首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Anastomotic intimal hyperplasia is still an unsolved problem after small caliber prosthetic bypass grafting. Oscillatory turbulent flow occurs at the end to side anastomosis, and produces various effects on smooth muscle cells (SMCs) and endothelial cells (ECs), which compose intimal hyperplasia. We examined the influences of pulsatile oscillating shear stress on smooth muscle cells mitogenic activity induced by sheared endothelial cells. METHODS:1) Smooth muscle cells were cultured under three different pulsatile shear conditions (mean: 0, 6, and 60 dyne/cm2). 2) Endothelial cells were cultured under both static and sheared condition (mean: 60 dyne/cm2). Using the conditioned media from each well, SMCs were cultured under static and sheared conditions (60 dyne/cm2). Four groups of SMCs were devised by combining the two types of media and the two culture conditions. SMC colony spreading distances were measured as an index of combined migration and proliferation activity. An MTT assay and a cell counting assay were used to determine the proliferation activities of SMCs. RESULTS: 1) SMC spreading activity was suppressed by shear stress. SMC proliferative activity was stimulated by pulsatile turbulent shear stress. 2) SMC spreading activity was stimulated by mitogens derived from ECs under shear stress. However, this augmented SMC spreading activity was attenuated under sheared conditions. The mitogens derived from ECs under pulsatile shear stress had no effects on SMC proliferation activity. CONCLUSIONS: Pulsatile oscillating shear stress attenuates SMC migration activity induced by EC-denve mitogens and stimulates SMC proliferative activity.  相似文献   

2.
BACKGROUND: Previous studies have shown that mesenchymal stem cells (MSCs) transplantation can promote neovascularization and regenerate damaged myocardium. However, it remains unknown whether MSCs seeding can be used to repair injured cellular components in vascular diseases. In this study we explored the feasibility of applying MSCs to endothelium repair in endothelial damage and vasoproliferative disorders. METHODS: Ex vivo model of endothelium repair was developed in which rabbit vascular smooth muscle cells (SMCs) were inoculated into the upper chamber and rabbit endothelial cells (ECs)/human MSCs into the lower chamber of a co-culture system. 3H-TdR incorporation and PCNA protein expression were assayed and migrated number of SMCs was calculated to evaluate the effect of MSCs seeding on SMCs growth. Flk-1 and vWF protein expressions were observed to analyze the plasticity of the seeded MSCs along endothelial lineage. RESULTS: In this co-culture system, no vWF protein but Flk-1 protein was observed in the 25.71% of MSCs after having been co-cultured with mature rabbit ECs for 5 days. Compared with the control group, the proliferation and migration of SMCs was significantly increased by proliferative ECs but decreased by confluent ECs (n=6, P<0.01). MSCs seeding decreased the proliferation and migration of SMCs compatible with the effect of proliferative ECs (n=6, P<0.001). However, no inhibition on SMCs growth was observed with MSCs seeding in comparison to the effect of confluent ECs. CONCLUSIONS: MSCs seeding can inhibit the proliferation and migration of SMCs. MSCs co-cultured with mature ECs have the ability to undergo milieu-dependent differentiation toward ECs.  相似文献   

3.
The excessive proliferation and migration of vascular smooth muscle cells (SMCs) participate in the growth and instability of atherosclerotic plaque. We examined the direct role of a newly developed chemical inhibitor of cholesteryl ester transfer protein, JTT-705, on SMC proliferation and angiogenesis in endothelial cells (ECs). JTT-705 inhibited human coronary artery SMC proliferation. JTT-705 induced the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and extracellular-signal-regulated kinases (ERK) in SMCs. In addition, the anti-proliferative effects of JTT-705 in SMCs were blocked by p38 MAPK inhibitor. JTT-705 induced the upregulation of p-p21(waf1), and this effect was blocked by dominant-negative Ras (N17), but not by inhibitors of p38 MAPK or ERK. In addition, JTT-705 also induced the upregulation of p27(kip1), and this effect was blocked by p38 MAPK inhibitor. Interestingly, culture medium from JTT-705-treated SMCs blocked human coronary artery EC tube formation in an in vitro model of angiogenesis indirectly via a decrease in vascular endothelial growth factor (VEGF) from SMCs and directly via an anti-proliferative effect in ECs. JTT-705 blocked the proliferation of SMCs through the activation of p38 kinase/p27(kip1) and Ras/p21(waf1) pathways, and simultaneously blocked EC tube formation associated with a decrease in VEGF production from SMCs and an anti-proliferative effect in ECs. Our results indicate that JTT-705 may induce a direct anti-atherogenic effect in addition to its inhibitory effect of CETP activity.  相似文献   

4.
OBJECTIVE: Angiogenesis is a complex multistep process that involves endothelial cell (EC) migration, proliferation and differentiation into vascular tubes. NO has been reported to be a downstream mediator in the angiogenic response to a variety of growth factors, but the mechanisms by which NO promotes neovessel formation is not clear. We hypothesized that NO directly contributes to EC migration and capillary tube formation. METHODS: Since previous studies have noted important biological differences between NO produced pharmacologically by NO-donor compounds compared to that from NO synthase (NOS), we used a cell-based gene transfer approach to increase NO production in a co-culture model of in vitro angiogenesis. Rat smooth muscle cells (SMCs) were transfected with plasmids containing VEGF(121), VEGF(165) (SMC(VEGF)), endothelial NOS (SMC(eNOS)) or the empty vector (SMC(Cont)). Expression of the eNOS in SMC(eNOS) was confirmed by Northern analysis, NADPH-diaphorase activity, and nitrite/nitrate levels, whereas VEGF production was confirmed using ELISA. Calf pulmonary artery ECs (CPAECs) were cultured on the fibrin matrix with (co-culture) or without underlying SMCs (monoculture). RESULTS: Co-culture of ECs with SMC(Cont) had no effect on EC differentiation compared with EC in monoculture (differentiation index, DI=2.8+/-3.4 vs. 2.1+/-2.8, respectively, NS). In contrast, co-culture with SMC(eNOS) resulted in the formation of extensive capillary-like structures within 48 h (DI=17.2+/-5.9, P<0.001 versus SMC(Cont)), which was significantly inhibited using a NOS inhibitor, L-NAME (3 mM) (DI=4.5+/-3.04, P<0.001 versus SMC(eNOS)). Similarly, SMC(VEGF121) induced an angiogenic response (DI=14.2+/-3.8), which was also significantly inhibited by L-NAME (DI=5.9+/-1.8, P<0.05). In using the Boyden chamber model, SMC(eNOS), but not SMC(Cont) increased EC migration to a similar extent as SMC(VEGF121), and both were significantly inhibited with L-NAME. CONCLUSIONS: These data support an important paracrine role for endogenously produced NO in EC migration and differentiation in vitro, and suggest that the cell-based eNOS gene transfer may be a useful approach to increase new blood vessel formation in vivo.  相似文献   

5.
AIM: The excessive proliferation and migration of vascular smooth muscle cells (SMCs) and angiogenesis of endothelial cells (ECs) participate in the growth and instability of atherosclerotic plaques. It is unclear whether Jun N-terminal kinase (JNK) is pro-or anti-atherogenic. METHODS: We examined the direct effect of JNK inhibitor (JNK-I) on the proliferation and formation of tubes by human coronary SMCs and human coronary ECs. RESULTS: Culture medium from JNK-I-treated SMCs prevented ECs from forming tubes in an in vitro model of angiogenesis indirectly by reducing the amount of vascular endothelial growth factor (VEGF) released from SMCs. In addition, JNK-I attenuated the expression of pro-matrix metalloproteinase-2 in ECs. When added back to the medium of SMCs treated with JNK-I, VEGF blocked the inhibitory effect on the formation of tubes. CONCLUSION: Our results indicate JNK-I to have a direct anti-atherogenic effect in SMCs and ECs.  相似文献   

6.
目的探讨骨髓基质干细胞(MSCs)种植体外修复内皮的可行性及对血管平滑肌细胞增生的影响。方法培养兔血管内皮、平滑肌和人MSCs,通过细胞共培养模拟血管内皮修复过程,用流式细胞仪分析MSCs分子表型特征,免疫荧光细胞化学法观察与内皮共培养的MSCsFlk1和vWF蛋白表达,根据下室内皮生长状态及是否接种MSCs将其分为对照组、单纯MSCs组、融合内皮组、对数内皮组和MSCs种植组。氚胸腺嘧啶脱氧核苷(3HTdR)掺入检测平滑肌细胞DNA合成,Westernblot检测平滑肌细胞中增殖细胞核抗原蛋白表达。结果分离的MSCs表达基质细胞标志CD105和CD166,不表达造血干祖细胞和内皮细胞标志CD34、Flk1、vWF;与内皮共培养5天时,vWF染色仍为阴性,但约25.71%MSCs开始表达Flk1;MSCs种植组平滑肌细胞3HTdR掺入虽高于融合内皮组,但与对数内皮组比较显著降低;MSCs种植组平滑肌细胞PCNA蛋白吸光度相对值虽高于融合内皮组,但与对数内皮组比较明显减少。结论MSCs种植能抑制平滑肌细胞增生,种植在成熟内皮中的MSCs具有微环境依赖向内皮分化的能力。  相似文献   

7.
Li L  Ma KT  Zhao L  Li XZ  Zhang ZS  Shi WY  Zhu H  Wei LL  Si JQ 《Microvascular research》2012,84(2):211-217
Gap junctions (GJs) facilitate communication and promote transfer of signaling molecules or current between adjacent cells in various organs to coordinate cellular activity. In arteries, homocellular GJs are present between adjacent smooth muscle cells (SMCs) and between adjacent endothelial cells (ECs), whilst many arteries also exhibit heterocellular GJs between SMCs and ECs. To test the hypothesis that there is differential cell coupling in guinea pig spiral modiolar arteries (SMA), we used intracellular recording technique to record cellular activities simultaneously in ECs or SMCs in acutely isolated guinea pig SMA preparations. Cell types were identified by injection of a fluorescent dye, propidium iodide (PI), through recording microelectrodes. Stable intracellular recordings were made in 120 cells among which 61 were identified as SMCs and 28 as ECs. Dual intracellular recordings were conducted to detect the coexistence of the two distinct levels of resting potential (RP) and to estimate the intensity of electrical coupling between two cells by a current pulse of up to 0.5-1.5 nA. The electrotonic potential was detected not only in the current-injected cell, but also in the majority of non-injected cells. The electrical coupling ratios (ECRs) of homocellular cells were not significant (P>0.05) (0.084±0.032 (n=6) and 0.069±0.031 (n=7) for EC-EC and SMC-SMC pairs, respectively). By contrast, the ECRs of heterocellular cells were significantly different when a current pulse (1.5 nA, 2s) was injected into EC and SMC respectively (0.072±0.025 for EC; 0.003±0.001 for SMC, n=5, P<0.01). The putative gap junction blocker 18β-glycyrrhetinic acid significantly attenuated electrical coupling in both homocellular and heterocellular forms. The results suggest that homocellular GJs within SMCs or ECs are well coordinated but myoendothelial couplings between ECs and SMCs are unidirectional.  相似文献   

8.
Mechanical signals regulate blood vessel development in vivo, and have been demonstrated to regulate signal transduction of endothelial cell (EC) and smooth muscle cell (SMC) phenotype in vitro. However, it is unclear how the complex process of angiogenesis, which involves multiple cell types and growth factors that act in a spatiotemporally regulated manner, is triggered by a mechanical input. Here, we describe a mechanism for modulating vascular cells during sequential stages of an in vitro model of early angiogenesis by applying cyclic tensile strain. Cyclic strain of human umbilical vein (HUV)ECs up-regulated the secretion of angiopoietin (Ang)-2 and PDGF-ββ, and enhanced endothelial migration and sprout formation, whereas effects were eliminated with shRNA knockdown of endogenous Ang-2. Applying strain to colonies of HUVEC, cocultured on the same micropatterned substrate with nonstrained human aortic (HA)SMCs, led to a directed migration of the HASMC toward migrating HUVECs, with diminished recruitment when PDGF receptors were neutralized. These results demonstrate that a singular mechanical cue (cyclic tensile strain) can trigger a cascade of autocrine and paracrine signaling events between ECs and SMCs critical to the angiogenic process.  相似文献   

9.
Endothelial cells (ECs) govern smooth muscle cell (SMC) tone via the release of paracrine factors (eg, NO and metabolites of arachidonic acid). We tested the hypothesis that ECs can promote SMC relaxation or contraction via direct electrical coupling. Vessels (resting diameter, 57+/-3 microm; length, 4 mm) were isolated, cannulated, and pressurized (75 mm Hg; 37 degrees C). Two microelectrodes were used to simultaneously impale 2 cells (ECs or SMCs) in the vessel wall separated by 500 microm. Impalements of one EC and one SMC (n=26) displayed equivalent membrane potentials at rest, during spontaneous oscillations, and during hyperpolarization and vasodilation to acetylcholine. Injection of -0.8 nA into an EC caused hyperpolarization ( approximately 5 mV) and relaxation of SMCs (dilation, approximately 5 microm) along the vessel segment. In a reciprocal manner, +0.8 nA caused depolarization ( approximately 2 mV) of SMCs with constriction ( approximately 2 microm). Current injection into SMCs while recording from ECs produced similar results. We conclude that ECs and SMCs are electrically coupled to each other in these vessels, such that electrical signals conducted along the endothelium can be directly transmitted to the surrounding smooth muscle to evoke vasomotor responses.  相似文献   

10.
Atherosclerosis and arterial injury-induced neointimal hyperplasia involve medial smooth muscle cell (SMC) proliferation and migration into the arterial intima. Because many 7-transmembrane and growth factor receptors promote atherosclerosis, we hypothesized that the multifunctional adaptor proteins beta-arrestin1 and -2 might regulate this pathological process. Deficiency of beta-arrestin2 in ldlr(-/-) mice reduced aortic atherosclerosis by 40% and decreased the prevalence of atheroma SMCs by 35%, suggesting that beta-arrestin2 promotes atherosclerosis through effects on SMCs. To test this potential atherogenic mechanism more specifically, we performed carotid endothelial denudation in congenic wild-type, beta-arrestin1(-/-), and beta-arrestin2(-/-) mice. Neointimal hyperplasia was enhanced in beta-arrestin1(-/-) mice, and diminished in beta-arrestin2(-/-) mice. Neointimal cells expressed SMC markers and did not derive from bone marrow progenitors, as demonstrated by bone marrow transplantation with green fluorescent protein-transgenic cells. Moreover, the reduction in neointimal hyperplasia seen in beta-arrestin2(-/-) mice was not altered by transplantation with either wild-type or beta-arrestin2(-/-) bone marrow cells. After carotid injury, medial SMC extracellular signal-regulated kinase activation and proliferation were increased in beta-arrestin1(-/-) and decreased in beta-arrestin2(-/-) mice. Concordantly, thymidine incorporation and extracellular signal-regulated kinase activation and migration evoked by 7-transmembrane receptors were greater than wild type in beta-arrestin1(-/-) SMCs and less in beta-arrestin2(-/-) SMCs. Proliferation was less than wild type in beta-arrestin2(-/-) SMCs but not in beta-arrestin2(-/-) endothelial cells. We conclude that beta-arrestin2 aggravates atherosclerosis through mechanisms involving SMC proliferation and migration and that these SMC activities are regulated reciprocally by beta-arrestin2 and beta-arrestin1. These findings identify inhibition of beta-arrestin2 as a novel therapeutic strategy for combating atherosclerosis and arterial restenosis after angioplasty.  相似文献   

11.
It was previously thought that arteriogenesis and venogenesis are induced not only by proliferation of vessel-resident smooth muscle cells (SMCs) and endothelial cells (ECs) but also by migration of their precursors. However, it is not well understood through what route(s) the precursors migrate into the existing vessels.We examined through what route or routes circulating mononuclear cells expressing β-actin (β-MNCs), which we identified in canine coronary vessels, migrate into coronary vessel walls and cause arteriogenesis and venogenesis at 1, 2, 4 and 8 weeks after induction of myocardial infarction.The following changes were observed: (1) The β-MNCs migrated via coronary microvessels to the interstitial space at one week; (2) β-MNCs traversed the adventitia into the media and settled in parallel with pre-existing smooth muscle cells (SMCs) in arterioles and arteries and lost β-actin and acquired α-smooth muscle actin (α-SMA) to become mature SMCs at 2-4 weeks; (3) at the same time, other β-MNCs migrated across the adventitia and media into the intima and settled in parallel with pre-existing endothelial cells (ECs) and lost β-actin, while acquiring CD(31), to become mature ECs, resulting in arteriogenesis; (4) Similarly, β-MNCs migrated into venular and venous walls and became SMCs or ECs, resulting in venogenesis.β-MNCs in the interstitial space expressed CD(34) but not other major vascular cell markers.β-MNCs, possibly a vascular progenitor, migrate not from the lumen but across the adventitia into the media or intima of coronary vessels and transit to SMCs or ECs, and participate in arteriogenesis and venogenesis in ischemic myocardium.  相似文献   

12.
Kobayashi H  DeBusk LM  Babichev YO  Dumont DJ  Lin PC 《Blood》2006,108(4):1260-1266
Communication between endothelial cells (ECs) and mural cells is critical in vascular maturation. Genetic studies suggest that angiopoietin/Tie2 signaling may play a role in the recruitment of pericytes or smooth muscle cells (SMCs) during vascular maturation. However, the molecular mechanism is unclear. We used microarray technology to analyze genes regulated by angiopoietin-1 (Ang1), an agonist ligand for Tie2, in endothelial cells (ECs). We observed that hepatocyte growth factor (HGF), a mediator of mural cell motility, was up-regulated by Ang1 stimulation. We confirmed this finding by Northern blot and Western blot analyses in cultured vascular endothelial cells. Furthermore, stimulation of ECs with Ang1 increased SMC migration toward endothelial cells in a coculture assay. Addition of a neutralizing anti-HGF antibody inhibited Ang1-induced SMC recruitment, indicating that the induction of SMC migration by Ang1 was caused by the increase of HGF. Interestingly, Ang2, an antagonist ligand of Tie2, inhibited Ang1-induced HGF production and Ang1-induced SMC migration. Finally, we showed that deletion of Tie2 in transgenic mouse reduced HGF production. Collectively, our data reveal a novel mechanism of Ang/Tie2 signaling in regulating vascular maturation and suggest that a delicate balance between Ang1 and Ang2 is critical in this process.  相似文献   

13.
Long-term solid organ allografts develop diffuse arterial intimal lesions (graft arterial disease [GAD]), consisting of smooth muscle cells (SMCs), extracellular matrix, and admixed mononuclear leukocytes. Although the exact mechanisms are unknown, alloresponses likely induce inflammatory cells and/or dysfunctional vascular wall cells to secrete growth factors that promote SMC intimal recruitment, proliferation, and matrix synthesis. GAD eventually culminates in vascular stenosis and ischemic graft failure. Although prior work demonstrated that the endothelium and medial SMCs and the vast majority of endothelial cells (ECs) lining GAD lesions in cardiac allografts are derived from donors, the intimal SMC origin could not be determined. Recent reports suggest that intimal lesions in allograft vessels may also contain host-derived ECs and SMCs. In light of these findings, it is noteworthy that subpopulations of bone marrow and circulating cells have also been shown to differentiate into ECs and SMCs. Here we review recent developments in the understanding of vascular wall cell recruitment that are forcing a re-evaluation of the pathogenic mechanisms underlying GAD, as well as those occurring in more “conventional” atherosclerosis. The demonstration of the host origin of intimal SMCs in GAD lays the groundwork for future interventions where therapeutic genes or drugs may be targeted not to donor medial SMCs, but rather to recipient SM precursor cells.  相似文献   

14.
Elevated levels of reactive oxygen species (ROS) in the vascular wall play a key role in the development of neointimal hyperplasia. Nox4-based NADPH oxidase is a major ROS generating enzyme in the vasculature, but its roles in neointimal hyperplasia remain unclear.ObjectiveOur purpose was to investigate the role of smooth muscle cell (SMC) Nox4 in neointimal hyperplasia.Approach and resultsMice overexpressing a human Nox4 mutant form, carrying a P437H dominant negative mutation (Nox4DN) and driven by SM22α promoter, to achieve specific expression in SMC, were generated in a FVB/N genetic background. After wire injury-induced endothelial denudation, Nox4DN had significantly decreased neointima formation compared with non-transgenic littermate controls (NTg). ROS production, serum-induced proliferation and migration, were significantly decreased in aortic SMCs isolated from Nox4DN compared with NTg. Both mRNA and protein levels of thrombospondin 1 (TSP1) were significantly downregulated in Nox4DN SMCs. Downregulation of TSP1 by siRNA decreased cell proliferation and migration in SMCs. Similar to Nox4DN, downregulation of Nox4 by siRNA significantly decreased TSP1 expression level, cell proliferation and migration in SMCs.ConclusionsDownregulation of smooth muscle Nox4 inhibits neointimal hyperplasia by suppressing TSP1, which in part can account for inhibition of SMC proliferation and migration.  相似文献   

15.
目的探讨紫杉醇联合骨髓基质干细胞种植体外修复内皮的可行性及对血管平滑肌细胞增生的影响。方法培养兔主动脉内皮、平滑肌和人骨髓基质干细胞,通过细胞共培养将内皮/骨髓基质干细胞接种于下室、平滑肌细胞接种于上室模拟血管内皮修复过程,分别用3H TdR掺入和Westernblot检测紫杉醇(1,10,100nmol/L)干预20min后第10天平滑肌DNA合成和PCNA蛋白表达,用免疫荧光细胞化学法观察与紫杉醇干预内皮共培养的骨髓基质干细胞vWF和Flk1蛋白表达。结果骨髓基质干细胞种植组平滑肌细胞3H TdR掺入和PCNA蛋白光密度相对值均高于融合内皮组(n=6,P<0.05),低于对数内皮组(n=6,P<0.05)。共培养前骨髓基质干细胞不表达vWF和Flk1蛋白,与紫杉醇干预内皮共培养10天时vWF染色阴性,但部分骨髓基质干细胞开始表达Flk1蛋白。结论骨髓基质干细胞种植能部分抑制紫杉醇引起的平滑肌细胞延迟增生,与紫杉醇干预内皮共培养的骨髓基质干细胞有向内皮分化的能力。  相似文献   

16.
Chen CN  Chang SF  Lee PL  Chang K  Chen LJ  Usami S  Chien S  Chiu JJ 《Blood》2006,107(5):1933-1942
Atherosclerosis develops at regions of the arterial tree exposed to disturbed flow. The early stage of atherogenesis involves the adhesion of leukocytes (white blood cells [WBCs]) to and their transmigration across endothelial cells (ECs), which are located in close proximity to smooth muscle cells (SMCs). We investigated the effects of EC/SMC coculture and disturbed flow on the adhesion and transmigration of 3 types of WBCs (neutrophils, peripheral blood lymphocytes [PBLs], and monocytes) using our vertical-step flow (VSF) chamber, in which ECs were cocultured with SMCs in collagen gels. Such coculture significantly increased the adhesion and transmigration of neutrophils, PBLs, and monocytes under VSF, particularly in the reattachment area, where the rolling velocity of WBCs and their transmigration time were decreased, as compared with the other areas. Neutrophils, PBLs, and monocytes showed different subendothelial migration patterns under VSF. Their movements were more random and shorter in distance in the reattachment area. Coculture of ECs and SMCs induced their expressions of adhesion molecules and chemokines, which contributed to the increased WBC adhesion and transmigration. Our findings provide insights into the mechanisms of WBC interaction with the vessel wall (composed of ECs and SMCs) under the complex flow environments found in regions of prevalence for atherogenesis.  相似文献   

17.
Interactions of vascular endothelial cells (ECs) and smooth muscle cells (SMCs) were studied by testing the ability of cultured bovine aortic ECs to secrete factors influencing the migration of cultured aortic SMCs from the same species. Migration of SMCs was examined in blind-well chambers using gelatin-coated polycarbonate filters. Conditioned culture medium obtained by incubating confluent monolayers of ECs in serum-free RPMI-1640 medium for 48 hours caused a 2.4-fold increase in the migration of SMCs as compared with nonconditioned medium (p less than 0.001). The effect was dependent on the length of conditioning with the ECs and was chemotactic in nature as judged on the basis of checkerboard analysis. Preliminary characterization of the migration stimulating activity indicates that it is sensitive to trypsin, nondialyzable, and stable at 56 degrees C for 30 min. The activity was abolished by heating to 100 degrees C for 20 min but was not significantly inhibited by protamine sulphate, which suggests that most of the activity was not due to platelet-derived growth factor (PDGF)-like proteins. Our results thus show that ECs secrete polypeptide(s) chemotactic for vascular SMCs. Such interactions between ECs and SMCs in vivo might contribute to the migration of medial SMCs into the intima during atherogenesis.  相似文献   

18.
During the development of an atherosclerotic plaque, mononuclear leukocytes infiltrate the artery wall through vascular endothelial cells (ECs). At the same time, arterial smooth muscle cells (SMCs) change from the physiological contractile phenotype to the secretory phenotype and migrate into the plaque. We investigated whether secretory SMCs released cytokines that stimulated ECs in a manner leading to increased leukocyte recruitment and thus might accelerate atheroma formation. SMCs and ECs were established in coculture on the opposite sides of a porous membrane, and the cocultured cells were incorporated into a flow-based assay for studying leukocyte adhesion. We found that coculture primed ECs so that their response to the inflammatory cytokine tumor necrosis factor-alpha was amplified. ECs cocultured with SMCs supported greatly increased adhesion of flowing leukocytes and were sensitized to respond to tumor necrosis factor-alpha at concentrations 10 000 times lower than ECs cultured alone. In addition, coculture altered the endothelial selectin adhesion molecules used for leukocyte capture. EC priming was attributable to the cytokine transforming growth factor-beta(1), which was proteolytically activated to a biologically active form by the serine protease plasmin. These results suggest a new role for secretory SMCs in the development of atheromatous plaque. We propose that paracrine interaction between ECs and SMCs has the potential to amplify leukocyte recruitment to sites of atheroma and exacerbate the inflammatory processes believed to be at the heart of disease progression.  相似文献   

19.
This study tests the hypothesis that alpha(v)beta(3) integrin receptors play a critical role in smooth muscle cell (SMC) migration after arterial injury and facilitate migration through the upregulation of matrix metalloproteinase (MMP) activity. We showed that beta(3) integrin mRNA was upregulated by SMCs in the balloon-injured rat carotid artery in coincidence with MMP-1 expression and early SMC migration. Treatment with the beta(3) integrin-blocking antibody F11 significantly decreased SMC migration into the intima at 4 days after injury, from 110.8+/-30.8 cells/mm(2) in control rats to 10.29+/-7.03 cells/mm(2) in F11-treated rats (P=0.008). By contrast, there was no effect on medial SMC proliferation or on medial SMC number in the carotid artery at 4 days. In vitro, we found that human newborn SMCs produced MMP-1 but that adult SMCs did not. This was possibly due to the fact that newborn SMCs expressed alpha(v)beta(3) integrin receptors, whereas adult SMCs did not. Stimulation of newborn (alpha(v)beta(3)+) SMCs with osteopontin, a matrix ligand for alpha(v)beta(3), increased MMP-1 production from 114.4+/-35.8 ng/mL at 0 nmol/L osteopontin to 232.5+/-57.5 ng/mL at 100 nmol/L osteopontin. Finally, we showed that stimulation of newborn SMCs with platelet-derived growth factor-BB and osteopontin together increased the SMC production of MMP-9. Thus, our results support the hypothesis that SMC alpha(v)beta(3) integrin receptors play an important role in regulating migration by stimulating SMC MMP production.  相似文献   

20.
Since biological aging causes a decrease in functions such as cell proliferation, we have studied the possible effect of age on the migration capacity of human vascular smooth muscle cells (SMCs). To this aim, the migration activity of cultured SMCs from arteries of male human donors ranging in age from 43-77 years was determined in a Boyden chamber, under basal conditions and after insulin-like growth factor-1 (IGF-1) or insulin stimulation. Migration activity decreased with donor age (r2 = 87%, 85%, and 78%, respectively). IGF-1 and insulin significantly reduced the age-dependent relationship observed in basal conditions, so that, comparing young with old, both IGF-1 and insulin stimulated SMC migration similarly, although the effect of age remained in absolute terms. In this article, we conclude that the age-dependent decline of migration activity--similar to what has already been shown for SMC proliferation--may be part of the biological ageing phenotype, which is not overcome by hormone stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号