首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The 5' untranslated region (UTR) of the glucocorticoid receptor (GR) plays a key role in determining tissue-specific expression and protein isoforms. Analysis of the 5' UTR of the human GR (hGR) has revealed 11 splice variants of the hGR exon 1, based on seven exon 1s, four of which (1-D to 1-F and 1-H) were previously unknown. All of the exon 1 variants have unique splice donor sites and share a common exon 2 splice acceptor site. Due to an upstream in-frame TGA stop codon the predicted translation from all splice variants is identical. The four new exon 1s show remarkable similarity with their rat homologues. Exon 1-D starts and finishes 17 and 36 bp upstream of the corresponding ends of the rat exon 1(4). Exon 1-E is only 6 bp longer than its homologue exon 1(5). Exon 1-F contains two short inserts of 11 and 6 bp when compared with the rat 1(7). 1-H is 18 bp longer than the corresponding rat 1(11). In addition to these new exons, we found that the human exon 1-C occurs as three distinct splice variants, covering the region homologous to the rat exons 1(9) and 1(10). All of the alternative hGR exons 1s presented here were found to be transcribed in human tissue. The human hippocampus expresses mRNA of all the exon 1 variants, while the expression of the other exon 1s seems to be tissue specific. While exon 1-D is only in the hippocampus, exons 1-E and 1-F are also detected in the immune system, and exon 1-H additionally in the liver, lung and smooth muscle. The 5' region of the hGR is more complex than previously thought, and we suggest that each of these untranslated first exons have a distinct proximal promoter region, providing additional depth to the mechanisms available for tissue-specific expression of the hGR isoforms.  相似文献   

2.
3.
4.
5.
The clinical management of severe pain depends heavily on opioids acting through mu opioid receptors encoded by the Oprm1 gene, which undergoes extensive alternative splicing. In addition to generating a series of prototypic seven transmembrane domain (7TM) G protein-coupled receptors (GPCRs), Oprm1 also produces a set of truncated splice variants containing only six transmembrane domains (6TM) through which selected opioids such as IBNtxA (3′-iodobenzoyl-6β-naltrexamide) mediate a potent analgesia without many undesirable effects. Although morphine analgesia is independent of these 6TM mu receptor isoforms, we now show that the selective loss of the 6TM variants in a knockout model eliminates the analgesic actions of delta and kappa opioids and of α2-adrenergic compounds, but not cannabinoid, neurotensin, or muscarinic drugs. These observations were confirmed by using antisense paradigms. Despite their role in analgesia, loss of the 6TM variants were not involved with delta opioid-induced seizure activity, aversion to the kappa drug U50,488H, or α2-mediated hypolocomotion. These observations support the existence of parallel opioid and nonopioid pain modulatory systems and highlight the ability to dissociate unwanted delta, kappa1, and α2 actions from analgesia.Modulation of pain is complex, with contributions from a variety of neurotransmitter systems. The opioid systems are particularly prominent clinically because of the availability of many potent and effective drugs, particularly those acting through mu opioid receptors. The mu opioid receptor gene, Oprm1, is complex, containing two independent promoters that generate dozens of variants through both 5′ and 3′ alternative splicing patterns that are highly conserved among multiple species (SI Appendix, Fig. S1) (1). Like the first mu opioid receptor (Oprm1) clone, MOR-1, most of the variants are traditional seven transmembrane domain (7TM) G protein-coupled receptors (GPCRs) generated from the exon 1 (E1) promoter. Each contains exons 1, 2, and 3, differing only at the intracellular C terminus due to 3′ splicing. The exon 11 (E11) promoter, located ∼30 kb upstream of exon 1, generates a set of truncated proteins lacking the first transmembrane domain because of the absence of exon 1, resulting in only six transmembrane domains (6TM).Classically, opioid mechanisms were defined pharmacologically by using selective agonists and antagonists, but genetic approaches offer a more precise approach toward assessing the pharmacological contributions of the various Oprm1 splice variants. Mice have been developed that have the selective loss of only 6TM variants (E11 KO) (2), only the exon 1-containing 7TM and 1TM variants (E1 KO) (3) or the loss of all Oprm1 variants (E1/E11 KO) (4) (SI Appendix, Fig. S1). These models provide insights into the differing pharmacology of the full-length 7TM and the truncated 6TM variants. Full-length 7TM variants are essential for morphine actions (3, 57). However, morphine analgesia is unaffected in a mouse lacking only 6TM variants (2). Truncated splice forms of GPCRs are relatively common, but were typically thought to have little significance (8). Thus, the lack of a 6TM contribution to morphine analgesia initially was not surprising. However, truncated 6TM variants are important in the actions of a number of other mu opioids (1, 2, 4, 911). For example, some compounds act through 6TM variants and independently of 7TM variants, to elicit potent analgesia in thermal, neuropathic, and inflammatory pain models without producing many of the undesirable effects associated with opioid drugs, such as respiratory depression, physical dependence, or reward behavior (1, 2, 4, 911). Reconstitution of a 6TM in a full Oprm1 knockout by using viral vectors confirmed that a 6TM was both necessary and sufficient for their activity (4). We now show that E11 variants play a more widespread role in the modulation of nociception and are essential in delta and kappa1 opioid and α2 adrenergic analgesic systems.  相似文献   

6.
The common acute lymphoblastic leukemia antigen (CALLA) is a 749-amino acid type II integral membrane protein that has been identified recently as the neutral endopeptidase 24.11 [NEP (EC 3.4.24.11)]. Herein, we characterize the organization of the human CALLA/NEP gene and show that it spans more than 80 kilobases (kb) and is composed of 24 exons. Exons 1 and 2 encode 5' untranslated sequences; exon 3 [170 base pairs (bp)] encodes the initiation codon and transmembrane and cytoplasmic domain; 20 short exons (exons 4-23), ranging in size from 36 to 162 bp, encode most of the extracellular portion of the enzyme; and exon 24 (approximately 3400 bp) encodes the COOH-terminal 32 amino acids of the protein and contains the entire 3' untranslated region (UTR). Of note, the pentapeptide sequence (His-Glu-Ile-Thr-His) associated with metalloprotease zinc binding and substrate catalysis is encoded within a single exon (exon 19). Three types of CALLA/NEP cDNAs have been identified: these clones contain 5' UTR sequences differing from one another upstream of exon 3. These human 5' sequences are homologous to those found in rat brain and rabbit kidney NEP cDNAs. The three human CALLA cDNA types result from alternative splicing of exons 1, 2a, or 2b to the common exon 3. Moreover, exons 2a and 2b share the same 5' sequence but differ from each other by the use of two distinct donor splice sites 171 bp apart in the gene. The substantial conservation of 5' untranslated sequences among species and the existence of 5' alternative splicing suggest that CALLA gene expression may be differentially controlled in a tissue-specific and/or developmentally regulated fashion.  相似文献   

7.
8.
9.
10.
11.
12.
In this paper we describe the genomic organization and sequence of the human T-cell receptor delta-chain diversity, joining, and constant genes. There is one delta-chain constant region gene (C delta) located approximately equal to 85 kilobases (kb) upstream of the alpha-chain constant region. The delta-chain constant region consists of four exons, whose organization is very similar to that of the C alpha exons, suggesting that C alpha and C delta may have arisen from a gene duplication event. The first exon encodes most of the extracellular constant domain, the second encodes a hinge-like region, and the third encodes the entire transmembrane segment and intracytoplasmic portion, whereas the last exon contains exclusively 3' untranslated sequences. Three joining segments, J delta 1, J delta 2, and J delta 3, are found approximately equal to 12, approximately equal to 5.7, and approximately equal to 3.4 kb upstream of the first exon of C delta. Two functional diversity gene segments, D delta 1 and D delta 2, which can be productively translated in all three reading frames, are found 1 and 9.6 kb upstream of J delta 1. The presence of two D delta with such potential for diversity may offset the limited repertoire of the J delta and V delta genes. The spacer distribution in the recombinational signals flanking D delta and J delta segments allows recombination with V alpha gene segments; however, examination of delta-chain messages does not indicate that this is the case, suggesting that the delta chain uses unique variable gene segments and raising the question as to the reasons for this phenomenon.  相似文献   

13.
14.
15.
Y B Koo  I Ji  R G Slaughter  T H Ji 《Endocrinology》1991,128(5):2297-2308
The genomic structure of the LH receptor is important to our understanding of its expression mechanisms, functional domains, relationships with other hormone receptors, and evolution. We have isolated four overlapping cosmid clones and six subgenomic clones of the rat LH receptor gene. They span a total of 95.6 kilobases (kb) and extend from 23 kb upstream of the translation start site to 13 kb down-stream of the stop codon. In addition, part of the human LH receptor gene has been isolated. The coding region of the rat hormone receptor gene spans over 60 kb and consists of 11 exons and 10 introns. Southern blots hybridized with exon 1 and exon 11 probes as well as gene dose analyses demonstrate that a single copy gene encodes the rat LH receptor. Sequence comparison suggests that the porcine and human LH receptor genes have similar, if not identical, exon-intron structures. There is no consensus cAMP-responsive element within 600 basepairs up-stream of the translation start site in spite of the cAMP responsiveness of the LH receptor gene. There are, however, unconventional cAMP-responsive elements in the region: one which is identical, several which are homologous to the activating protein-2-binding elements, CCCCAGGC, and several sequences which are similar to the G-rich cAMP-responsive element found in P450c21, a steroid 21-hydroxylase. The first 10 exons encode the N-terminal half of the molecule, while exon 11 encodes the C-terminal half of the molecule. This last exon is the same in the rat and human genes. The DNA and amino acid sequences of the first 10 exons show significant similarities and reveal repetitive sequence motifs. They have similar sizes which occur in the range of 69 and 183 bases; 8 of them are from 69-81 bases. Despite these remarkable similarities, structural predictions of exons 1-10 show a diversity of structures. The N-terminal half of the LH receptor appears to have a folded structure, with frequent turns and an extensive surface area. Part of the surface is predicted to be covered by amphiphilic helices and beta structures, types of secondary structure frequently found at the interfaces between subunits or between 2 interacting molecules. The introns dividing these exons also share many similarities.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
17.
Genomic DNA clones containing the human and murine genes coding for the 50-kDa T11 (CD2) T-cell surface glycoprotein were characterized. The human T11 gene is approximately equal to 12 kilobases long and comprised of five exons. A leader exon (L) contains the 5'-untranslated region and most of the nucleotides defining the signal peptide [amino acids (aa) -24 to -5]. Two exons encode the extracellular segment; exon Ex1 is 321 base pairs (bp) long and codes for four residues of the leader peptide and aa 1-103 of the mature protein, and exon Ex2 is 231 bp long and encodes aa 104-180. Exon TM is 123 bp long and codes for the single transmembrane region of the molecule (aa 181-221). Exon C is a large 765-bp exon encoding virtually the entire cytoplasmic domain (aa 222-327) and the 3'-untranslated region. The murine T11 gene has a similar organization with exon-intron boundaries essentially identical to the human gene. Substantial conservation of nucleotide sequences between species in both 5'- and 3'-gene flanking regions equivalent to that among homologous exons suggests that murine and human genes may be regulated in a similar fashion. The probable relationship of the individual T11 exons to functional and structural protein domains is discussed.  相似文献   

18.
The rat beta B1-crystallin gene is 13.6 kilobases long and contains six exons. The coding region of the gene is divided over five exons. Each functional entity of the protein is encoded by a separate exon except for the carboxyl-terminal extension, which shares the last exon with the fourth protein motif. Exon 2, encoding the amino-terminal extension of the protein, contains two direct repeats with an overall homology of 68% to the rat brain identifier sequence. A copy of the brain identifier sequence is also found in the 3'-flanking region of the gene. The start site of the mRNA was located by S1 nuclease mapping and analysis of the RNA sequence. The 5' end of the gene was shown to be a 27-base-pair noncoding exon, which is separated from the translation start site by 1.36 kilobases of intronic DNA. The 5'-flanking sequence of the beta B1 gene is highly homologous to that of a gamma-crystallin gene.  相似文献   

19.
20.
Crigler-Najjar syndrome, type I is a heterogeneous disorder that may result from mutations of various regions of the bilirubin-UDP-glucuronosyltransferase gene complex that encodes two bilirubin-UDP-glucuronosyltransferase isoforms and a phenol-UDP-glucuronosyltransferase isoform in the human liver. The two bilirubin-UDP-glucuronosyltransferase messenger RNAs and the phenol-UDP-glucuronosyltransferase messenger RNA have identical 3' regions derived from four consecutive exons. The 5' region of each messenger RNA is unique and is derived from distinct single exons. By screening a human genomic library with probes corresponding to various regions of the messenger RNAs, we have isolated five cosmid clones containing overlapping segments of this large gene complex that spans at least 84 kb of the human genome. To facilitate the amplification of each exon by polymerase chain reaction and their adjacent splice junctions, we have delineated the intron-exon boundaries of the four common region exons and the two single exons that encode the unique regions of the two bilirubin-UDP-glucuronosyltransferase isoforms and have described sequences of the regions flanking each exon. All exons encoding the two bilirubin-UDP-glucuronosyltransferase isoforms and their splice junctions were amplified from the DNA of two control subjects and a Crigler-Najjar syndrome, type I patient. The DNA from the Crigler-Najjar syndrome, type I patient revealed a point mutation in exon 3 (a common region exon) resulting in a stop codon. RNA blot showed that the two bilirubin-UDP-glucuronosyltransferase messenger RNAs in the liver of the Crigler-Najjar syndrome, type I patient were of normal length but were reduced in concentration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号