首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aurbek N  Thiermann H  Szinicz L  Worek F 《Toxicology》2007,233(1-3):173-179
The availability of highly toxic OP-type chemical warfare agents (nerve agents) and the exertion of organophosphorus compounds during military conflicts and terrorist attacks against civilians in the past underlines the necessity of an effective treatment regimen of OP-poisoning. Presently, standard treatment includes administration of an antimuscarinic agent (e.g. atropine) and a reactivator of inhibited AChE (oxime), but is considered to be rather ineffective with certain nerve agents due to low oxime effectiveness of the currently available oximes, obidoxime and pralidoxime. The evaluation of new oximes as antidotes relies on the implementation of animal experiments for ethical reasons and is complicated by a limited extrapolation of animal data to humans. The development of a reliable animal model might accelerate the evaluation of new substances and their approval as antidotes, whereas, the pig as higher mammalian species seems to be promising as model animal. A dynamic in vitro model, which allows the calculation of AChE activities at different scenarios was developed to facilitate the definition of effective oxime concentrations and the optimization of oxime treatment of OP poisoning of humans and may furthermore be helpful by designing animal experiments. The model is based on a combination of enzyme kinetics (inhibition, reactivation, aging) of AChE with OP, toxicokinetics and oxime pharmacokinetics. By considering species-specific kinetic data this dynamic model was used for the calculation of AChE activities in humans and pigs after percutaneous exposure with 5x LD(50) VR (Russian VX) and treatment with HI 6, a promising new reactivator of OP-inhibited AChE. Due to a low affinity of HI 6 with VR-inhibited pig AChE the oxime dose that causes maximal reactivation of VR-inhibited pig AChE is conspicuously higher compared to humans. Therefore, the design of animal experiments in consideration of calculated data based on species-specific kinetic values may lead to a more reliable extrapolation of animal data to humans and may reduce the number of necessary animal experiments.  相似文献   

2.
Aurbek N  Thiermann H  Szinicz L  Eyer P  Worek F 《Toxicology》2006,224(1-2):91-99
Organophosphorus compounds (OP) are in wide spread use as pesticides and highly toxic OP may be used as chemical warfare agents (nerve agents). OP inhibit acetylcholinesterase (AChE), therefore, standard treatment includes AChE reactivators (oximes) in combination with antimuscarinic agents. In the last decades, the efficacy of oximes has been investigated in various animal models, mostly in rodents. However, extrapolating animal data to humans is problematical because of marked differences between rodents and humans concerning the toxicokinetics of nerve agents, the pharmacokinetics of antidotes and the AChE enzyme kinetics. In order to improve the understanding of species differences and to enable a more reliable extrapolation of animal data to humans a study was initiated to investigate the effect of highly toxic nerve agents, i.e. VX, Russian VX (VR) and Chinese VX (CVX), with human and pig erythrocyte AChE. Hereby, the rate constants for the inhibition of AChE by these OP (ki) and for the spontaneous dealkylation (ka) and reactivation (ks) of OP-inhibited AChE as well as for the oxime-induced reactivation of OP-inhibited AChE by the oximes obidoxime, 2-PAM, HI 6, HL? 7 and MMB-4 were determined. Compared to human AChE pig AChE showed a lower sensitivity towards the investigated OP. Furthermore, a slower spontaneous dealkylation and reactivation of pig AChE was recorded. The potency of the investigated oximes was remarkably lower with OP-inhibited pig AChE. These data may contribute to a better understanding of species differences and may provide a kinetic basis for extrapolation of data from pig experiments to humans.  相似文献   

3.
Organophosphorus compound-based (OP) chemical warfare agents (nerve agents) represent a continuing threat to military forces and the civilian population. OPs act primarily by inhibiting acetylcholinesterase (AChE), the standard treatment for which includes AChE reactivators (oximes) in combination with antimuscarinic drugs. In the last decades, the efficacy of oximes has been investigated mostly in small animal models. In order to increase the predictive value of animal studies it is desirable to measure numerous physiological and biochemical parameters. This is difficult in small animals. Large animal models fulfil these requirements and swine are increasingly being used in toxicology studies. Swine breeds generally show considerable variability in different characteristics which may be minimised by the use of specially bred minipigs which have a known genetic background and health status. A comparative study was, therefore, initiated to investigate the kinetic properties of the White Landrace pig and Göttingen minipig AChE in respect of inhibition by the pesticide paraoxon; the nerve agents cyclosarin, VX and VR; the reactivation of inhibited AChE by oximes (obidoxime, pralidoxime and HI 6); and the aging and spontaneous reactivation of inhibited AChE. The determination of the respective kinetic constants found similarities between pig and minipig AChE which showed marked differences in comparison with human AChE values. This has to be considered in designing meaningful models for the investigation of oxime efficacy in pig or minipig experiments. The generated data indicate comparable kinetic properties of pig and minipig AChE and may provide a kinetic basis for extrapolation of data from pig studies to humans.  相似文献   

4.
Worek F  Eyer P  Szinicz L  Thiermann H 《Toxicology》2007,233(1-3):155-165
The ongoing threat of homicidal use of organophosphorus-type chemical warfare agents ("nerve agents") during military conflicts and by terrorists underlines the necessity for effective medical countermeasures. Standard treatment with atropine and the established acetylcholinesterase (AChE) reactivators, obidoxime and pralidoxime, is considered to be ineffective with certain nerve agents due to low oxime effectiveness. From obvious ethical reasons only animal experiments can be used to evaluate new oximes as nerve agent antidotes. However, the extrapolation of data from animal to humans is hampered by marked species differences. Since reactivation of OP-inhibited AChE is considered to be the main mechanism of action of oximes, human erythrocyte AChE can be exploited to test the efficacy of new oximes. Recently, a dynamic computer model was developed which allows the calculation of AChE activities at different scenarios by combining enzyme kinetics (inhibition, reactivation, aging) with OP toxicokinetics and oxime pharmacokinetics. Now, this computer model was further extended by including the pharmaco- and enzyme kinetics of carbamate pretreatment. Simulations were performed for intravenous and percutaneous nerve agent exposure and intramuscular oxime treatment in the presence and absence of pyridostigmine pretreatment using published data. The model presented may serve as a tool for evaluating the impact of carbamate pretreatment on oxime-induced reactivation of inhibited AChE, for defining effective oxime concentrations and for optimizing oxime treatment. In addition, this model may be useful for the development of meaningful therapeutic strategies in animal experiments.  相似文献   

5.
The widespread use of organophosphorus compounds (OP) as pesticides and the repeated misuse of highly toxic OP as chemical warfare agents (nerve agents) emphasize the necessity for the development of effective medical countermeasures. Standard treatment with atropine and the established acetylcholinesterase (AChE) reactivators, obidoxime and pralidoxime, is considered to be ineffective with certain nerve agents due to low oxime effectiveness. From obvious ethical reasons only animal experiments can be used to evaluate new oximes as nerve agent antidotes. However, the extrapolation of data from animal to humans is hampered by marked species differences. Since reactivation of OP-inhibited AChE is considered to be the main mechanism of action of oximes, human erythrocyte AChE can be exploited to test the efficacy of new oximes. By combining enzyme kinetics (inhibition, reactivation, aging) with OP toxicokinetics and oxime pharmacokinetics a dynamic in vitro model was developed which allows the calculation of AChE activities at different scenarios. This model was validated with data from pesticide-poisoned patients and simulations were performed for intravenous and percutaneous nerve agent exposure and intramuscular oxime treatment using published data. The model presented may serve as a tool for defining effective oxime concentrations and for optimizing oxime treatment. In addition, this model can be useful for the development of meaningful therapeutic animal models.  相似文献   

6.
Standard treatment of poisoning by organophosphates (OP) includes the administration of an antimuscarinic agent, e.g. atropine, and of an acetylcholinesterase (AChE) reactivator (oxime). The presently available oximes, obidoxime and pralidoxime (2-PAM), are considered to be insufficient for highly toxic OPs, e.g. sarin. In the past decades numerous oximes were prepared and tested for their efficacy in OP poisoning, mostly in animal experiments. However, data indicate that the reactivating potency of oximes may be different in humans and animal species, which may hamper the extrapolation of animal data to humans and may pose a problem in the drug licensing of new compounds. In order to provide data for a better evaluation of the reactivating potency of oximes, experiments were undertaken to determine the reactivation rate constants of several oximes with human, rabbit, rat and guinea-pig AChE inhibited by the OPs sarin, cyclosarin and VX. The results show marked differences among the species, depending on the inhibitor and on the oxime, and indicate that the findings from animal experiments need careful evaluation before extrapolating these data to humans.  相似文献   

7.
Previous in vitro studies showed marked species differences in the reactivating efficiency of oximes between human and animal acetylcholinesterase (AChE) inhibited by organophosphorus (OP) nerve agents. These findings provoked the present in vitro study which was designed to determine the inhibition, aging, spontaneous and oxime-induced reactivation kinetics of the pesticide paraoxon, serving as a model compound for diethyl-OP, and the oximes obidoxime, pralidoxime, HI 6 and MMB-4 with human, Rhesus monkey, swine, rabbit, rat and guinea pig erythrocyte AChE. Comparable results were obtained with human and monkey AChE. Differences between human, swine, rabbit, rat and guinea pig AChE were determined for the inhibition and reactivation kinetics. A six-fold difference of the inhibitory potency of paraoxon with human and guinea pig AChE was recorded while only moderate differences of the reactivation constants between human and animal AChE were determined. Obidoxime was by far the most effective reactivator with all tested species. Only minor species differences were found for the aging and spontaneous reactivation kinetics. The results of the present study underline the necessity to determine the inhibition, aging and reactivation kinetics in vitro as a basis for the development of meaningful therapeutic animal models, for the proper assessment of in vivo animal data and for the extrapolation of animal data to humans.  相似文献   

8.
The availability of highly toxic organophosphorus (OP) warfare agents (nerve agents) underlines the necessity for an effective medical treatment. Acute OP toxicity is primarily caused by inhibition of acetylcholinesterase (AChE). Reactivators (oximes) of inhibited AChE are a mainstay of treatment, however, the commercially available compounds, obidoxime and pralidoxime, are considered to be rather ineffective against various nerve agents, e.g. soman and cyclosarin. This led to the synthesis and investigation of numerous oximes in the past decades. Reactivation of OP-inhibited AChE is considered to be the most important reaction of oximes. Clinical data from studies with pesticide-poisoned patients support the assumption that the various reactions between AChE, OP and oxime, i.e. inhibition, reactivation and aging, can be investigated in vitro with human AChE. In contrast to animal experiments such in vitro studies with human tissue enable the evaluation of oxime efficacy without being affected by species differences. In the past few years numerous in vitro studies were performed by different groups with a large number of oximes and methods were developed for extrapolating in vitro data to different scenarios of human nerve agent poisoning. The present status in the evaluation of new oximes as antidotes against nerve agent poisoning will be discussed.  相似文献   

9.
Treatment of poisoning by highly toxic organophosphorus compounds (OP, nerve agents) is a continuous challenge. Standard treatment with atropine and a clinically used oxime, obidoxime or pralidoxime is inadequate against various nerve agents. For ethical reasons testing of oxime efficacy has to be performed in animals. Now, it was tempting to investigate the reactivation kinetics of MMB-4, a candidate oxime to replace pralidoxime, with nerve agent-inhibited acetylcholinesterase (AChE) from human and animal origin in order to provide a kinetic basis for the proper assessment of in vivo data. By applying a modified kinetic approach, allowing the use of necessary high MMB-4 concentrations, it was possible to determine the reactivation constants with sarin-, cyclosarin-, VX-, VR- and tabun-inhibited AChE. MMB-4 exhibited a high reactivity and low affinity towards OP-inhibited AChE, except of tabun-inhibited enzyme where MMB-4 had an extremely low reactivity. Species differences between human and animal AChE were low (Cynomolgus) to moderate (swine, guinea pig). Due to the high reactivity of MMB-4 a rapid reactivation of inhibited AChE can be anticipated at adequate oxime concentrations which are substantially higher compared to HI-6. Additional studies are necessary to determine the in vivo toxicity, tolerability and pharmacokinetics of MMB-4 in humans in order to enable a proper assessment of the value of this oxime as an antidote against nerve agent poisoning.  相似文献   

10.
Bartling A  Worek F  Szinicz L  Thiermann H 《Toxicology》2007,233(1-3):166-172
The pertinent threat of using organophosphorus compound (OP)-type chemical warfare agents (nerve agents) during military conflicts and by non-state actors requires the continuous search for more effective medical countermeasures. OP inhibit acetylcholinesterase (AChE) and therefore standard treatment of respective poisoning includes AChE reactivators (oximes) in combination with antimuscarinic agents. Hereby, standard oximes, 2-PAM and obidoxime, are considered to be rather insufficient against various nerve agents. Numerous experimental oximes have been investigated in the last decades by in vitro and in vivo models. Recently, we studied the reactivating potency of several oximes with human AChE inhibited by structurally different OP and observed remarkable differences depending on the OP and oxime. In order to investigate structure-activity relationships we determined the various kinetic constants (inhibition, reactivation, aging) for a series of sarin analogues bearing a methyl, ethyl, n-propyl, n-butyl, i-propyl, i-butyl, cyclohexyl or pinacolyl group with human AChE and BChE. The rate constants for the inhibition of human erythrocyte AChE and plasma BChE by these OP (k(i)), for the spontaneous dealkylation (k(a)) and reactivation (k(s)) of OP-inhibited AChE and BChE as well as for the oxime-induced reactivation of OP-inhibited AChE and BChE by the oximes obidoxime, 2-PAM, HI 6, HL? 7 and MMB-4 were determined. With compounds bearing a n-alkyl group the inhibition rate constant increased with chain length. A relation between chain length and spontaneous reactivation velocity was also observed. In contrast, no structure-activity dependence could be observed for the oxime-induced reactivation of AChE and BChE inhibited by the compounds tested. In general, OP-inhibited AChE and BChE were susceptible towards reactivation by oximes. HL? 7 was the most potent reactivator followed by HI 6 and obidoxime while 2-PAM and MMB-4 were rather weak reactivators. These data indicate a potential structure-activity relationship concerning inhibition and spontaneous reactivation but not for oxime-induced reactivation.  相似文献   

11.
An important factor for successful therapy of poisoning with organophosphorus compounds (OP) is the rapid restoration of blocked respiratory muscle function. To achieve this goal, oximes are administered for reactivation of inhibited acetylcholinesterase (AChE). Unfortunately, clinically used oximes, e.g. obidoxime and pralidoxime, are of limited effectiveness in poisoning with different OP nerve agents requiring the search for alternative oximes, e.g. HI 6. In view of substantial species differences regarding reactivation properties of oximes, the effect of HI 6 was investigated with sarin, tabun and soman exposed human intercostal muscle. Muscle force production by indirect field stimulation and the activity of the human muscle AChE was assessed. 30 μM HI 6 resulted in an almost complete recovery of sarin blocked muscle force and in an increase of completely inhibited muscle AChE activity to approx. 30% of control. In soman or tabun exposed human intercostal muscle HI 6 (50 and 100 μM) had no effect on blocked muscle force or on inhibited human muscle AChE activity. In addition, HI 6 up to 1000 μM had no effect on soman blocked muscle force indicating that this oxime has no direct, pharmacological effect in human tissue. These results emphasize that sufficient reactivation of AChE is necessary for a beneficial therapeutic effect on nerve agent blocked neuromuscular transmission.  相似文献   

12.
Despite extensive research in the last six decades, oximes are the only available drugs which enable a causal treatment of poisoning by organophosphorus compounds (OP). However, numerous in vitro and in vivo studies demonstrated a limited ability of these oximes to reactivate acetylcholinesterase (AChE) inhibited by different OP pesticides and nerve agents. New oximes were mostly tested for their therapeutic efficacy by using different animal models and for their reactivating potency with AChE from different species. Due to the use of different experimental protocols a comparison of data from the various studies is hardly possible. Now, we found it tempting to determine the reactivation kinetics of a series of bispyridinium oximes bearing one or two oxime groups at different positions and having an oxybismethylene or a trimethylene linker under identical conditions with human AChE inhibited by structurally different OP. The data indicate that the position of the oxime group(s) is decisive for the reactivating potency and that different positions of the oxime groups are important for different OP inhibitors while the nature of the linker, oxybismethylene or trimethylene, is obviously of minor importance. Hence, these and previous data emphasize the necessity for thorough kinetic investigations of OP-oxime-AChE interactions and underline the difficulty to develop a broad spectrum oxime reactivator which is efficient against structurally different OP inhibitors.  相似文献   

13.
Highly toxic organophosphorus-type (OP) chemical warfare agents (nerve agents) and OP pesticides may be used by terrorists and during military conflicts emphasizing the necessity for the development of effective medical countermeasures. The standard treatment with atropine and acetylcholinesterase (AChE) reactivators (oximes) is considered to be ineffective with certain nerve agents due to low oxime efficacy. Despite research over decades none of the oximes has turned out to be a broad spectrum reactivator to cover the whole range of potential threat agents. The prospective oxime HI 6 is a weak reactivator of tabun- and pesticide-inhibited AChE, while the established oxime obidoxime mainly lacks efficacy with cyclosarin-inhibited enzyme. In order to investigate the feasibility of combining obidoxime and HI 6, human AChE inhibited by sarin, cyclosarin, VX, tabun and paraoxon was reactivated by these oximes either alone or in combination. Two major findings of this study were that a combination of HI 6 and obidoxime did not impair reactivation, compared with HI 6 or obidoxime alone, but broadened the spectrum compared with the individual oximes. By using different oxime concentrations a combination of oxime doses may be suggested which could be an alternative to individual obidoxime or HI 6 autoinjectors.  相似文献   

14.
The reactivation of organophosphorus compound (OP)-inhibited acetylcholinesterase (AChE) by oximes is inadequate in case of different OP nerve agents. This fact led to the synthesis of numerous novel oximes by different research groups in order to identify more effective reactivators. In the present study, we investigated the reactivation kinetics of a homologous series of bispyridinium bis-oximes bearing a (E)-but-2-ene linker with tabun-, sarin-, and cyclosarin-inhibited human AChE. In part, marked differences in affinity and reactivity of the investigated oximes toward OP-inhibited human AChE were recorded. These properties depended on the position of the oxime groups and the inhibitor. None of the tested oximes was equally effective against all used OPs. In addition, the data indicate that a (E)-but-2-ene linker decreased in most cases the reactivating potency in comparison to oximes bearing an oxybismethylene linker, e.g., obidoxime and HI-6. The results of this study give further insight into structural requirements for oxime reactivators, underline the necessity to investigate the kinetic interactions of oximes and AChE with structurally different OP inhibitors, and point to the difficulty to develop an oxime reactivator which is efficient against a broad spectrum of OPs.  相似文献   

15.
Eyer P  Szinicz L  Thiermann H  Worek F  Zilker T 《Toxicology》2007,233(1-3):108-119
According to current knowledge, inhibition of acetylcholinesterase (AChE) is a very important toxic action of organphosphorus compounds (OP). Hence, it is obvious to follow the AChE activity in order to quantify the degree of inhibition and to assess possible reactivation. Red blood cell (RBC)-AChE provides an easily accessible source to follow the AChE status also in humans. There are many reports underlining the appropriateness of RBC-AChE as a surrogate parameter that mirrors the synaptic enzyme. With this tool at hand, we can study the kinetic parameters of inhibition, spontaneous and oxime-induced reactivation, as well as aging with human RBCs under physiological conditions in vitro. Moreover, we can simulate the influence of inhibitor and reactivator on enzyme activity and can calculate what happens when both components change with time. Finally, we can correlate under controlled conditions the AChE-status in intoxicated patients with the clinical signs and symptoms and determine the time-dependent changes of the oxime and OP concentration. Data of a clinical trial performed in Munich to analyze the value of obidoxime has elucidated that obidoxime worked as expected from in vitro studies. Following a 250mg bolus, obidoxime was administered by continuous infusion at 750mg/24h aimed at maintaining a plasma concentration of 10-20microM obidoxime. This oxime concentration reactivated RBC-AChE>20% of normal in most cases of OP poisoning by diethylphosphoryl compounds within a few hours. The degree of reactivation fitted theoretical calculations very well when the obidoxime and paraoxon concentrations were fed into the model. Only in a few cases reactivation was much lower than expected. The reason for this effect is probably based on the polymorphism of paraoxonase (PON1) in that the (192)arginine phenotype does hardly hydrolyze the arising diethylphosphoryl obidoxime. While this variable may complicate a proper assessment even more, we are confident that the in vitro evaluation of all relevant kinetic data enables the prediction of probable effectiveness in humans. These studies also help to understand therapeutic failures and to define scenarios where oximes are virtually ineffective. These include poisonings with rapidly aging phosphylated AChE, late start with an effective oxime and too early discontinuation of oximes in poisonings with a persistent OP. The experience gathered with the experimental and therapeutic approaches to human poisoning by OP pesticides may be helpful when oximes have to be selected against nerve agents.  相似文献   

16.
The high number of fatalities due to poisoning by organophosphorus compound-based (OP) pesticides and the availability of highly toxic OP-type chemical warfare agents (nerve agents) emphasize the necessity for an effective medical treatment. Acute OP toxicity is mainly caused by inhibition of acetylcholinesterase (AChE, EC 3.1.1.7). Reactivators (oximes) of inhibited AChE are a mainstay of treatment. However, human AChE inhibited by certain OP, e.g. the phosphoramidates tabun and fenamiphos, is rather resistant towards reactivation by oximes while AChE inhibited by others, e.g. the phosphoramidate methamidophos is easily reactivated by oximes. To get more insight into a potential structure-activity relationship human AChE was inhibited by 16 different tabun analogues and the time-dependent reactivation by 1mM obidoxime, TMB-4, MMB-4, HI 6 or HL? 7, the reactivation kinetics of obidoxime and the kinetics of aging and spontaneous reactivation were investigated. A clear structure-activity relationship of aging, spontaneous and oxime-induced reactivation kinetics could be determined with AChE inhibited by N-monoalkyl tabun analogues depending on the chain length of the N-alkyl residue. N,N-dialkyl analogues bearing ethyl and n-propyl residues were completely resistant towards reactivation while N,N-di-i-propyl tabun was highly susceptible towards reactivation by oximes. AChE inhibited by phosphonoamidate analogues of tabun, bearing a N,N-dimethyl and N,N-diethyl group, could be reactivated and had comparable reactivation kinetics with obidoxime. These results in conjunction with previous data with organophosphates and organophosphonates emphasizes the necessity for kinetic studies as basis for future work on structural analysis with human AChE and for the development of effective broad-spectrum oximes.  相似文献   

17.
The treatment of poisoning by highly toxic organophosphorus compounds (nerve agents) is unsatisfactory. Until now, the efficacy of new potential antidotes has primarily been evaluated in animals. However, the extrapolation of these results to humans is hampered by species differences. Since oximes are believed to act primarily through reactivation of inhibited acetylcholinesterase (AChE) and erythrocyte AChE is regarded to be a good marker for the synaptic enzyme, the reactivating potency can be investigated with human erythro‐cyte AChE in vitro. The present study was undertaken to evaluate the ability of various oximes at concentrations therapeutically relevant in humans to reactivate human erythrocyte AChE inhibited by different nerve agents. Isolated human erythrocyte AChE was inhibited with soman, sarin, cyclosarin, tabun or VX for 30?min and reactivated in the absence of inhibitory activity over 5–60?min by obidoxime, pralidoxime, HI 6 or HLö 7 (10 and 30?μM). The AChE activity was determined photometrically. The reactivation of human AChE by oximes was dependent on the organophosphate used. After soman, sarin, cyclosarin, or VX the reactivating potency decreased in the order HLö 7 > HI 6 > obidoxime > pralidoxime. Obidoxime and pralidoxime were weak reactivators of cyclosarin-inhibited AChE. Only obidoxime and HLö 7 reactivated tabun-inhibited AChE partially (20%), while pralidoxime and HI 6 were almost ineffective (5%). Therefore, HLö 7 may serve as a broad-spectrum reactivator in nerve agent poisoning at doses therapeutically relevant in humans.  相似文献   

18.
Oxime-assisted reactivation of organophosphate (OP)-inhibited acetylcholinesterase (AChE) is a crucial step in the post-inhibitory treatment of OP intoxication. The limited efficacy of oxime reactivators for all OP nerve agents and pesticides led to the development of various novel oximes and their thorough kinetic investigations. Hence, in the present investigation, we have tested 10 structurally different pyridinium oxime-based reactivators for their in vitro potency to reactivate paraoxon- and DFP-inhibited electric eel AChE. From structure activity relationship point of view, various oximes such as mono-quaternary (2-PAM, K100, K024) and bis-quaternary symmetric (obidoxime, TMB-4) and asymmetric (K027, K048, K203, K618, K628) oximes bearing different connecting linkers (oxybismethylene, trimethylene, propane, butane, butene, and xylene) have been studied. The observed kinetic data demonstrate that not only the position of oxime group is decisive for the increased reactivation ability of oximes, but the role of connecting linker is also significant. Oximes with aliphatic linkers are superior reactivators than the oximes with unsaturated and aromatic linkers. The optimal chain length for plausible reactivation ability for paraoxon- and DFP-inhibited AChE is 3 or 4 carbon–carbon connecting linker between prydinium rings.  相似文献   

19.
Treatment regimen of poisonings by organophosphorus (OP) compounds usually includes oxime therapy. The treatment options in soman poisoning are very limited due to rapid aging of the inhibited acetylcholinesterase (AChE), when the enzyme species is considered as irreversibly inhibited and resistant towards reactivation by oximes. Hence, oxime treatment probably comes too late in realistic scenarios. As an alternative, protecting part of the enzyme by reversible inhibition prior to soman exposure has been proposed. One means of protecting against soman poisoning is the prophylactic use of certain reversible inhibitors (carbamates) of AChE. The question whether there is a possibility of an interaction between pre-treating carbamates and oximes at AChE arises. Therefore we studied the effects of the oximes obidoxime, HI 6 and MMB-4 on the rate of decarbamylation for physostigmine- and pyridostigmine-inhibited human erythrocyte AChE both in a dynamically working in vitro model and a static cuvette system. Our results show that HI 6 increased the rate of decarbamylation for both physostigmine- and pyridostigmine-inhibited enzyme in both systems, the observed effect by HI 6 increasing with higher doses. Obidoxime had a slightly accelerating effect on the pyridostigmine-inhibited enzyme. MMB-4 applied to pyridostigmine-inhibited AChE in the static system only showed no difference to the experiments made in absence of oxime. No oxime showed a tendency to retard the rate of decarbamylation.  相似文献   

20.
The number of intoxications with organophosphorus pesticides (OPs) is estimated at some 3,000,000 per year, and the number of deaths and casualties some 300,000 per year. OPs act primarily by inhibiting acetylcholinesterase (AChE), thereby allowing acetylcholine to accumulate at cholinergic synapses, disturbing transmission at parasympathetic nerve endings, sympathetic ganglia, neuromuscular endplates and certain CNS regions. Atropine is the mainstay of treatment of effects mediated by muscarine sensitive receptors; however, atropine is ineffective at the nicotine sensitive synapses. At both receptor types, reactivation of inhibited AChE may improve the clinical picture. The value of oximes, however, is still a matter of controversy. Enthusiastic reports of outstanding antidotal effectiveness, substantiated by laboratory findings of reactivated AChE and improved neuromuscular transmission, contrast with many reports of disappointing results. In vitro studies with human erythrocyte AChE, which is derived from the same single gene as synaptic AChE, revealed marked differences in the potency and efficacy of pralidoxime, obidoxime, HI 6 and HL? 7, the latter two oximes being considered particularly effective in nerve agent poisoning. Moreover, remarkable species differences in the susceptibility to oximes were revealed, requiring caution when animal data are extrapolated to humans. These studies impressively demonstrated that any generalisation regarding an effective oxime concentration is inappropriate. Hence, the 4 mg/L concept should be dismissed. To antagonise the toxic effects of the most frequently used OPs, pralidoxime plasma concentrations of around 80 mumol/L (13.8 mg/L pralidoxime chloride) should be attained while obidoxime plasma concentrations of 10 mumol/L (3.6 mg/L obidoxime chloride) may be sufficient. These concentrations should be maintained as long as circulating poison is expected to be present, which may require oxime therapy for up to 10 days. Various dosage regimens exist to reach this goal. The most appropriate consists of a bolus short infusion followed by a maintenance dosage. For pralidoxime chloride, a 1 g bolus over 30 minutes followed by an infusion of 0.5 g/h appears appropriate to maintain the target concentrtion of about 13 mg/L (70 kg person). For obidoxime chloride, the appropriate dosage is a 0.25 g bolus followed by an infusion of 0.75 g/24 h. These concentrations are well tolerated and keep a good portion of AChE in the active state, thereby retarding the AChE aging rate. AChE aging is particularly rapid with dimethyl phosphoryl compounds and may thwart the effective reactivation by oximes, particularly in suicidal poisoning with excessive doses. In contrast, patients with diethyl OP poisoning may particularly benefit from oxime therapy, even if no improvement is seen during the first days when the poison load is high. The low propensity to aging with diethyl OP poisoning may allow reactivation after several days, when the poison concentration drops. Rigorous testing of the benefits of oximes is only possible in randomised controlled trials with clear stratification according to the class of pesticides involved, time elapsed between exposure and treatment and severity of cholinergic symptoms on admission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号