首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In ruminants and other large animals, expression of uncoupling protein-1 (UCP1) in brown adipose tissue (BAT) is confined to the perinatal period when it plays a key role in nonshivering thermogenesis. This study determined whether loss of expression of the BAT phenotype was due to reduced response to a beta-agonist, isoprenaline, and expression of the peroxisome proliferator-activated receptor (PPAR) family [PPARalpha, PPARgamma, PPAR coactivator 1alpha (PGC-1alpha)], which regulates UCP1 gene expression. Perirenal adipose tissue (PAT) was sampled from ovine fetuses, newborn lambs, and lambs on d 1, 5, 7, and 21 of life. UCP1 mRNA and protein in PAT increased from d 123 of fetal life to reach a maximum at birth followed by a rapid decrease over the first 5 d of life. Expression of the coactivator, PGC-1alpha and PPAR alpha, peaked between fetal day 123 and birth, and then declined to undetectable levels in the first days of life. In vivo administration of isoprenaline was able to induce expression of UCP1, PGC-1alpha, and PPARalpha in BAT up to 5 d of age but thereafter was ineffective. In vitro addition of beta-receptor, PPARalpha, and PPARgamma agonists were unable to overcome the suppression of UCP1, PPARalpha, and PPARgamma expression observed in differentiated adipocytes prepared from 30-d-old compared with 1-d-old lambs. These data are consistent with a model in which postnatal loss of UCP1 expression and beta-adrenergic induction of the brown adipocyte phenotype is due to loss of expression of PGC-1alpha and PPARalpha.  相似文献   

2.
3.
Glucuronidation, an important bile acid detoxification pathway, is catalyzed by enzymes belonging to the UDP-glucuronosyltransferase (UGT) family. Among UGT enzymes, UGT1A3 is considered the major human enzyme for the hepatic C24-glucuronidation of the primary chenodeoxycholic (CDCA) and secondary lithocholic (LCA) bile acids. We identify UGT1A3 as a positively regulated target gene of the oxysterol-activated nuclear receptor liver X-receptor alpha (LXRalpha). In human hepatic cells and human UGT1A transgenic mice, LXRalpha activators induce UGT1A3 mRNA levels and the formation of CDCA-24glucuronide (24G) and LCA-24G. Furthermore, a functional LXR response element (LXRE) was identified in the UGT1A3 promoter by site-directed mutagenesis, electrophoretic mobility shift assays and chromatin immunoprecipitation experiment. In addition, LXRalpha is found to interact with the SRC-1alpha and NCoR cofactors to regulate the UGT1A3 gene, but not with PGC-1beta. In conclusion, these observations establish LXRalpha as a crucial regulator of bile acid glucuronidation in humans and suggest that accumulation of oxysterols in hepatocytes during cholestasis favors bile acid detoxification as glucuronide conjugates. LXR agonists may be useful for stimulating both bile acid detoxification and cholesterol removal in cholestatic or hypercholesterolemic patients, respectively.  相似文献   

4.
Fatty acids (FAs) are known to be important regulators of insulin secretion from pancreatic beta-cells. FA-coenzyme A esters have been shown to directly stimulate the secretion process, whereas long-term exposure of beta-cells to FAs compromises glucose-stimulated insulin secretion (GSIS) by mechanisms unknown to date. It has been speculated that some of these long-term effects are mediated by members of the peroxisome proliferator-activated receptor (PPAR) family via an induction of uncoupling protein-2 (UCP2). In this study we show that adenoviral coexpression of PPARalpha and retinoid X receptor alpha (RXRalpha) in INS-1E beta-cells synergistically and in a dose- and ligand-dependent manner increases the expression of known PPARalpha target genes and enhances FA uptake and beta-oxidation. In contrast, ectopic expression of PPARgamma/RXRalpha increases FA uptake and deposition as triacylglycerides. Although the expression of PPARalpha/RXRalpha leads to the induction of UCP2 mRNA and protein, this is not accompanied by reduced hyperpolarization of the mitochondrial membrane, indicating that under these conditions, increased UCP2 expression is insufficient for dissipation of the mitochondrial proton gradient. Importantly, whereas expression of PPARgamma/RXRalpha attenuates GSIS, the expression of PPARalpha/RXRalpha potentiates GSIS in rat islets and INS-1E cells without affecting the mitochondrial membrane potential. These results show a strong subtype specificity of the two PPAR subtypes alpha and gamma on lipid partitioning and insulin secretion when systematically compared in a beta-cell context.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
PGC-1, a versatile coactivator.   总被引:14,自引:0,他引:14  
  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号