首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The effects of lesioning mesostriatal dopamine projections or striatal neurons on tachykinin binding in the basal ganglia were assessed in the rat. 6-Hydroxydopamine lesions of the medial forebrain bundle destroyed striatal dopamine terminals as assessed by [3H]mazindol autoradiography, but did not significantly affect the binding of NK-1 ([3H][Sar9, Met(O2)11]substance P) or NK-3 ([3H]senktide) tachykinin ligands in the striatum. 6-Hydroxydopamine lesions significantly reduced NK-3 binding in the substantia nigra pars compacta, but not the ventral tegmental area. In contrast, striatal quinolinic acid lesions reduced both NK-1 and NK-3 binding in the striatum, but failed to affect NK-3 binding in the substantia nigra. These findings suggest that both NK-1 and NK-3 receptors within the striatum are predominantly post-synaptic with respect to dopamine neurons, whereas nigral NK-3 receptors are located on dopaminergic neurons.  相似文献   

2.
The topographical distributions of Met-enkephalin, dopamine and noradrenaline were determined in serial frontal sections of human substantia nigra (pars compacta and pars reticulata) and ventral tegmental area. Met-enkephalin was identified by Biogel and thin layer chromatography and assayed by a specific radioimmunoassay. In the substantia nigra (pars compacta and pars reticulata), the levels of Met-enkephalin increased progressively from the rostal to the caudal part of the structure. This pattern closely resembled that of dopamine levels, particularly in the pars compacta. Noradrenaline levels in the substantia nigra and those of Met-enkephalin, dopamine, and noradrenaline in the ventral tegmental area, exhibited only limited fluctuations from the anterior to the posterior part of each structure.Highly significant decreases in Met-enkephalin, dopamine and noradrenaline levels were observed in the substantia nigra and ventral tegmental area of Parkinsonian brains. This observation, together with the close topographical association of dopamine and Met-enkephalin in the substantia nigra, further supports the likely existence of important functional relationships between dopaminergic and enkephalinergic neurons in the human brain.  相似文献   

3.
Studies of the trophic activities of brain-derived neurotrophic factor and neurotrophin-3 indicate that both molecules support the survival of a number of different embryonic cell types in culture. We have shown that mRNAs for brain-derived neurotrophic factor and neurotrophin-3 are localized to specific ventral mesencephalic regions containing dopaminergic cell bodies, including the substantia nigra and ventral tegmental area. In the present study, in situ hybridization with 35S-labeled cRNA probes for the neurotrophin mRNAs was combined with neurotoxin lesions or with immunocytochemistry for the catecholamine-synthesizing enzyme tyrosine hydroxylase to determine whether the dopaminergic neurons, themselves, synthesize the neurotrophins in adult rat midbrain. Following unilateral destruction of the midbrain dopamine cells with 6-hydroxydopamine, a substantial, but incomplete, depletion of brain-derived neurotrophic factor and neurotrophin-3 mRNA-containing cells was observed in the ipsilateral substantia nigra pars compacta and ventral tegmental area. In other rats, combined in situ hybridization and tyrosine hydroxylase immunocytochemistry demonstrated that the vast majority of the neurotrophin mRNA-containing neurons in the substantia nigra and ventral tegmental area were tyrosine hydroxylase immunoreactive. Of the total population of tyrosine hydroxylase-positive cells, double-labeled neurons constituted 25–50% in the ventral tegmental area and 10–30% in the substantia nigra pars compacta, with the proportion being greater in medial pars compacta. In addition, tyrosine hydroxylase/neurotrophin mRNA coexistence was observed in neurons in other mesencephalic regions including the retrorubral field, interfascicular nucleus, rostral and central linear nuclei, dorsal raphe nucleus, and supramammillary region. The present results demonstrate brain-derived neurotrophic factor and neurotrophin-3 expression by adult midbrain dopamine neurons and support the suggestion that these neurotrophins influence dopamine neurons via autocrine or paracrine mechanisms. These data raise the additional possibility that inappropriate expression of the neurotrophins by dopaminergic neurons could contribute to the neuropathology of disease states such as Parkinson's disease and schizophrenia. © 1994 Wiley-Liss, Inc.  相似文献   

4.
Subpopulations of mesencephalic dopamine containing neurons possess different electrophysiological, pharmacological, biochemical, and anatomical properties. In order to determine whether such differences are related to the regulation of tyrosine hydroxylase, the rate limiting enzyme in the synthesis of catecholamines, the regional distribution of tyrosine hydroxylase messenger RNA in these neurons was examined using in situ hybridization histochemistry. In the mouse, labelling for tyrosine hydroxylase messenger RNA associated with individual neurons was significantly less in the lateral substantia nigra pars compacta than in the medial substantia nigra pars compacta and the ventral tegmental area. A similar pattern of labelling was observed in the rat. Labelling for tyrosine hydroxylase messenger RNA was significantly less in the lateral substantia nigra pars compacta than in medial pars compacta (a densely cellular region), the area dorsal to the medial substantia nigra pars compacta (a less cell dense region), and the ventral tegmental area. Differences in levels of labelling for messenger RNA in mesencephalic dopamine neurons were not related to differences in cell size as measured in sections processed for tyrosine hydroxylase immunohistochemistry. The results suggest that tyrosine hydroxylase messenger RNA is differentially regulated in subpopulations of mesencephalic dopamine neurons, supporting the view that these neurons are physiologically distinct.  相似文献   

5.
6.
Summary Several lines of evidence indicate that an interaction exists between opioid peptides and midbrain dopaminergic neurons. The purpose of this study was to map and quantify the density of the mu opioid receptor subtype relative to the location of the dopaminergic (DA) neurons in the retrorubral field (nucleus A8), substantia nigra (nucleus A9), and ventral tegmental area and related nuclei (nucleus A10) in the rat. Sections through the rostral-caudal extent of the midbrain were stained with an antibody against tyrosine hydroxylase, as a DA cell marker, and comparable sections were processed for in vitro receptor autoradiography using the mu-selective ligand,3H-Tyr-D-Ala-N-MePhe-Gyl-ol enkephalin. In the nucleus A8 region, there were low levels of mu binding. In the rostral portion of nucleus A9, there was prominent mu binding both in the ventral pars compacta, which contains numerous DA neurons, and in regions that correspond to the location of the DA dendrites which project ventrally into the underlying substantia nigra pars reticulata. In the caudal portion of nucleus A9, mu binding was greatest in the substantia nigra pars reticulata, but also in the same region that contains DA neurons. In nucleus A10, mu receptor densities differed depending upon the nucleus A10 subdivision, and the rostral-caudal position in the nucleus. Low receptor densities were observed in rostral portions of the ventral tegmental area and interfascicular nucleus, and there was negligible binding in the parabrachial pigmented nucleus and paranigral nucleus at the level of the interpeduncular nucleus; all regions where there are high densities of DA somata. Mu binding was relatively high in the central linear nucleus, and in the dorsal and medial divisions of the medial terminal nucleus of the accessory optic system, which has been shown to contain DA dendrites. These data indicate that mu opioid receptors are located in certain regions occupied by all three midbrain DA nuclei, but in a highly heterogeneous fashion.  相似文献   

7.
[D-Ala2]deltorphin-I, a highly selective ligand for δ opioid receptors, is a heptapeptide originally purified from frog skin. Previous immunohistochemical studies indicate that [D-Ala2]deltorphin-I-like molecule(s) may be present in adult rat brain, including specific neuronal cells and fibers partially overlapping with the mesocortical and nigrostriatal dopaminergic systems. Here, we examined the developmental aspect of such immunoreactive brain structures in early postnatal rats. In newborn to 21-day-old rats, positive staining in the brain occurred mainly in subpopulations of neurons and occasionally in tanycytes. On postnatal day 0, neuronal cell bodies containing [D-Ala2]deltorphin-I-like immunoreactivity were found in various brain regions, including the olfactory tubercle, ventral pallidum, hippocampus, ventral tegmental area, pars compacta of the substantia nigra, supramammillary nucleus, and dorsal raphe nucleus. Immunoreactive nerve fibers were observed in the main and accessory olfactory bulbs, olfactory tubercle, prelimbic area, anterior cingulate cortex, neostriatum, accumbens, lateral septal nucleus, lateral habenular nucleus, and superior colliculus. As pups grew, positive staining of cell bodies decreased gradually in both density and intesity, and those in the olfactory tubercle and ventral pallidum were no longer visible on postnatal day 14. On postnatal day 21, positive cells were found only in the ventral midbrain, including the pars compacta of the substantia nigra, ventral tegmental area, A8 region, and supramammillary nucleus. Positive fibers also decreased in density with age except in the accessory olfactory bulb, olfactory tubercle, prelimbic area, and anterior cingulate cortex. © 1994 Wiley-Liss, Inc.  相似文献   

8.
The goal of the present study was to provide neurochemical evidence for a shift in the functional balance between the nigrostriatal and mesolimbic pathway in favour of the mesolimbic pathway by investigating the effects of a partial, nigral, bilateral 6-hydroxydopamine lesion on basal and novelty-induced extracellular dopamine release in the accumbens of Low responder rats to novelty (LR). Low responders were chosen because the above-mentioned shift was seen in LR rats, but not in rats that have a high response to novelty (HR). About 1 microg/microl of 6-hydroxydopamine was injected bilaterally into the substantia nigra pars compacta and a guide cannula was placed into the right accumbens. Changes in extracellular dopamine in response to novelty, a new cage, were measured using a microdialysis probe inserted into the accumbens. The lesion size was determined by quantification of tyrosine hydroxylase immunoreactivity of the substantia nigra and the ventral tegmental area. This revealed that the lesion partly destroyed the dopaminergic cells of the nigrostriatal pathway, thereby relatively sparing the dopaminergic cells of the mesolimbic pathway. The lesion significantly increased the amount of extracellular dopamine in the accumbens during both basal and novelty conditions. We suggest that the experimentally induced neuronal death in the substantia nigra pars compacta with subsequent removal of lateral inhibition of adjacent neurons underlies the observed changes in the amount of extracellular dopamine in the accumbens.  相似文献   

9.
The coexistence of cholecystokinin- and tyrosine hydroxylase-like immunoreactivities within neurons of the rat ventral mesencephalon was analyzed by using an indirect immunofluorescence technique for the simultaneous demonstration of two antigens in the same tissue section. A high degree of colocalization was observed in the substantia nigra pars compacta, in which 80-90% of all labeled neurons at rostral and up to 70% at intermediate levels contained both cholecystokinin and tyrosine hydroxylase. At caudal levels, the incidence of colocalization declined to approximately 30-50%. All of the immunoreactive perikarya in the substantia nigra pars lateralis were labeled with both substances. Other areas of the ventral midbrain that exhibited a moderate proportion of neurons immunoreactive for both cholecystokinin and tyrosine hydroxylase included the ventral tegmental area, interfascicular nucleus, and rostral and caudal linear nuclei. In addition, coexistence was occasionally observed within neurons of the central and ventral periaqueductal gray matter, supramammillary region, peripeduncular region, retrorubral field, and extremely rarely, within the substantia nigra pars reticulata. Cell bodies containing tyrosine hydroxylase-like immunoreactivity (indicative of dopamine) usually outnumbered those containing the peptide except in the supramammillary region and in the ventral periaqueductal gray matter, where the cholecystokinin perikarya were present in higher numbers. The double-labeling colocalization technique was combined with fluorescence retrograde tracing to determine some of the forebrain projections of these neurons. Ventral midbrain neurons containing both cholecystokinin and tyrosine hydroxylase were found to project to the caudate-putamen, nucleus-accumbens, prefrontal cortex, and amygdala. These projections originated from neurons located predominantly in the substantia nigra pars compacta and the ventral tegmental area. Thus, cholecystokinin occurs within the well-known dopaminergic nigrostriatal pathway in the rat. Overall, these results demonstrate that a significant proportion of the dopamine neurons giving rise to the ascending mesotelencephalic projections also contain the peptide cholecystokinin.  相似文献   

10.
The purpose of the present study was to analyze the distribution of cholecystokininlike-immunoreactive (CCK-I) neurons within the rat ventral mesencephalon which project to several forebrain areas. The peroxidase-antiperoxidase immunocytochemical technique was used to examine the anatomical localization of CCK-I within the ventral midbrain and in the following forebrain regions: caudate-putamen, nucleus accumbens, olfactory tubercle, bed nucleus of the stria terminalis, septum, amygdala, and prefrontal, anterior cingulate, and piriform cortices. CCK-I perikarya were distributed throughout the substantia nigra, ventral tegmental area, and several midline raphe nuclei to a greater extent than previously reported, particularly in the substantia nigra pars compacta. Terminallike immunoreactivity for CCK was observed in all of the above forebrain sites. In addition, infrequent CCK-I cell bodies were localized in the caudate-putamen, nucleus accumbens, olfactory tubercle, septum, and bed nucleus of the stria terminalis. To analyze forebrain projections of the ventral midbrain CCK-I neurons, indirect immunofluorescence was combined with fluorescence retrograde tracing. CCK-I neurons of the substantia nigra and/or ventral tegmental area were found to project, to varying extents, to all of the above CCK-I forebrain terminal fields. The nucleus accumbens, olfactory tubercle, and septal and prefrontal cortical projections arose primarily from CCK-I perikarya in the ventral tegmental area whereas the projections to the caudate-putamen and anterior cingulate cortex arose predominantly from immunoreactive neurons in the substantia nigra pars compacta. The amygdala received innervation mainly from CCK-I cell bodies located in the substantia nigra pars lateralis. CCK-I afferents to the bed nucleus of the stria terminalis and piriform cortex originated from perikarya distributed approximately equally across the ventral tegmental area and substantia nigra pars compacta. The general topography of CCK-I forebrain innervation observed in this study is similar to that previously reported for the ascending dopaminergic projections from ventral mesencephalic neurons. CCK-I neurons of the midline raphe nuclei were found to provide relatively minor afferents to the caudate-putamen, bed nucleus of the stria terminalis, septum, and prefrontal cortex and more substantial projections to the amygdala. The results of this study demonstrate that CCK-I neurons of the ventral midbrain supply a much broader innervation of forebrain regions than previously appreciated.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Using extracellular single-unit recordings in rats, the effects of chronic intermittent injections and continuous infusion of cocaine on single dopamine neurons were directly compared in the substantia nigra and ventral tegmental area. After 1-day withdrawal we determined: (1) the neuronal sensitivity to the mixed D1/D2 agonist apomorphine and (2) its modulation by the D1 antagonist SCH 23390. The nigral dopamine neurons exhibited subsensitivity to the impulse-inhibiting effects of apomorphine following both intermittent and continuous regimens. SCH 23390 selectively reversed the apomorphine subsensitivity in the intermittent group, while having minimal effects in the other group. Dopamine neurons in the ventral tegmental area, on the other hand, were sub- and normosensitive to apomorphine following intermittent and continuous dosing regimens, respectively. In contrast to the substantia nigra, SCH 23390 failed to alter the apomorphine sensitivity in either of the pretreatment groups. Possible mechanisms underlying these distinctive changes in the substantia nigra and ventral tegmental area following intermittent and continuous cocaine pretreatment regimens are discussed.  相似文献   

12.
The excitatory amino acid, glutamate, has long been thought to be a transmitter that plays a major role in the control of the firing pattern of midbrain dopaminergic neurons. The present study was aimed at elucidating the anatomical substrate that underlies the functional interaction between glutamatergic afferents and midbrain dopaminergic neurons in the squirrel monkey. To do this, we combined preembedding immunocytochemistry for tyrosine hydroxylase and calbindin D-28k with postembedding immunostaining for glutamate. On the basis of their ultrastructural features, three types (so-called types I, II, and III) of glutamate-enriched terminals were found to form asymmetric synapses with dendrites and perikarya of midbrain dopaminergic neurons. The type I terminals accounted for more than 70% of the total population of glutamate-enriched boutons in contact with dopaminergic cells in the dorsal and ventral tiers of the substantia nigra pars compacta as well as in the ventral tegmental area, whereas 5–20% of the glutamatergic synapses with dopaminergic neurons involved the two other types of terminals. The major finding of our study is that the glutamate-enriched boutons were involved in 70% of the axodendritic synapses in the ventral tegmental area. In contrast, less than 40% of the boutons in contact with dopaminergic dendrites were immunoreactive for glutamate in the dorsal and ventral tiers of the substantia nigra pars compacta. Approximately 50% of the terminals in contact with the perikarya of the different populations of midbrain dopaminergic neurons displayed glutamate immunoreactivity. In conclusion, our findings provide the first evidence that glutamate-enriched terminals form synapses with midbrain dopaminergic neurons in primates. The fact that the proportion of glutamatergic boutons in contact with dopaminergic cells is higher in the ventral tegmental area than in the substantia nigra pars compacta suggests that the different groups of midbrain dopaminergic neurons are modulated differently by extrinsic glutamatergic afferents in primates. © 1996 Wiley-Liss, Inc.  相似文献   

13.
Abnormal neuregulin-1 signaling through its receptor (ErbB4) might be associated with schizophrenia, although their neuropathological contribution remains controversial. To assess the role of neuregulin-1 in the dopamine hypothesis of schizophrenia, we used in situ hybridization and immunoblotting to investigate the cellular distribution of ErbB4 mRNA in the substantia nigra of Japanese monkeys (Macaca fuscata) and human postmortem brains. In both monkeys and humans, significant signal for ErbB4 mRNA was detected in substantia nigra dopamine neurons, which were identified by melanin deposits. The expression of ErbB4 mRNA in nigral dopamine neurons was confirmed with an independent RNA probe, as well as with combined tyrosine hydroxylase immunostaining. Immunoblotting appeared to support the observation of in situ hybridization. Immunoreactivity for ErbB4 protein was much more enriched in substantia nigra pars compacta containing dopamine neurons than in neighboring substantia nigra pars reticulata. These observations suggest that ErbB4 is expressed in the dopaminergic neurons of primate substantia nigra and ErbB4 abnormality might contribute to the dopaminergic pathology associated with schizophrenia or other brain diseases.  相似文献   

14.
The effects of the D-1 agonist SKF 38393 on tonic activity of rat substantia nigra pars compacta dopamine neurons were studied using extracellular, single-unit recording techniques. Unlike nonselective D-1/D-2 dopamine agonists or the D-2 agonist quinpirole, SKF 38393 did not inhibit dopamine neuronal activity when applied iontophoretically or when administered intravenously in doses up to 20 mg/kg to chloral hydrate-anesthetized rats. Moreover, pretreatment with SKF 38393 did not alter the inhibitory response of these neurons to apomorphine or the D-2 agonist quinpirole. However, in locally anesthetized, gallamine-treated, artificially respired rats, dopamine cell activity was significantly altered by i.v. administration of SKF 38393; firing rate increases and decreases were observed. Administration of the inactive enantiomer of SKF 38393, S-SKF 38393, did not induce similar changes in parallel experiments. These results support the idea that unlike D-2 autoreceptor stimulation, D-1 receptor stimulation does not exert a direct local effect on dopamine neurons in the substantia nigra pars compacta and suggest that D-1 receptor stimulation at sites postsynaptic to the dopamine cells may indirectly affect the activity of some dopamine neurons through long-loop feedback mechanisms.  相似文献   

15.
Summary Opiates and opioid peptides are known to influence the dopaminergic (DA) neurons in the midbrain. The purpose of this study was to map and quantify the density of kappa and delta opioid receptor subtypes in the retrorubral field, substantia nigra, and ventral tegmental area and related nuclei, which contain DA nuclei A8, A9, and A10, respectively. Sections through the rostral-caudal extent of the rat midbrain were stained with an antibody against tyrosine hydroxylase, as a DA cell marker, and comparable sections were processed for in vitro receptor autoradiography using the kappa-selective ligand, U-69593, and the delta-selective ligand, D-Pen2, D-Pen5-enkephalin. In general, both kappa and delta ligands exhibited low levels of specific binding in regions occupied by the midbrain DA neurons.Kappa binding (4–8 fmol/mg tissue) was high throughout the rostral-caudal extent of the substantia nigra, in rostral portions of the ventral tegmental area, and in the nucleus paranigralis; low binding occurred in the retrorubral field and central linear nucleus raphe.Delta binding (6–18 fmol/mg tissue) was high in the caudal portion of the substantia nigra pars reticulata, and in the medial terminal nucleus of the accessory optic system (a region previously shown to contain DA dendrites). The kappa and delta receptor binding is heterogeneously distributed in regions occupied by midbrain dopaminergic neurons, and several fold lower than the binding of mu opioid receptors in the same brain regions.  相似文献   

16.
The pedunculopontine tegmental nucleus appears to influence striatal dopamine activity via cholinergic and glutamatergic afferents to dopaminergic cells of the substantia nigra pars compacta. We measured changes in striatal dopamine oxidation current (dopamine efflux) in response to electrical stimulation of the pedunculopontine tegmental nucleus using in vivo electrochemistry in urethane-anaesthetized rats. Pedunculopontine tegmental nucleus stimulation evoked a three-component change in striatal dopamine efflux, consisting of: (i) an initial rapid increase of 2 min duration; followed by (ii) a decrease below prestimulation levels of 9 min duration; then by (iii) a prolonged increase lasting 35 min. Intra-nigral infusions of the ionotropic glutamate receptor antagonist kynurenate (10 microg/ microL) or the nicotinic cholinergic receptor antagonist mecamylamine (5 microg/0.5 microL) selectively attenuated the rapid first component, while systemic injections of the muscarinic cholinergic antagonist scopolamine (5 mg/kg, i.p.) diminished the second and third components. In addition, intra-pedunculopontine tegmental nucleus infusions of the M2 muscarinic antagonist methoctramine (50 microg/ microL) selectively abolished the inhibitory second component, while intranigral infusions of scopolamine (200 microg/ microL) selectively abolished the prolonged third component. Intra-nigral infusions of the metabotropic glutamate receptor antagonist (+)-alpha-methyl-4-carboxyphenylglycine (2 microg/ microL) had no effect on pedunculopontine tegmental nucleus-elicited striatal dopamine efflux. These results suggest that the pedunculopontine tegmental nucleus utilizes nicotinic and ionotropic glutamate receptors in the substantia nigra to mediate rapid activation, M2-like muscarinic autoreceptors in the pedunculopontine tegmental nucleus to mediate decreased activation, and muscarinic receptors in the substantia nigra (probably of the M5 subtype) to mediate prolonged activation, of the nigrostriatal dopaminergic system.  相似文献   

17.
Sixteen rats, which had electrode implants in each hemisphere which generated comparable self-stimulation rate-intensity functions, were used in this study. Eight of the rats received unilateral 6-hydroxydopamine injections into the substantia nigra pars compacta, which produced severe unilateral losses of dopamine and were effective in generating apomorphine-induced turning away from the injected hemisphere. Of the remaining 8 rats, 5 received unilateral 6-hydroxydopamine lesions aimed at the ventral tegmental area and 3 were give vehicle injections. The vehicle injections were without effect on self-stimulation and the ventral tegmental injections had an overall transient facilitative effect on self-stimulation. The 6-hydroxydopamine lesions of the pars compacta, however, had variable effects. In some rats there was a marked bilateral reduction in self-stimulation over 8 weeks; whereas, there was little, if any, effect in other rats. The rats which sustained the bilateral deficits also sustained the greatest unilateral loss of dopamine. The unilateral 6-hydroxydopamine lesions of the pars compacta consistently blocked the facilitative influence of 0.5 mg/kg of D-amphetamine on self-stimulation bilaterally, and this effect persisted over 8 weeks of postoperative testing. These results were considered supportive of a response rather than reinforcement role for dopamine in the mediation of self-stimulation behavior.  相似文献   

18.
Dopamine transporter messenger RNA (mRNA) expression was assessed by in situ hybridization over individual pigmented neurons from the substantia nigra pars compacta in midbrain sections from 7 parkinsonian and 7 age-matched, neurologically normal patients. In the normal control brains, high levels of expression of dopamine transporter mRNA were noted over pigmented neurons in the substantia nigra pars compacta; neurons in the adjacent nucleus paranigralis of the ventral tegmental area displayed less hybridization. Nigra compacta neurons surviving in brains of patients with Parkinson's disease displayed only 57% of the dopamine transporter mRNA hybridization intensity displayed by nigral neurons in normal control brains. The disease-related decrease in the apparent level of dopamine transporter mRNA expression in remaining neurons could reflect neuronal dysfunction. Conceivably, it might also reflect differential vulnerability of those neurons that initially expressed higher levels of this transporter to the insult of parkinsonism.  相似文献   

19.
A modification of the [2-14C]deoxyglucose (2-DG) autoradiographic technique of Sokoloff et al.12 was used to study the effects of acute administration of 1-N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (10 mg/kg, s.c.) in the rat and guinea pig brains. MPTP administration resulted in both species in a dramatic increase in the 2-DG uptake in the substantia nigra pars compacta, ventral tegmental area and locus ceruleus, brain areas containing the cell bodies of dopaminergic and noradrenergic neurons. Many other brain areas were not affected. In the rat the effects were time dependent, being maximal between 1 and 2 h after drug administration. The effects of MPTP on 2-DG uptake differ from those of other dopaminergic or catecholaminergic drugs and suggest a specificity of the action of this drug on catecholaminergic neurons.  相似文献   

20.
Unilateral injections of 6-hydroxydopamine into the rat striatum result in amphetamine-induced circling behavior. This rotational behavior was associated with an almost complete disappearance of desmethylimipramine-insensitive [3H]mazindol binding sites--which represent dopamine uptake sites-in the ipsilateral caudate-putamen (CPu), the substantia nigra pars compacta (SNpc), and in the ventral tegmental area (VTA). There were significant increases in [3H]spiperone-labeled dopamine (DA) D2 receptors in specific subdivisions of the ipsilateral CPu, with the dorsolateral (DL) and ventrolateral (VL) regions showing significant increases in DA D2 receptors. There were nonsignificant increases in the dorsomedial (DM) aspects of the ipsilateral CPu whereas there were no changes in the ventromedial (VM) aspects of that structure. In contrast, there were no significant changes in [3H]SCH 23390-labeled DA D1 receptors in any of the subdivisions of the CPu ipsilateral to the 6-OHDA-induced lesions. These results provide evidence that intrastriatal injections of 6-OHDA result in biochemical changes in rat brain which are almost identical to those observed after 6-OHDA-induced lesions of the substantia nigra. These long-term biochemical effects caused by intrastriatal 6-OHDA injections provide further support for the idea that the nigral DA cell loss observed in the brains of parkinsonian patients could be secondary to retrograde changes due to oxyradicals generated during the metabolism of catecholamines within the caudate-putamen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号