg) in forced swim test. No significant differences between genotypes were observed in models of anxiety. These data support the relevance of pro-inflammatory cytokines in depressive-like states, and suggest that P2X(7) receptor antagonists could be of potential interest for the treatment of affective disorders.  相似文献   

3.
Lithium, the prototypic mood stabilizer, was recently demonstrated to enhance autophagy in cells. Recent hypotheses regarding the source of therapeutic effects of lithium as well as other mood stabilizers and antidepressants suggest that they may stem from increased neuroprotection, cellular plasticity and resilience. Hence it is clearly a possibility that enhanced autophagy may be involved in the therapeutic action by contributing to increased cellular resilience. A well-documented mechanism to induce autophagy is by inhibition of mTOR, a negative modulator of autophagy and rapamycin (sirolimus) is a commonly used inhibitor of mTOR. Accordingly, the present study was designed to evaluate the effects of rapamycin in animal models of antidepressant activity.A dose-response experiment in the mice forced swim test was performed and followed by additional testing of mice and rats in an open field, the forced swim test and the tail suspension test.Results show that sub-chronic, but not acute, administration of rapamycin doses of 10 mg/kg and above, have an antidepressant-like effect in both mice and rats and in both the forced swim and the tail suspension tests with no effects on the amount or distribution of activity in the open field.Whereas it is tempting to conclude that the antidepressant-like effects are related to mTOR inhibition, they may also be the consequences of interactions with other intracellular pathways. Additional studies are now planned to further explore the behavioral range of rapamycin's effects as well as the biological mechanisms underlying these effects.  相似文献   

4.
BACKGROUND: Amphetamine withdrawal and major depression share many behavioral commonalities in humans. Therefore, the examination of the behavioral effects of amphetamine withdrawal in rodents may provide insights into the neurobiological mechanisms underlying both disorders and aid in the development of animal models of depression that are sensitive to antidepressant agents. METHODS: We examined the behavioral effects of withdrawal from chronic continuous infusion of amphetamine (via minipump) in three behavioral paradigms: the intracranial self-stimulation (ICSS) procedure in rats, the modified forced swim test in rats, and the tail suspension test in mice. RESULTS: Amphetamine withdrawal resulted in a prolonged (5 day) deficit in brain reward function as assessed by elevations in ICSS thresholds. Using a similar regimen of amphetamine administration, we examined the behavioral effects of withdrawal in a modified rat forced swim test. Animals that were treated with the highest dose of amphetamine (10 mg/kg/day) exhibited increased climbing behavior and decreased immobility 24 hours after withdrawal; by the 48-hour testing time point, this effect had dissipated. In contrast, animals that had been pretreated with 5 mg/kg/day amphetamine exhibited a pronounced increase in immobility indicative of an increase in "depressive-like" behavior, coupled with decreases in swimming and climbing. In the mouse tail suspension test, both regimens of amphetamine pretreatment induced increases in immobility scores, also indicative of "depressive-like" behavior, 24 hours following withdrawal. CONCLUSIONS: Withdrawal from chronic amphetamine administration results in behavioral changes that may be analogous to some aspects of depression in humans, such as reward deficits (i.e., elevations in brain reward thresholds) and behaviors opposite to those seen after treatment with antidepressant drugs, such as decreased immobility in the forced swim test and the tail suspension test.  相似文献   

5.
BACKGROUND: Excessive glutamatergic neurotransmission is hypothesized to be associated with depressive-like behaviors and possibly major depressive disorder (MDD). Recent evidence that beta-lactam antibiotic agents stimulate uptake of glutamate suggests that this class of compounds might possess antidepressant-like activity. METHODS: Three-month old, male, C57BL/6J mice were administered ceftriaxone (200 mg/kg IP) for 14-18 days, then tested in the tail-suspension, forced swim, and novelty-suppressed feeding tests to determine whether ceftriaxone had similar effects to classical antidepressant compounds in these models. RESULTS: Ceftriaxone treatment had an antidepressant-like effect across models. Reduced immobility and decreased freezing were observed in the forced swim and tail suspension tests. The same trend was seen in novelty-suppressed feeding, but the effect was not statistically significant. CONCLUSION: Ceftriaxone demonstrates antidepressant-like effects in several mouse models. This is consistent with the hypothesis that enhanced uptake of glutamate might have antidepressant-like effects.  相似文献   

6.
Antidepressant-like properties of zinc in rodent forced swim test   总被引:4,自引:0,他引:4  
The effects of zinc, the N-methyl-D-aspartate glutamate receptor inhibitor, were studied in mice and rats using the forced swim test. Zinc (ZnSO4) in a dose of 30 mg/kg and imipramine (30 mg/kg), reduced the immobility time in the forced swim test in both species. Moreover, combined treatment in this test with zinc and imipramine at their ineffective doses (1 and 5 mg/kg, respectively) induced a statistically significant effect in rats. The doses active in the forced swim test reduced (in mice) or did not affect (in rats) locomotor activity. The results obtained indicate that zinc induces an antidepressant-like effect and enhances the effect of imipramine in the forced swim test, suggesting a potential antidepressant activity of zinc in humans.  相似文献   

7.
Summary. Chronic stress is known to result in impairment of learning and memory and precipitate several affective disorders including depression and anxiety. Drugs of natural origin are known to possess several effects on the central nervous system and are emerging as promising alternative therapies. In this context, the hydroalcoholic extract of Euphorbia hirta (Eh) was evaluated for anxiolytic property in chronically stressed rats subjected to elevated plus maze (EPM) and open field test (OFT). Eh treatment (200 mg/kg, p.o.; seven days) showed marked anti-anxiety activity in chronic immobilization stress. In contrast, the forced swim stress-induced anxiety was only partially decreased by Eh. Co-treatment of rats with flumazenil (0.5 mg/kg, i.p.), bicuculline (1 mg/kg, i.p.) or picrotoxin (1 mg/kg, i.p.) resulted in a significant reduction of anxiolytic effect of Eh indicating that its actions are mediated through GABAA receptor-benzodiazepine receptor-Cl channel complex. Thus, our studies indicate that Eh is a potential anxiolytic drug, which might be beneficial in the treatment of stress-induced anxiety disorders. Correspondence: B. S. Shankaranarayana Rao, Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, PB 2900, Bangalore 560 029, India  相似文献   

8.
The present study was undertaken to investigate the effects of aqueous extract of Glycyrrhiza glabra L. (Family: Fabaceae), popularly known as liquorice, on depression in mice using forced swim test (FST) and tail suspension test (TST). The extract of G. glabra (75, 150, and 300 mg/kg) was administered orally for 7 successive days in separate groups of Swiss young male albino mice. The dose of 150 mg/kg of the extract significantly reduced the immobility times of mice in both FST and TST, without any significant effect on locomotor activity of mice. The efficacy of extract was found to be comparable to that of imipramine (15 mg/kg i.p.) and fluoxetine (20 mg/kg i.p.). Liquorice extract reversed reserpine-induced extension of immobility period of mice in FST and TST. Sulpiride (50 mg/kg i.p.; a selective D2 receptor antagonist) and prazosin (62.5 microg/kg i.p.; an alpha1-adrenoceptor antagonist) significantly attenuated the extract-induced antidepressant-like effect in TST. On the other hand, p-chlorophenylalanine (100 mg/kg i.p.; an inhibitor of serotonin synthesis) did not reverse antidepressant-like effect of liquorice extract. This suggests that antidepressant-like effect of liquorice extract seems to be mediated by increase of brain norepinephrine and dopamine, but not by increase of serotonin. Monoamine oxidase inhibiting effect of liquorice may be contributing favorably to the antidepressant-like activity. Thus, it is concluded that liquorice extract may possess an antidepressant-like effect.  相似文献   

9.
In traditional Oriental medicine, some herbal combinations that include Bupleurum falcatum (BFM) as a major ingredient are known to effectively treat depressive-like disorders. In the present study, the antidepressant-like effect of methanolic extract of BFM and its neuropharmacological mechanism were investigated in mice. After oral administration of BFM extract, a tail suspension test (TST) and open field test (OFT) were performed to assess the antidepressant activity and psycho-stimulant side-effects, respectively. Pre-treatment with p-chlorophenylalanine (PCPA, a serotonin synthesis inhibitor) and α-methyl-p-tyrosine (AMPT, a catecholamine synthesis inhibitor) was used to assess the influence of BFM extract on the antidepressant activity in the TST. At doses of 150 and 300 mg/kg body weight, p.o., the BFM extract significantly reduced the total duration of immobility in the TST, while individual differences in locomotor activities between experimental groups were not observed in the OFT. Moreover, pre-treatment with PCPA (100 mg/kg i.p., for 4 consecutive days) or AMPT (100 mg/kg i.p.) significantly inhibited the antidepressant-like activity of BFM extract (300 mg/kg p.o.), as well as we confirmed the reversal of the antidepressant effect of fluoxetine (30 mg/kg i.p.) by PCPA and bupropion (20 mg/kg i.p.) by AMPT in the TST. Taken together, these findings suggest that the methanolic BFM extract has dose-dependent possibility of antidepressant-like activity valuable to alternative therapy for depression and that the mechanism of action involves the serotonergic and noradrenergic systems although underlying mechanism still remains to be further elucidated.  相似文献   

10.
Nociceptin/orphanin‐FQ (N/OFQ) peptide and its receptor (NOP: N/OFQ opioid peptide receptor) are highly expressed in the hippocampus, but their functional role remains poorly understood. We recently showed that hippocampal N/OFQ inhibits learning and memory abilities in mice. Here, we investigated whether the endogenous peptide also regulated emotional responses at the level of the hippocampus. Bilateral infusions of the selective NOP receptor antagonist, UFP‐101 (1–3 nmol/side), into the dorsal hippocampus produced antidepressant‐like effects in the mouse forced swim and tail suspension tests comparable with those obtained with the prototypical antidepressant, fluoxetine (10–30 mg/kg, intraperitoneal). In the light‐dark test, neither UFP‐101 (1–3 nmol/side) nor N/OFQ peptide (1–3 nmol/side) modified anxiety measures when injected at behaviorally active doses in the dorsal hippocampus. These findings show a clear dissociation in the involvement of hippocampal N/OFQ system in anxiety‐ and despair‐related behaviors. We conclude that the dorsal hippocampus is a brain region in which there is an important N/OFQ modulation of mnemonic processes and adaptive emotional responses associated to despair states. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
The antidepressant-like effect of a supercritical CO2 (SCCO2) Valeriana glechomifolia extract enriched in valepotriates was investigated in a mice tail suspension test (TST) and forced swimming test (FST). The SCCO2 extract decreased mice immobility in the FST (0.5-20 mg/kg p.o.) and elicited a biphasic dose-response relationship in the TST (1-20 mg/kg p.o.) with no alterations in locomotor activity and motor coordination (assessed in the open-field and rota-rod tests, respectively). The anti-immobility effect of the SCCO2 extract (5 mg/kg, p.o.) was prevented by mice pre-treatment with yohimbine (1 mg/kg, i.p., an α2 adrenoceptor antagonist), SCH 23390 (15 μg/kg, s.c., D1 dopamine receptor antagonist) and sulpiride (50 mg/kg, i.p., D2 dopamine receptor antagonist). However, mice pre-treatments with prazosin (1 mg/kg, i.p., α1 adrenoceptor antagonist) and p-chlorophenilalanine methyl ester (4 × 100 mg/kg/day, i.p., a serotonin synthesis inhibitor) were not able to block the anti-immobility effect of the SCCO2 extract. Administration (p.o.) of the SCCO2 extract (0.25 mg/kg) and imipramine (10 mg/kg), desipramine (5 mg/kg) and bupropion (3 mg/kg) at sub-effective doses significantly reduced mice immobility time in the FST. These data provide the first evidence of the antidepressant-like activity of V. glechomifolia valepotriates, which is due to an interaction with dopaminergic and noradrenergic neurotransmission.  相似文献   

12.
Marine cyanobacteria represent a unique source in the field of drug discovery due to the secondary metabolites they produce and the structural similarity these compounds have to endogenous mammalian receptor ligands. A series of cyanobacteria were subjected to extraction, fractionation by column chromatography and screened for affinity against CNS targets with a focus on serotonin receptors (5‐HTRs). Out of 276 fractions screened, 21% had activity at 5‐HTRs and/or the 5‐HT transporter (SERT). One sample, a cyanobacterium identified by 16S rRNA sequencing as Leptolyngbya from Las Perlas archipelago in Panama, contained a fraction with noted affinity for the 5‐HT7 receptor (5‐HT7R). This fraction (DUQ0002I) was screened via intracerebroventricular (ICV) injections in mice using depression and anxiety assays including the forced swim, tail suspension, elevated zero maze, and light‐dark preference tests. DUQ0002I decreased depression and anxiety‐like behaviors in males and did not have effects in 5‐HT7R knockout or female mice. Administration of DUQ0002I to the CA1 of the hippocampus induced antidepression‐like, but not anxiolytic‐like behaviors. Testing of further purified materials showed no behavioral effects, leading us to hypothesize that the behavioral effects are likely caused by a synergistic effect between multiple compounds in the fraction. Finally, DUQ0002I was used in a model of neuropathic pain with comorbid depression (spared nerve injury—SNI). DUQ0002I had a similar antidepressant effect in animals with SNI, suggesting a role for the 5‐HT7R in the development of comorbid pain and depression. These results demonstrate the potential that cyanobacterial metabolites have in the field of neuropharmacognosy.  相似文献   

13.
Zinc exhibits antidepressant-like activity in preclinical tests (the forced swim test and tail suspension test) and in olfactory bulbectomy and chronic unpredictable stress; two models of depression. Zinc also enhances the treatment of depression in humans. In the present study we evaluated the antidepressant activity of zinc in another model of depression—chronic mild stress (CMS) and the effect of zinc treatment on BDNF protein and the mRNA level. In CMS zinc hydroaspartate (10 mg/kg) exhibited a rapid (after 1 week of treatment) antidepressant-like effect. Chronic treatment with zinc induced a 17–39% increase in the BDNF mRNA and protein level in the hippocampus. These data indicate a rapidly acting antidepressant-like activity of zinc in CMS and the involvement of zinc in the regulation of BDNF.  相似文献   

14.
Involvement of GABAergic systems in action of antidepressants was examined in the forced swim test in rats. Rats were forced to swim in a cylinder for 15 min on day 1 and for 5 min on day 2. Desipramine, mianserin and buspirone, administered after the 15-min swim session on day 1 and before the 5-min swim test on day 2, dose-dependently decreased the duration of immobility in the swim test on day 2. Baclofen attenuated the decreased duration of immobility induced by desipramine, mianserin and buspirone in the swim test, although baclofen did not affect the duration of immobility when it was injected alone. Muscimol dose-dependently decreased the duration of immobility in the swim test on day 2. Bicuculline antagonized the decreased duration of immobility induced by muscimol. However, bicuculline failed to antagonize the decreased duration of immobility induced by desipramine, mianserin and buspirone. These results suggest that GABAB but not GABAA receptor systems may be involved in action of antidepressants.  相似文献   

15.
Sildenafil, a selective phosphodiesterase type 5 inhibitor, has recently been reported to abolish anti-immobility action of antidepressant drugs, i.e., bupropion, venlafaxine and S-citalopram, in the forced swim test in mice. The present study was designed to investigate the influence of sildenafil on the potential of two atypical antidepressants, namely mianserin and tianeptine. Swim sessions were conducted by placing mice in glass cylinders filled with water for 6 min and the duration of the behavioral immobility during the last 4 min of the test was evaluated. Locomotor activity was measured with photoresistor actimeters. To evaluate the potential pharmocokinetic interaction, total brain concentrations of the studied antidepressants were determined by HPLC method. Sildenafil at a dose of 2.5 mg/kg did not affect the activity of mianserin (20 mg/kg) in the forced swim test. Interestingly, at higher doses (5 and 10 mg/kg), sildenafil significantly enhanced the anti-immobility action of mianserin. Likewise, sildenafil (5, 10 and 20 mg/kg) robustly augmented the antidepressant activity of tianeptine (30 mg/kg). Mianserin alone, as well as in a combination with sildenafil at the highest dose, caused a potent reduction in locomotor activity. However, the changes in motor activity did not interfere with the data obtained in the forced swim test. Sildenafil significantly increased the total brain tianeptine concentration. No alteration in mianserin level in the brain after sildenafil co-administration was observed. The present study suggests that sildenafil enhances the activity of mianserin and tianeptine in the forced swim test in mice. The changes in the antidepressant activity of mianserin evoked by sildenafil co-administration were related to pharmacodynamic interaction while the interaction between tianeptine and sildenafil was, at least in part, pharmacokinetic in nature.  相似文献   

16.
We previously reported that the δ opioid receptor (DOP) agonists SNC80 and TAN-67 produce potent antidepressant-like and antinociceptive effects in rodents. However, SNC80 produced convulsive effects. Recently, we succeeded in synthesizing a novel DOP agonist called KNT-127. The present study examined the convulsive, antidepressant-like, and antinociceptive effects of KNT-127 in mice. In contrast to SNC80, KNT-127 produced no convulsions at doses of up to 100 mg/kg. In mice subjected to the forced swim test, a screening model for antidepressants, KNT-127 (1 mg/kg, s.c.) significantly decreased the duration of immobility and increased the duration of swimming without influencing spontaneous locomotor activity. These behavioral changes were similar to that observed for the tricyclic antidepressant imipramine (6 mg/kg). The antidepressant-like effect of KNT-127 in mice was antagonized by pretreatment with naltrindole (NTI), a selective DOP antagonist, or naltriben, a putative DOP2 subtype antagonist. In addition, KNT-127 (3 mg/kg, s.c.) significantly reduced the number of acetic acid-induced abdominal constrictions and the duration of licking time, respectively, in mice subjected to a writhing test and a formalin test. These antinociceptive effects were antagonized by pretreatment with either NTI or 7-benzylidenenaltrexone, a putative DOP1 subtype antagonist. We propose that KNT-127 should be considered as a candidate compound for the development of DOP-based antidepressants and/or analgesics that lack convulsive effects.  相似文献   

17.
Synaptic plasticity in the ventral tegmental area (VTA) is modulated by drugs of abuse and stress and is hypothesized to contribute to specific aspects of addiction. Both excitatory and inhibitory synapses on dopamine neurons in the VTA are capable of undergoing long‐term changes in synaptic strength. While the strengthening or weakening of excitatory synapses in the VTA has been widely examined, the role of inhibitory synaptic plasticity in brain reward circuitry is less established. Here, we investigated the effects of drugs of abuse, as well as acute stress, on long‐term potentiation of GABAergic synapses onto VTA dopamine neurons (LTPGABA). Morphine (10 mg/kg i.p.) reduced the ability of inhibitory synapses in midbrain slices to express LTPGABA both at 2 and 24 h after drug exposure but not after 5 days. Cocaine (15 mg/kg i.p.) impaired LTPGABA 24 h after exposure, but not at 2 h. Nicotine (0.5 mg/kg i.p.) impaired LTPGABA 2 h after exposure, but not after 24 h. Furthermore, LTPGABA was completely blocked 24 h following brief exposure to a stressful stimulus, a forced swim task. Our data suggest that drugs of abuse and stress trigger a common modification to inhibitory plasticity, synergizing with their collective effect at excitatory synapses. Together, the net effect of addictive substances or stress is expected to increase excitability of VTA dopamine neurons, potentially contributing to the early stages of addiction.  相似文献   

18.
BACKGROUND: The 5-hydroxytryptamine7 receptor (5-HT7) is implicated in circadian rhythm phase resetting, and 5-HT7 receptor-selective antagonists alter rapid eye movement (REM) sleep parameters in a pattern opposite from those in patients with clinical depression. METHODS: As sleep, circadian rhythm, and mood regulation are related, we examined 5-HT7 receptor knockout mice in two behavioral models of depression. The forced swim and tail suspension tests are highly predictive for antidepressant drug activity. RESULTS: Unmedicated 5-HT7-/- mice showed decreased immobility in both tests, consistent with an antidepressantlike behavior. The selective 5-HT7 receptor antagonist SB-269970 also decreased immobility. The selective serotonin reuptake inhibitor citalopram, a widely used antidepressant, decreased immobility in both 5-HT7+/+ and 5-HT7-/- mice in the tail suspension test, suggesting that it utilizes an independent mechanism. The 5-HT7-/- mice spent less time in and had less frequent episodes of REM sleep, also consistent with an antidepressantlike state. CONCLUSIONS: The 5-HT7 receptor might have a role in mood disorders and antagonists might have therapeutic value as antidepressants.  相似文献   

19.
Preclinical studies have shown that administration of Bacillus Calmette–Guérin (BCG) vaccine induces depression-like behaviors in mice; however, the effect of antidepressant drug treatment has not been reported earlier. In the present study, we induced depression-like behavior by administering BCG vaccine to BALB/c mice. BCG treatment produced robust serum sickness as shown by a decrease in body weight, reduced spontaneous locomotor activity and reduced voluntary wheel running activity. BCG treatment also elevated plasma IL6 and IFNγ levels and produced a marked activation of lung IDO activity. At a time point when serum sickness-related behaviors had fully recovered (i.e., day 14) BCG-treated mice showed a significant increase in immobility in the forced swim test (FST) and tail suspension test (TST) indicative of a pro-depressant phenotype. We observed significant increase in [3H]PK11195 binding in cortex and hippocampus regions of BGC-treated mice in comparison to saline-treated mice indicating prominent neuroinflammation. Pharmacological evaluation of FST behavior in BCG-treated mice demonstrated selective resistance to the selective serotonin reuptake inhibitors (SSRIs) fluoxetine and escitalopram. In contrast the tricyclic antidepressant imipramine, the dual serotonin/norepinephrine reuptake inhibitor (SNRI) duloxetine, and the dual dopamine/norepinephrine reuptake inhibitor (DNRI) nomifensine retained antidepressant efficacy in these mice. The lack of efficacy with acute treatment with SSRIs could not be explained either by differences in drug exposure or serotonin transporter (SERT) occupancy. Our results demonstrate that BCG-vaccine induced depression like behavior is selectively resistant to SSRIs and could potentially be employed to evaluate novel therapeutic agents being developed to treat SSRI-resistance in humans.  相似文献   

20.
The forced swim test (FST) and tail suspension test (TST) are widely used as animal models for screening potential antidepressants. Immobility or despair behavior produced in both FST and TST are taken as paradigm of depression and antidepressant drugs reduce the immobility period. Recent studies have suggested dissimilar hemodynamic, behavioral, physiological and pharmacological variations in these two models. Also, studies have proposed the significance of strain in these models of despair in an attempt to replicate results from one laboratory to another. The present study was undertaken to compare the antidepressant action of four major classes of antidepressants namely tricyclics (imipramine), selective serotonin reuptake inhibitor (fluoxetine), dual reuptake inhibitor of serotonin and norepinephrine (venlafaxine) and atypical antidepressants (mianserin and trazodone) using male laca mice in order to validate the two test procedures. Total immobility period was recorded during the period of 6 min in both the tests and the results were expressed as percentage decrease in immobility period with respect to vehicle control. Chlorpromazine (4 mg/kg, i.p.) or pentobarbitone (20 mg/kg, i.p.) were used as negative control. Imipramine (2, 5, 10 and 20 mg/kg), fluoxetine (5, 10, 20 and 40 mg/kg), or venlafaxine (2, 4, 8 and 16 mg/kg) dose dependently decreased the immobility period in mice. ED(50) values of imipramine, fluoxetine, and venlafaxine in FST and TST were found to be 9.2 and 10 mg/kg i.p, 18 and 20 mg/kg, i.p., and 8.5 and 12 mg/kg, i.p respectively. The relative potency of standard drugs in both FST and TST is imipramine=venlafaxine>fluoxetine. Mianserin (16 and 32 mg/kg., i.p.) or trazodone (1 and 2 mg/kg., i.p.) were ineffective to reduce the immobility period in both the tests showing the atypical nature of these antidepressants. Chlorpromazine or pentobarbitone was ineffective in reversing the immobility period thus validating the models for testing antidepressants. The present study further validated that both the test procedures are equi-sensitive to antidepressant drugs of different class in the strain of animals used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号