首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We examined 49 Legionella species, 26 L. pneumophila and 23 non-pneumophila Legionella spp., using partial 16S rRNA gene sequencing. This approach accurately identified all the L. pneumophila isolates, characterized all non-pneumophila Legionella isolates as such within this genus, and classified most (20/23; 87%) of the non-pneumophila Legionella isolates to the species level.  相似文献   

2.
One hundred water samples (32 from clinical units and 68 from private households) were examined for Legionella by culture, fluorescence in situ hybridization (FISH) and polymerase chain reaction (PCR). Twenty-four samples were positive by culture (22 L. pneumophila; 2 non-pneumophila species), 36 by FISH (32 L. pneumophila; 4 non-pneumophila species) and 75 by PCR (41 positive for L. pneumophila; 26 positive for L. pneumophila and a non-pneumophila species; 8 positive for non-pneumophila species). PCR and FISH results were compared to bacterial culture as the "gold standard" method by calculating sensitivities and specificities, respectively: PCR assays, 96% and 47%; FISH assays, 67% and 72%, respectively. In comparison with FISH the lower specificity of PCR is probably caused by dead Legionella bacteria and/or free Legionella DNA in potable water, and the higher sensitivity of PCR may be explained by the detection limit of fluorescence microscopy. In conclusion, the relatively high specificity, sensitivity and quickness of the FISH assay offer significant advantages over conventional PCR and culture-based techniques.  相似文献   

3.
A real-time PCR assay for the mip gene of Legionella pneumophila was tested with 27 isolates of L. pneumophila, 20 isolates of 14 other Legionella species, and 103 non-Legionella bacteria. Eight culture-positive and 40 culture-negative clinical specimens were tested. This assay was 100% sensitive and 100% specific for L. pneumophila.  相似文献   

4.
Identification of mip-like genes in the genus Legionella.   总被引:20,自引:7,他引:13       下载免费PDF全文
The mip gene of Legionella pneumophila serogroup 1 strain AA100 encodes a 24-kilodalton surface protein (Mip) and enhances the abilities of L. pneumophila to parasitize human macrophages and to cause pneumonia in experimental animals. To determine whether this virulence factor is conserved in the genus Legionella, a large panel of Legionella strains was examined by Southern hybridization and immunoblot analyses for the presence and expression of mip-related sequences. Strains representing all 14 serogroups of L. pneumophila contained a mip gene and expressed a 24-kilodalton Mip protein. Although the isolates of the 29 other Legionella species did not hybridize with mip DNA probes under high-stringency conditions, they did so at reduced stringency. In support of the notion that these strains possess mip-like genes, these species each expressed a protein (24 to 31 kilodaltons in size) that reacted with specific Mip antisera. Moreover, the cloned mip analog from Legionella micdadei encoded the cross-reactive protein. Thus, mip is conserved and specific to L. pneumophila, but mip-like genes are present throughout the genus, perhaps potentiating the intracellular infectivity of all Legionella species.  相似文献   

5.
Objective: Because presently used methods for diagnosis of Legionella pneumonia lack sufficient sensitivity and sometimes specificity and rapidity, the detection of Legionella spp. by amplification of nucleic acids might be valuable. However, performing polymerase chain reaction (PCR) on clinical samples such as sputum is difficult because of the presence of extraneous DNA and inhibitors of the reaction. An attempt to circumvent these problems was made.
Method: A nested PCR method was devised using primers from the mip gene of Legionella pneumophila. This PCR was tested on pure cultures of legionellae and clinical isolates of other bacteria. Clinical samples (bronchoalveolar lavage fluid, bronchial aspirate and sputum) from patients who suffered from legionellosis and samples from patients who suffered from other causes of pneumonia were also tested.
Results: The PCR was specific for L. pneumophila and no non- Legionella bacteria reacted. Ten to 50 colony forming units of Legionella in the sample could be detected. Twenty-two of 25 clinical samples were positive among patients suffering from pneumonia proven to be due to L. pneumophila serogroups 1, 3, 4, 5 and 6. Two of the three negative samples were from patients who had been treated with adequate therapy for at least 2 days and were culture negative. However, nine other culture-negative samples were PCR positive, of which seven came from patients who had been treated for 3–7 days. All pneumonia patients in the control group proved negative in PCR. A commercial kit for DNA preparation from clinical samples, based on absorption of nucleic acids to silica gel, was superior to the traditional phenol/chloroform extraction and increased the rapidity, simplicity and sensitivity of the procedure.
Conclusions: A nested, simplified and rapid PCR method using mip primers proved to be more sensitive than culture and as sensitive and specific as other PCR procedures previously reported.  相似文献   

6.
After the demonstration of analogs of the Legionella pneumophila macrophage infectivity potentiator (Mip) protein in other Legionella species, the Legionella micdadei mip gene was cloned and expressed in Escherichia coli. DNA sequence analysis of the L. micdadei mip gene contained in the plasmid pBA6004 revealed a high degree of homology (71%) to the L. pneumophila mip gene, with the predicted secondary structures of the two Mip proteins following the same pattern. Southern hybridization experiments, with the plasmid pBA6004 as the probe, suggested that the mip gene of L. micdadei has extensive homology with the mip-like genes of several Legionella species. Furthermore, amino acid sequence comparisons revealed significant homology to two eukaryotic proteins with isomerase activity (FK506-binding proteins).  相似文献   

7.
By using Taq polymerase, DNA amplification of a specific fragment of the macrophage infectivity potentiator (mip) gene from Legionella pneumophila was used to detect Legionella spp. in bronchoalveolar lavage (BAL) fluid specimens. We were able to detect DNAs from all 30 L. pneumophila strains tested (serogroups 1 to 14), L. micdadei, and L. bozemanii serogroup 1. DNA from bacteria of other species tested and DNA from human leukocytes were not amplified by this procedure. After optimization of the conditions for DNA extraction from BAL fluid, a 2-ml sample of BAL fluid seeded with 25 CFU/ml tested positive after DNA amplification. A total of 68 frozen BAL fluid specimens sent to the laboratory because of suspected legionellosis were tested in a retrospective study. The eight culture-positive samples were all positive after specific DNA amplification. Among 60 culture-negative samples, 7 were positive after amplification. Of these seven samples, four were from patients who had presented a typical clinical history of legionellosis; the samples had antibody titer increases of 2 dilutions. For the three remaining samples, serological diagnosis of legionellosis in the patients from whom the samples were obtained could not be documented, and although the causative agent of these pulmonary infections was not determined, the clinical features of the patients were in accordance with legionellosis.  相似文献   

8.
The nucleotide sequences of the partial rpoB gene were determined from 38 Legionella species, including 15 serogroups of Legionella pneumophila. These sequences were then used to infer the phylogenetic relationships among the Legionella species in order to establish a molecular differentiation method appropriate for them. The sequences (300 bp) and the phylogenetic tree of rpoB were compared to those from analyses using 16S rRNA gene and mip sequences. The trees inferred from these three gene sequences revealed significant differences. This sequence incongruence between the rpoB tree and the other trees might have originated from the high frequency of synonymous base substitutions and/or from horizontal gene transfer among the Legionella species. The nucleotide variation of rpoB enabled more evident differentiation among the Legionella species than was achievable by the 16S rRNA gene and even by mip in some cases. Two subspecies of L. pneumophila (L. pneumophila subsp. pneumophila and subsp. fraseri) were clearly distinguished by rpoB but not by 16S rRNA gene and mip analysis. One hundred and five strains isolated from patient tissues and environments in Korea and Japan could be identified by comparison of rpoB sequence similarity and phylogenetic trees. These results suggest that the partial sequences of rpoB determined in this study might be applicable to the molecular differentiation of Legionella species.  相似文献   

9.
The detection of Legionella pneumophila DNA in clinical specimens using quantitative real-time polymerase chain reaction (qPCR) combined with direct sequence-based typing (SBT) offers rapid confirmation and timely intervention in the investigation of cases of Legionnaires' disease (LD). We assessed the utility of a specific L. pneumophila qPCR assay targeting the macrophage infectivity potentiator (mip) gene and internal process control with three clinical specimen types from confirmed LD cases. The assay was completely specific for L. pneumophila, as demonstrated by positive results for 39/39 strains from all subspecies and 16 serogroups. No cross-reaction was observed with any of the 54 Legionella non-pneumophila (0/69 strains) or 21 non-Legionella (0/58 strains). All L. pneumophila culture-positive respiratory samples (81/81) were qPCR-positive. Of 80 culture-negative samples tested, 47 (58.8%) were qPCR-positive and none were inhibitory. PCR was significantly more sensitive than culture for samples taken ≤ 2 days of hospitalisation (94.7% vs. 79.6%), with the difference being even more marked for samples taken between 3 and 14 days (79.3% vs. 47.8%). Overall, the sensitivity of the qPCR was ~30% greater than that of culture and direct typing on culture-negative PCR-positive samples resulted in full 7-allele profiles from 23/46, 5 to 6 alleles from 8/46 and ≥ 1 allele from 43/46 strains.  相似文献   

10.
ObjectivesAchromobacter spp. are emerging pathogens in respiratory samples from cystic fibrosis patients. The current reference methods (nrdA-sequencing or multilocus sequence typing) can identify 18 species which are often misidentified by conventional techniques as A. xylosoxidans. A few studies have suggested that matrix-assisted laser desorption/ionization–time-of-flight mass spectrometry (MALDI-TOF/MS) provides accurate identification of the genus but not of species. The aims of this study were (a) to generate a database for MALDI-TOF/MS Bruker including the 18 species, (b) to evaluate the suitability of the database for routine laboratory identification, and (c) to compare its performance with that of the currently available Bruker default database.MethodsA total of 205 isolates belonging to the 18 species identified by nrdA sequencing were used to build a local database. Main spectra profiles (MSPs) were created according to Bruker's recommendations for each isolate with the Biotyper software. Performance of the default Bruker database and ours for routine use were compared by testing 167 strains (including 38 isolates used from MSP creation) belonging to the 18 species identified by nrdA sequencing directly from colonies cultivated on various media.ResultsOur new database accurately identified 99.4% (166/167) of the isolates from the 18 species (score ≥2.0) versus only 50.9% (85/167) with the Bruker database. In the Bruker database 17.3% of the isolates (29/167) were incorrectly identified as another species despite a score of ≥2.0.ConclusionsThe use of MALDI-TOF/MS in combination with a database developed with samples from 18 Achromobacter species provides rapid and accurate identification. This tool could be used to help future clinical studies.  相似文献   

11.
目的 建立单一和双重荧光定量PCR方法分别和同时进行军团菌属及嗜肺军团菌的检测.方法 利用军团菌属16 S rRNA基因和嗜肺军团菌mip基因设计引物和探针,两条基因探针分别标记FAM和HEX,并将相关反应体系和条件进行优化.分别应用单一基因探针(单一荧光定量PCR)和双重基因探针(双重荧光定量PCR)对嗜肺军团菌、非嗜肺军团菌及非军团菌进行检测,并验证两种方法的特异度、敏感度.应用双重荧光定量PCR检测空调水样滤膜样品和DNA提取样品,比较两者结果的一致性.结果 针对军团菌属及嗜肺军团菌,应用荧光定量PCR,16 S rRNA基因和mip基因均能较好的检出,16S rRNA和mip的最低检出限分别为8和10个拷贝.经优化得到了最佳反应体系.单一荧光定量PCR方法所检的8株嗜肺军用菌及4株非嗜肺军团菌16 S rRNA基因均为阳性,嗜肺军团菌mip基因阳性,非嗜肺军团菌mip基因阴性.双重荧光定量PCR方法所检的23株嗜肺军团菌中有2株为假阴性,9株非嗜肺军团菌和非军团菌属中有1株为假阳性.49份空调水样滤膜直接检测和提取DNA后检测的结果一致,其中26份水样军团菌阳性,20份为嗜肺军团菌,6份为非嗜肺军团菌;1份弗朗西斯菌检测HEX阳性(假阳性),占实际培养分离的1/26.结论 单一及双重荧光定量PCR法特异、快速、敏感,一次同时检测嗜肺与非嗜肺军团菌,满足对空调和环境水样军团菌监测的要求.  相似文献   

12.
Monoclonal antibodies (MAbs) against the virulence-associated Mip protein of Legionella spp. were raised by immunizing BALB/c mice with (i) Legionella pneumophila, (ii) Legionella micdadei, and (iii) purified recombinant native Mip protein cloned from L. pneumophila Philadelphia 1. Following screening of seeded wells by immunoblot analysis with homologous antigens, eight Mip-specific MAbs were found. These MAbs were chosen to investigate the antigenic diversity of Mip proteins in the genus Legionella. Mip was detected in 82 Legionella strains representing all 34 species tested. One of these MAbs, obtained from immunization with L. micdadei, recognized an epitope common to all Legionella species tested by immunoblot analysis. Another MAb was discovered to be specific for the Mip protein of L. pneumophila. The remaining six MAbs recognized 18 to 79% of Legionella species included in this study. By making use of the MAbs introduced in this study, it could be shown that, based on Mip protein epitope expression, Legionella species can be divided into at least six antigenetically distinct groups. As demonstrated by 43 L. pneumophila strains representing all serogroups, no antigenic diversity of Mip proteins was found for this species. In addition, 18 non-Legionella species, including Chlamydia trachomatis, Neisseria meningitidis, Pseudomonas aeruginosa, and Saccharomyces cerevisiae, all of which are known to carry genes homologous to the Legionella mip genes, were reacted against all eight MAbs. No cross-reactivity was detectable in any of those strains.  相似文献   

13.
目的 建立单一和双重荧光定量PCR方法分别和同时进行军团菌属及嗜肺军团菌的检测.方法 利用军团菌属16 S rRNA基因和嗜肺军团菌mip基因设计引物和探针,两条基因探针分别标记FAM和HEX,并将相关反应体系和条件进行优化.分别应用单一基因探针(单一荧光定量PCR)和双重基因探针(双重荧光定量PCR)对嗜肺军团菌、非嗜肺军团菌及非军团菌进行检测,并验证两种方法的特异度、敏感度.应用双重荧光定量PCR检测空调水样滤膜样品和DNA提取样品,比较两者结果的一致性.结果 针对军团菌属及嗜肺军团菌,应用荧光定量PCR,16 S rRNA基因和mip基因均能较好的检出,16S rRNA和mip的最低检出限分别为8和10个拷贝.经优化得到了最佳反应体系.单一荧光定量PCR方法所检的8株嗜肺军用菌及4株非嗜肺军团菌16 S rRNA基因均为阳性,嗜肺军团菌mip基因阳性,非嗜肺军团菌mip基因阴性.双重荧光定量PCR方法所检的23株嗜肺军团菌中有2株为假阴性,9株非嗜肺军团菌和非军团菌属中有1株为假阳性.49份空调水样滤膜直接检测和提取DNA后检测的结果一致,其中26份水样军团菌阳性,20份为嗜肺军团菌,6份为非嗜肺军团菌;1份弗朗西斯菌检测HEX阳性(假阳性),占实际培养分离的1/26.结论 单一及双重荧光定量PCR法特异、快速、敏感,一次同时检测嗜肺与非嗜肺军团菌,满足对空调和环境水样军团菌监测的要求.  相似文献   

14.
Legionellosis can be diagnosed by PCR using sputum samples. In this report, the methods of nine laboratories for 12 sputum samples with Legionella pneumophila and Legionella longbeachae are compared. We conclude that (i) liquefaction prevents PCR inhibition, (ii) the employed mip gene PCRs detected L. pneumophila only, and (iii) the 16S rRNA gene PCR detected both Legionella species and is preferred for the diagnosis of legionellosis.  相似文献   

15.
There are currently more than 40 species of Legionella and the identification of most of them by standard methods is often technically difficult. The aim of this study was to use a ribotyping method with endonuclease HindIII and a probe consisting of a set of five oligonucleotides (referred to as OligoMix5). A total of 123 strains, including 78 type or reference strains corresponding to 44 species, eight clinical and 37 environmental isolates were tested. The usefulness of the method was demonstrated for the identification at the species level of all of the 123 Legionella isolates tested, with each species showing a specific profile. Among the 15 serogroups of Legionella pneumophila, eight patterns were obtained. For the 45 field strains, the randomly amplified polymorphic DNA (RAPD) technique and intergenic 16S-23S ribosomal spacer PCR analysis (ITS 16-23S) were also used. Altogether, these three methods allowed the identification of all of strains tested. However, ribotyping has proven to be more effective than the other methods.  相似文献   

16.
In France, the clinical distribution of Legionella species and serogroups does not correspond to their environmental distribution. Legionella pneumophila serogroup 1 is more prevalent among clinical isolates (95.4%) than in the environment (28.2%), whereas L. anisa is more frequent in the environment (13.8%) than in the clinical setting (0.8%).  相似文献   

17.
实时荧光PCR快速检测嗜肺军团菌的研究   总被引:1,自引:0,他引:1  
目的 建立TaqMan-MGB探针实时荧光PCR快速检测嗜肺军团菌技术,为临床和环境样品检测嗜肺军团菌提供可实用工具.方法 在对嗜肺军团菌mip序列进行分析、比较基础上,设计一对特异性引物和TaqMan-MGB探针,通过实时荧光PCR反应条件和反应体系的优化,实现对嗜肺军团菌的快速检测;用克隆到pMD-19T载体上的嗜肺军团菌mip基因阳参片段和不同菌株验证方法的敏感性和特异性.结果 当用热裂解法提取DNA,25μl的反应体系中包括上、下游引物(20μmol/L)各0.6μl,探针(20μmol/L)0.4μl,模板DNA 6.0μl,反应条件为预变95℃20 S,变性95℃10 s,退火50℃ 40 s,40个循环时,TaqMan-MGB探针实时荧光PCR技术对嗜肺军团菌mip基因阳参片段最低检测浓度为0.71拷贝/μl,其循环阈值(Ct值)与模板浓度具有极好的对应关系(r=0.999);1株嗜肺军团菌标准株、12株嗜肺军团菌分离株的Ct值在13.23~16.04之间,而包括金黄葡萄球菌、鼠伤寒沙门菌、副溶血性弧菌、大肠埃希菌、铜绿假单胞菌、痢疾志贺菌共计76株其他菌PCR Ct值均大于30;整个检测过程仅需1.5 h.结论 TaqMan-MGB探针的嗜肺军团菌实时荧光PCR检测方法具有特异性和敏感性、易操作、结果准确可靠等优点,可用于嗜肺军团菌检测.  相似文献   

18.
Current methods used for the detection of whole-cell isolates of Legionella or for the detection of Legionella soluble antigens are technically impractical for many clinical laboratories. The purpose of this study was to explore practical alternatives. The results showed that whole cell isolates of Legionella pneumophila serogroups 1 to 6, Legionella bozemanii, Legionella dumoffii, Legionella gormanii, and Legionella micdadei were identified specifically by a simple slide agglutination test or slide coagglutination test in which the reagent antisera are first bound to staphylococcal protein A. Soluble antigens were also identified specifically by the slide coagglutination test and by a sandwich immunofluorescence assay. The latter test may be useful in detecting antigen in body fluids of patients with legionellosis or in environmental samples.  相似文献   

19.
We evaluated the use of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF) for the rapid identification of anaerobic bacteria that had been isolated from clinical specimens and previously identified by 16s rRNA sequencing. The Bruker Microflex MALDI-TOF instrument with the Biotyper Software was used. We tested 152 isolates of anaerobic bacteria from 24 different genera and 75 different species. A total of 125 isolates (82%) had Biotyper software scores greater than 2.0 and the correct identification to genus and species was made by MALDI-TOF for 120 (79%) of isolates. Of the 12 isolates with a score between 1.8 and 2.0, 2 (17%) organisms were incorrectly identified by MALDI-TOF. Only 15 (10%) isolates had a score less than 1.8 and MALDI-TOF gave the wrong genus and species for four isolates, the correct genus for two isolates, and the correct genus and species for nine isolates. Therefore, we found the Bruker MALDI-TOF MicroFlex LT with an expanded database and the use of bacteria extracts rather than whole organisms correctly identified 130 of 152 (86%) isolates to genus and species when the cut-off for an acceptable identification was a spectrum score ≥1.8.  相似文献   

20.
Until recently, matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) techniques for the identification of microorganisms remained confined to research laboratories. In the last 2 years, the availability of relatively simple to use MALDI-TOF MS devices, which can be utilized in clinical microbiology laboratories, has changed the laboratory workflows for the identification of pathogens. Recently, the first prospective studies regarding the performance in routine bacterial identification showed that MALDI-TOF MS is a fast, reliable and cost-effective technique that has the potential to replace and/or complement conventional phenotypic identification for most bacterial strains isolated in clinical microbiology laboratories. For routine bacterial isolates, correct identification by MALDI-TOF MS at the species level was obtained in 84.1–93.6% of instances. In one of these studies, a protein extraction step clearly improved the overall valid identification yield, from 70.3% to 93.2%. This review focuses on the current state of use of MALDI-TOF MS for the identification of routine bacterial isolates and on the main difficulties that may lead to erroneous or doubtful identifications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号