首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quantification and detection of DcR3, a decoy receptor in TNFR family   总被引:8,自引:0,他引:8  
A soluble decoy receptor, DcR3, belongs to the tumor necrosis factor receptor (TNFR) family, and this receptor is known to bind to three TNF family ligands, namely Fas ligand (FasL), LIGHT, and TL1A. To aid our understating of the role of DcR3 in the immune system, we have developed quantitative enzyme-linked immunosorbent assay (ELISA) to detect soluble DcR3 in human biological fluids. Two monoclonal antibodies, MD3E2 and MD3B1, that recognized different epitopes on the DcR3 molecule were selected as capture and detection antibodies, respectively, to be paired in ELISA. The assay had a detection limit of 36 pg/ml with a dynamic range of 0.25-16 ng/ml. The recovery range was 91-112% for cell culture supernatant and 90-108% for human sera. Intra- and inter-assay CVs were less than 7.2% and 11.2%, respectively. Among a panel of cell lines tested, colon adenocarcinoma cell line, SW480, secreted the highest levels of DcR3 at 3.2 ng/ml. From the screening of human sera samples, we discovered that 39 healthy individuals, 59 tumor patients, and 46 patients with renal failure expressed an average (mean+/-S.D.) 0.56+/-0.52, 2.3+/-1.6, and 4.6+/-2.8 ng/ml DcR3, respectively. To confirm the specificity of ELISA, we have purified native DcR3 from SW480 cell culture supernatants and identified a native DcR3 in a clinical serum by immunoprecipitation. Taken together, our data demonstrated that the ELISA developed in this study was specific and sensitive to quantify soluble DcR3 in a variety of human biological fluids and that the assay would be useful for studying the regulation of DcR3 in certain pathophysiological conditions.  相似文献   

2.
Decoy receptor?3 (DcR3), a member of the tumour necrosis factor receptor (TNFR) superfamily, lacks the transmembrane domain of conventional TNFRs in order to be a secreted protein. DcR3 competitively binds and inhibits members of the TNF family, including Fas?ligand (FasL), LIGHT and TL1A. We previously reported that TNFα-induced DcR3 overexpression in rheumatoid synovial fibroblasts (RA-FLS) protects the cells from Fas-induced apoptosis and that DcR3 induces VLA-4 expression in THP-1 macrophages to inhibit cycloheximide-induced apoptosis. Meanwhile, recent studies have suggested that DcR3 acting as a ligand directly induces the differentiation of macrophages to osteoclasts. Therefore, in the present study, we analyzed the direct effects of DcR3 as a ligand in RA-FLS. The experiments showed that DcR3 binds to TL1A expressed in RA-FLS resulting in the negative regulation of cell proliferation induced by inflammatory cytokines. DcR3-TL1A signalling may be involved in the pathogenesis of rheumatoid arthritis (RA).  相似文献   

3.
Tumor necrosis factor (TNF) receptor 6/decoy receptor 3 (TR6/DcR3) is an antiapoptosis soluble receptor of the TNF family produced by tumor cells. In this study, TR6 expression in human immune cells was investigated. TR6 mRNA and protein were detectable in selected antigen-presenting cells. Monocytes and myeloid-derived dendritic cells (MDC) released the protein exclusively following stimulation of Toll-like receptor 2 (TLR2) and TLR4 by gram-positive and gram-negative bacterial antigens. Plasmacytoid dendritic cells, activated by bacterial antigens via TLR9 or by viral infection, did not produce the protein. Similarly, activated T cells did not release TR6. The release of TR6 by MDC was dependent on the activation of p42/p44 mitogen-activated protein kinases, Src-like protein tyrosine kinases, and phosphatidylinositol 3-kinase, signaling pathways important for MDC maturation and survival. In agreement with the in vitro data, TR6 levels in serum were significantly elevated in patients with bacterial infections. Overall, these data suggest a novel role for TR6 in immune responses to bacteria.  相似文献   

4.
5.
TRAIL (tumor necrosis factor-related apoptosis-inducing ligand), a cytokine belonging to the TNF (tumor necrosis factor) family, is currently regarded as a potential anti-cancer agent. Nevertheless, several types of cancer cells display a low sensitivity to TRAIL or are completely resistant to this pro-apoptotic cytokine. TRAIL signalling is dependent on four receptors. Two of them, death receptors 4 and 5 (DR4 and DR5), induce apoptosis, whereas decoy receptors 1 and 2 (DcR1 and DcR2) are unable to evoke cell death upon TRAIL binding. TRAIL resistance may be related to the expression of TRAIL decoy receptors. TRAIL has been proposed as a novel therapeutic agent for the treatment of haematological disorders, including acute myeloid leukaemia (AML). Surprisingly, however, very limited information is available concerning the expression of TRAIL receptors in AML blasts. Here, we have evaluated, using flow cytometry, TRAIL receptor surface expression and sensitivity to TRAIL-dependent apoptosis of AML blasts from 30 patients. We observed frequent expression of TRAIL DcR1 and DcR2, while expression of DR4 and DR5 was less frequent. Nevertheless, the expression of DR4 or DR5 in leukaemic cells was always matched by a similar expression of one of the decoy receptors. Leukaemic blasts were invariably resistant, even to a high concentration (1000 ng/ml) of TRAIL. We suggest that AML blasts are resistant to TRAIL apoptosis in vitro. Therefore, it is unlikely that TRAIL alone might be used in the future as an innovative pharmacological agent for the treatment of AML.  相似文献   

6.
Modulation of macrophage differentiation and activation by decoy receptor 3   总被引:9,自引:0,他引:9  
Decoy receptor 3 (DcR3) is a soluble receptor of the tumor necrosis factor receptor superfamily and is readily detected in certain cancer patients. Recently, we demonstrated that DcR3.Fc-treated dendritic cells skew T cell responses to a T helper cell type 2 phenotype. In this study, we further asked its ability to modulate CD14+ monocyte differentiation into macrophages induced by macrophage-colony stimulating factor in vitro. We found that DcR3.Fc was able to modulate the expression of several macrophage markers, including CD14, CD16, CD64, and human leukocyte antigen-DR. In contrast, the expression of CD11c, CD36, CD68, and CD206 (mannose receptor) was not affected in the in vitro culture system. Moreover, phagocytic activity toward immune complexes and apoptotic bodies as well as the production of free radicals and proinflammatory cytokines in response to lipopolysaccharide were impaired in DcR3.Fc-treated monocyte-derived macrophages. This suggests that DcR3.Fc might have potent, suppressive effects to down-regulate the host-immune system.  相似文献   

7.
To investigate the regulatory effects of decoy receptor 3 (DcR3) on the differentiation and function of dendritic cells (DCs), bone marrow-derived DCs (BM-DCs) from nonobese diabetic (NOD) mice were cultured with recombinant DcR3.Fc protein. Their differentiating phenotypes and T cell-stimulating functions were then evaluated. Expression of CD11c, CD40, CD54, and major histocompatibility complex I-A(g7) was reduced in cells cultured with additional DcR3.Fc, compared with DCs incubated with granulocyte macrophage-colony stimulating factor and interleukin (IL)-4, indicating that DcR3 interferes with the differentiation and maturation of BM-DCs. One of the most striking effects of DcR3.Fc on the differentiation of DCs was the up-regulation of CD86 and down-regulation of CD80, suggesting a modulatory potential to skew the T cell response toward the T helper cell type 2 (Th2) phenotype. Consistent with this, the proliferation of CD4(+) T cells cocultured with DcR3.Fc-treated DCs was significantly reduced compared with that of T cells stimulated by normal DCs. Moreover, the secretion of interferon-gamma from T cells cocultured with DcR3.Fc-treated DCs was profoundly suppressed, indicating that DcR3 exerts a Th1-suppressing effect on differentiating DCs. Furthermore, adoptive transfer experiments revealed that NOD/severe combined immunodeficiency mice received DcR3.Fc-treated DCs, and subsequently, autoreactive T cells showed delayed onset of diabetes and a decrease in diabetic severity compared with mice that received normal DCs and T cells, suggesting a future therapeutic potential in autoimmune diabetes. Data from two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization-time-of-flight analysis show an up-regulation of some proteins-such as mitogen-activated protein kinase p38 beta, cyclin-dependent kinase 6, and signal-induced proliferation-associated gene 1-and a down-regulation of the IL-17 precursor; tumor necrosis factor-related apoptosis-inducing ligand family member-associated nuclear factor-kappaB activator-binding kinase 1; and Golgi S-nitroso-N-acetylpenicillamine in cells treated with DcR3, further demonstrating its effect on DC differentiation and function.  相似文献   

8.
《Molecular immunology》2011,48(16):2552-2562
Decoy receptor 3 (DcR3), a member of the tumor necrosis factor receptor superfamily, regulates immune responses through competing with receptors of Fas ligand (FasL), LIGHT and TNF-like molecule 1A (TL1A). We have previously demonstrated that transgenic expression of DcR3 in a β cell-specific manner significantly protects non-obese diabetic (NOD) mice from autoimmune diabetes. In this study, we further investigated the systemic effect of DcR3 in regulating lymphocytes and dendritic cells in NOD mice. Our results demonstrated that both DcR3 plasmid and protein treatments significantly inhibited insulitis and diabetes. Lymphocytes from DcR3.Fc-treated mice revealed less proliferative potential and transferred ameliorated diabetes. By administration of DcR3.Fc in T1 and T2 double transgenic NOD mice expressing human Thy1 or murine Thy1.1 surface marker under IFN-γ or IL-4 promoter control respectively, we observed a remarkable reduction of Th1 and an increase of Th2 immune responses in vivo. Strikingly, in vitro polarization experiments exhibited that not only Th1 but also Th17 cell differentiation was significantly inhibited in splenocytes treated with DcR3.Fc protein. However, this phenomenon was only observed in splenocytes, not in purified CD4+ T cells, suggesting that DcR3-mediated inhibition of Th1 and Th17 differentiation is not T cell-autonomous and maybe through other cell types such as dendritic cells. Finally, our results demonstrated that DcR3 directly modulates the differentiation and maturation of dendritic cells and subsequently regulates the differentiation and effector function of T cells.  相似文献   

9.
10.
Clinical and preclinical data indicate that tumor necrosis factor (TNF)-alpha is an important mediator of acute graft-versus-host disease (aGVHD) after allogeneic bone marrow transplantation. We completed a study using etanercept, a fusion protein capable of neutralizing TNF-alpha, for the initial treatment of aGVHD. Etanercept (25 mg subcutaneously) was administered twice weekly for 16 doses, along with methylprednisolone (2 mg/kg) and tacrolimus for biopsy-proven aGVHD. Twenty patients with a median age of 47 years (range, 8-63 years) were enrolled. Fourteen patients with grade II aGVHD (11 family donors and 3 unrelated donors) and 6 patients with grade III aGVHD (3 family donors and 3 unrelated donors) were treated. Twelve patients completed 16 doses of therapy, and 8 received 5 to 15 doses. Reasons for not completing all doses of etanercept included progression of aGVHD (n = 4), relapsed leukemia (n = 2), progression of pulmonary and central nervous system lesions (n = 1), and perforated duodenal ulcer (n = 1). Fifteen (75%) of 20 patients had complete resolution of aGVHD within 4 weeks of therapy. Increasing levels of soluble TNF receptor 1 plasma concentration during the first 4 weeks of therapy indicated progression of aGVHD in 5 patients. In contrast, for 15 responding patients, soluble TNF receptor 1 plasma concentration levels returned to baseline. These data demonstrate the feasibility of using cytokine blockade in the early treatment of aGVHD.  相似文献   

11.
12.
We examined the role of osteoprotegerin (OPG) on tumour necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in rheumatoid fibroblast-like synovial cells (FLS). OPG protein concentrations in synovial fluid from patients with rheumatoid arthritis (RA) correlated with those of interleukin (IL)-1beta or IL-6. A similar correlation was present between IL-1beta and IL-6 concentrations. Rheumatoid FLS in vitro expressed both death domain-containing receptors [death receptor 4 (DR4) and DR5] and decoy receptors [decoy receptor 1 (DcR1) and DcR2]. DR4 expression on FLS was weak compared with the expression of DR5, DcR1 and DcR2. Recombinant TRAIL (rTRAIL) rapidly induced apoptosis of FLS. DR5 as well as DR4 were functional with regard to TRAIL-mediated apoptosis induction in FLS; however, DR5 appeared be more efficient than DR4. In addition to soluble DR5 (sDR5) and sDR4, OPG administration significantly inhibited TRAIL-induced apoptogenic activity. OPG was identified in the culture supernatants of FLS, and its concentration increased significantly by the addition of IL-1beta in a time-dependent manner. Neither IL-6 nor tumour necrosis factor (TNF)-alpha increased the production of OPG from FLS. TRAIL-induced apoptogenic activity towards FLS was reduced when rTRAIL was added without exchanging the culture media, and this was particularly noticeable in the IL-1beta-stimulated FLS culture; however, the sensitivity of FLS to TRAIL-induced apoptosis itself was not changed by IL-1beta. Interestingly, neutralization of endogenous OPG by adding anti-OPG monoclonal antibody (MoAb) to FLS culture restored TRAIL-mediated apoptosis. Our data demonstrate that OPG is an endogenous decoy receptor for TRAIL-induced apoptosis of FLS. In addition, IL-1beta seems to promote the growth of rheumatoid synovial tissues through stimulation of OPG production, which interferes with TRAIL death signals in a competitive manner.  相似文献   

13.
Epigenetic effects of anti-psychotic medications are poorly understood. We have appropriated a model whereby heterochromatin is established through 24- or 48-h lipopolysaccharide (LPS) treatment, and tested the epigenetic effects of risperidone along the adenylyl cyclase/protein kinase A (AC/PKA) pathway in human liposarcoma cells that express the LPS-sensitive Toll-like receptor (TLR)-4. Human SW872 cells were cultured with LPS and mRNA expression levels and epigenetic modifications of dimethylated lysine 9 of histone 2 (H3K9me2), geterochromatin protein 1γ (HP1γ) and phospho-H3S10 at promoters of interleukin (IL)-6, tumor necrosis factor (TNF)-α and IL1β were measured. Pharmacological manipulation of the AC/PKA pathway was achieved through treatment with a PKA inhibitor (H89), mitogen- and stress-activated kinase 1 (MSK1) inhibitor (SB-747651A) or forskolin. Twenty-four and 48-h LPS treatment establishes heterochromatin at selected promoters, corresponding to decreased mRNA expression. Concurrent risperidone treatment with LPS treatment can both ‘block’ and ‘reverse’ heterochromatin formation. Forskolin treatment resulted in a similar disassembling effect on heterochromatin. Conversely, inhibition of PKA by H89 or MSK1 both blocked ‘normalizing’ effects of risperidone on LPS-induced heterochromatin. Our results demonstrate that risperidone can disassemble heterochromatin, exerting this effect along the G-protein/AC/PKA pathway. This approach can also be utilized to investigate functional outcomes of single or combined pharmacological treatments on chromatin assemblies in human cells.  相似文献   

14.
Kim K  Sohn H  Kim JS  Choi HG  Byun EH  Lee KI  Shin SJ  Song CH  Park JK  Kim HJ 《Immunology》2012,136(2):231-240
Mycobacterial proteins interact with host macrophages and modulate their functions and cytokine gene expression profile. The protein Rv0652 is abundant in culture filtrates of Mycobacterium tuberculosis K‐strain, which belongs to the Beijing family, compared with levels in the H37Rv and CDC1551 strains. Rv0652 induces strong antibody responses in patients with active tuberculosis. We investigated pro‐inflammatory cytokine production induced by Rv0652 in murine macrophages and the roles of signalling pathways. In RAW264.7 cells and bone marrow‐derived macrophages, recombinant Rv0652 induced predominantly tumour necrosis factor (TNF) and monocyte chemoattractant protein (MCP)‐1 production, which was dependent on mitogen‐activated protein kinases and nuclear factor‐κB. Specific signalling pathway inhibitors revealed that the extracellular signal‐regulated kinase 1/2 (ERK1/2), p38 and phosphatidylinositol 3‐kinase (PI3K) pathways were essential for Rv0652‐induced TNF production, whereas the ERK1/2 and PI3K pathways, but not the p38 pathway, were critical for MCP‐1 production in macrophages. Rv0652‐stimulated TNF and MCP‐1 secretion by macrophages occurred in a Toll‐like receptor 4‐dependent and MyD88‐dependent manner. In addition, Rv0652 significantly up‐regulated the expression of the mannose receptor, CD80, CD86 and MHC class II molecules. These results suggest that Rv0652 can induce a protective immunity against M. tuberculosis through the macrophage activation.  相似文献   

15.
16.
Transglutaminase 2 (TG2) is expressed ubiquitously, has multiple physiological functions and has also been associated with inflammatory diseases, neurodegenerative disorders, autoimmunity and cancer. In particular, TG2 is expressed in small intestine mucosa where it is up-regulated in active coeliac disease (CD). The aim of this work was to investigate the induction of TG2 expression by proinflammatory cytokines [interleukin (IL)-1, IL-6, tumour necrosis factor (TNF)-α, interferon (IFN)-γ and IL-15] and the signalling pathways involved, in human epithelial and monocytic cells and in intestinal tissue from controls and untreated CD patients. Here we report that IFN-γ was the most potent inducer of TG2 expression in the small intestinal mucosa and in four [Caco-2, HT-29, Calu-6 and human acute monocytic leukaemia cell line (THP-1)] of five cell lines tested. The combination of TNF-α and IFN-γ produced a strong synergistic effect. The use of selective inhibitors of signalling pathways revealed that induction of TG2 by IFN-γ was mediated by phosphoinositide 3-kinase (PI3K), while c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) were required for TNF-α activation. Quantitative polymerase chain reaction (PCR), flow cytometry and Western blot analysis showed that TG2 expression was blocked completely when stimulation by either TNF-α or IFN-γ was performed in the presence of nuclear factor (NF)-κB inhibitors (sulphasalazine and BAY-117082). TG2 was up-regulated substantially by TNF-α and IFN-γ in intestinal mucosa in untreated CD compared with controls. This study shows that IFN-γ, a dominant cytokine in intestinal mucosa in active CD, is the most potent inducer of TG2, and synergism with TNF-α may contribute to exacerbate the pathogenic mechanism of CD. Selective inhibition of signalling pathways may be of therapeutic benefit.  相似文献   

17.
18.
Recent studies on endotoxin/lipopolysaccharide (LPS)-induced acute inflammatory response in the lung are reviewed. The acute airway inflammatory response to inhaled endotoxin is mediated through Toll-like receptor 4 (TLR4) and CD14 signalling as mice deficient for TLR4 or CD14 are unresponsive to endotoxin. Acute bronchoconstriction, tumour necrosis factor (TNF), interleukin (IL)-12 and keratinocyte-derived chemokine (KC) production, protein leak and neutrophil recruitment in the lung are abrogated in mice deficient for the adaptor molecules myeloid differentiation factor 88 (MyD88) and Toll/Interleukin-1 receptor (TIR)-domain-containing adaptor protein (TIRAP), but independent of TIR-domain-containing adaptor-inducing interferon-beta (TRIF). In particular, LPS-induced TNF is required for bronchoconstriction, but dispensable for inflammatory cell recruitment. Lipopolysaccharide induces activation of the p38 mitogen-activated protein kinase (MAPK). Inhibition of pulmonary MAPK activity abrogates LPS-induced TNF production, bronchoconstriction, neutrophil recruitment into the lungs and broncho-alveolar space. In conclusion, TLR4-mediated, bronchoconstriction and acute inflammatory lung pathology to inhaled endotoxin are dependent on TLR4/CD14/MD2 expression using the adapter proteins TIRAP and MyD88, while TRIF, IL-1R1 or IL-18R signalling pathways are dispensable. Further downstream in this axis of signalling, TNF blockade reduces only acute bronchoconstriction, while MAPK inhibition abrogates completely endotoxin-induced inflammation.  相似文献   

19.
Endometriosis is a multifactorial inflammatory disease with persistent activation of the nuclear factor‐κB (NF‐κB) signalling pathway. Aberrant adhesion of endometrium is the essential step in the progression of endometriosis, but the molecular mechanism of ectopic growth of endometrium is still unclear. Decoy receptor 3 (DcR3)/TNFRSF6B, a pleiotropic immunomodulator regulated by oestrogen, is able to activate focal adhesion kinase to promote cell adhesion. We found that DcR3 is upregulated in human ectopic endometrial cells via activation of the Akt–NF‐κB signalling pathway, and its expression level correlates positively with that of the adhesion molecules intercellular adhesion molecule 1 (ICAM‐1) and homing cell adhesion molecule (HCAM; CD44). In a multivariate regression model, DcR3 expression level was the most significant parameter associated with endometriosis severity. Knockdown of DcR3 not only downregulated the expression of ICAM‐1 and HCAM, but also reduced cell adhesion and migration. In vivo investigation further showed that DcR3 promoted the growth and spread of endometrium, whereas knockdown of DcR3 by lentivirus‐delivered short hairpin RNA inhibited ectopic adhesion of endometrium and abrogated endometriosis progression. These observations are in support of DcR3 playing a critical role in the pathogenesis of endometriosis, and the inhibition of DcR3 expression being a promising approach for the treatment of endometriosis. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.  相似文献   

20.
背景:诱骗受体1输肿瘤坏死因子相关凋亡配体受体,其可能作为诱饵受体生理性阻断细胞凋亡过程。 目的:观察诱骗受体1在突出和正常腰椎间盘组织中的表达。 方法:2010-01/09收集退行性椎间盘患者手术切除的突出椎间盘标本20个及自愿流产的胎儿的正常腰椎间盘标本8个,免疫组化方法检测诱骗受体1蛋白在不同椎间盘组织中的分布。 结果与结论:突出腰椎间盘组织中诱骗受体1阳性表达的髓核和纤维环细胞明显多于正常椎间盘,说明突出椎间盘组织中诱骗受体的表达提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号