首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increased expression of neurotrophins (e.g., NGF, BDNF) and chemokines (e.g., RANTES) has been observed in neurodegenerative diseases. We examined the effect of these factors on intracellular signaling cascades inducing cell cycle proteins p53, pRb, and E2F1 in human fetal mixed neuronal and glial cells. Comparing neurotrophin- and chemokine-treated cultures with untreated controls showed altered subcellular localization and expression of hyperphosphorylated retinoblastoma protein (ppRb), E2F1, and p53. Using immunofluorescent laser confocal microscopy, E2F1 and ppRb were detected exclusively in neuronal nuclei in control cultures while p53 was cytoplasmic in astrocytes and nuclear in neurons. Following treatment with neurotrophins, E2F1 and ppRb were observed in the cytoplasm of neurons, while p53 was observed in both neuronal and astrocytic nuclei. Similar findings were observed following treatment with RANTES. Semiquantitative analysis using immunoblots showed an increase in the amount of phosphorylated pRb in treated cultures. Induction of cell cycle proteins may play a role in neurodegeneration associated with neurotrophin and chemokine stimulation.  相似文献   

2.
3.
HIV-Associated Neurocognitive Disorder (HAND) remains a serious complication of HIV infection, despite combined Anti-Retroviral Therapy (cART). Neuronal dysfunction and death are attributed to soluble factors released from activated and/or HIV-infected macrophages. Most of these factors affect the cell cycle machinery, determining cellular outcomes even in the absence of cell division. One of the earliest events in cell cycle activation is hyperphosphorylation of the retinoblastoma protein, pRb (ppRb). We and others have previously shown increased ppRb expression in the CNS of patients with HIV encephalitis (HIVE) and in neurons in an in vitro model of HIV-induced neurodegeneration. However, trophic factors also lead to an increase in neuronal ppRb with an absence of cell death, suggesting that, depending on the stimulus, hyperphosphorylation of pRb can have different outcomes on neuronal fate. pRb has multiple serines and threonines targeted for phosphorylation by distinct kinases, and we hypothesized that different stimuli may target separate sites for phosphorylation. Thus, to determine whether pRb is differentially phosphorylated in response to different stimuli and whether any of these sites is preferentially phosphorylated in association with HIV-induced neurotoxicity, we treated primary rat mixed cortical cultures with trophic factors, BDNF or RANTES, or with the neurotoxic factor, N-methyl-d-aspartate (NMDA), or with supernatants containing factors secreted by HIV-infected monocyte-derived macrophages (HIV-MDM), our in vitro model of HIV-induced neurodegeneration. We found that, while BDNF and RANTES phosphorylated serine807/811 and serine608 in vitro, treatment with HIV-MDM did not, even though these trophic factors are components of HIV-MDM. Rather, HIV-MDM targets a specific phosphorylation site, serine795, of pRb for phosphorylation in vitro and this ppRb isoform is also increased in HIV-infected brains in vivo. Further, overexpression of a nonphosphorylatable pRb (ppRb S795A) attenuated HIV-MDM-induced neurotoxicity. These findings indicate that HIV-infection in the brain is associated with site-specific hyperphosphorylation of pRb at serine795, which is not induced by other tested stimuli, and that this phosphorylation contributes to neuronal death in this disease, demonstrating that specific pRb sites are differentially targeted and may have diverse impacts on the viability of post-mitotic neurons.  相似文献   

4.
Summary. Calcium/calmodulin-dependent kinase II (α- and β-CaM kinase II), and phosphorylated mitogen-activated extracellular signal-regulated protein kinase (MAPK/ERK-P), phosphorylated protein kinase of 38 kDa (p38-P) and phosphorylated stress-activated protein kinase (SAPK/JNK-P) expression have been examined in Alzheimer disease (AD), Pick's disease (PiD), progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD). The study was carried out to increase understanding of the signals that may regulate tau phosphorylation in tauopathies. MAPK/ERK-P was found in a subset of neurons and glial cells bearing abnormal tau deposition, but rarely in neurofibrillary tangles. Strong p38-P immunoreactivity was observed in about 50–70% of neurons with neurofibrillary tangles and in dystrophic neurites of senile plaques in AD. Strong p38-P immunoreactivity was seen in practically all Pick bodies in PiD, and in most neurons with neurofibrillary degeneration or with tau deposits (pre-tangle neurons) in PSP and CBD, as revealed with single and double-labeling immunohistochemistry to p38-P and tau. In addition, strong p38-P immunoreactivity was present in tau-positive astrocytes and in coiled bodies in PSP and CBD. Single and double-labeling immunohistochemistry to MAPK/ERK-P and p38-P disclosed that MAPK/ERK-P appeared at early stages of tau phosphorylation in neurons and glial cells in tauopathies, and that MAPK/ERK-P and p38-P co-localize only in a subset of neurons and glial cells with phosphorylated tau deposits. SAPK/JNK-P immunoreactivity was seen in a subset of neurons, including many neurons with neurofibrillary degeneration, and in glial cells accumulating abnormal tau, in AD, PiD, PSP and CBD. Double-labeling immunohistochemistry disclosed partial co-localization of SAPK/JNK-P and either MAPK/ERK-P or p-38-P immunoreactivity. These findings indicate that MAPK/ERK-P, SAPK/JNK-P and p-38-P are differentially expressed in association with tau deposits in tauopathies. Finally, CaM kinase II is present in neurons but not in glial cells, thus suggesting no role of CaM kinase II in tau phosphorylation of glial cells. These observations, together with previous results of in vitro studies, support the idea that several MAPK/ERK, SAPK/JNK, p38 and CaM kinase II may participate in tau phosphorylation in tauopathies. Lack of co-localization between MAPK/ERK-P, SAPK/JNK-P and p-38-P over-expression, and staining with the method of in situ end-labeling of nuclear DNA fragmentation in individual cells indicate that over-expression of these kinases is not linked with increased nuclear DNA vulnerability in AD, PiD, PSP and CBD. Received June 26, 2001; accepted August 27, 2001  相似文献   

5.
P38 MAP kinase is activated at early stages in Alzheimer's disease brain   总被引:6,自引:0,他引:6  
The regional, cellular, and subcellular localization of phosphorylated p38 MAPK (pp38) was examined by immunocytochemistry, immuofluorescent multiple labeling, and immunoblotting of extracts as well as immunoprecipitates of human postmortem tissue from control and Alzheimer's disease (AD) cases at different Braak stages. "Early AD" cases (Braak stages IV-V) and a subset of Braak stage VI cases have high levels of pp38 immunoreactivity, with the most dense immunoreactivity located in CA2 and subiculum followed by CA1 in the hippocampus. On the contrary, very little pp38 was detected in age-matched controls (Braak stages 0-II). More importantly, as revealed by various multiple labeling experiments, pp38 immunoreactivity is mainly located in neurons bearing early neurofibrillary pathology, but not in typically fibrillar tangles that are densely stained by thioflavin-S. Most pp38-positive neurons only contain a small amount of phospho-tau. Additionally, pp38 immunoreactivity was not associated with senile plaques. At the subcellular level, pp38-immunoreactive granules are usually larger than the granules stained with the lysosomal marker cathepsin D. Immunoblotting with different extraction buffers and immunoprecipitation indicate that pp38 does not or only loosely binds to phospho-tau. Taken together, this study demonstrates that p38 MAPK is activated at early stages of neurofibrillary degeneration in AD hippocampus. The p38 activation may also be linked to neurodegeneration through mechanisms other than neurofibrillary tangle formation.  相似文献   

6.
The nonreceptor tyrosine kinase PYK2 represents a stress-sensitive mediator of c-Jun N-terminal kinase and p38 mitogen-activated protein kinase (MAPK) signaling pathways in many cell types. In the present study, we assessed the tyrosine phosphorylation of PYK2 under normal and pathological conditions in the CNS. We generated a polyclonal antibody that selectively recognizes tyrosine-phosphorylated PYK2 at its major autophosphorylation site. By using this antibody, we demonstrate that the phosphorylation profile of PYK2 after focal cerebral ischemia is biphasic. The first phase occurs within 1 hr, when most of the phospho-PYK2 immunoreactivity was observed in cortical neurons, whereas 24-72 hr after ischemia, a striking induction of phospho-PYK2 immunoreactivity was evident in microglia around the necrotic infarcted area. Double-immunostaining analysis using both anti-phospho-PYK2 antibody and antibody against the double-phosphorylated active form of p38MAPK revealed that the two phosphorylated protein kinases exhibit strikingly similar distribution patterns after ischemia. A short time after ischemia, phosphorylation of p38MAPK was evident in the cortical neurons as demonstrated by both immunohistochemistry and immunoblotting analysis, whereas 24-72 hr after ischemia, phospho-p38MAPK was found in activated microglia and colocalized with phospho-PYK2. In contrast to cortical neurons, basal phospho-PYK2 immunoreactivity was observed in hippocampal pyramidal neurons, which was markedly decreased after kainate acid-induced status epilepticus. However, 24 hr after the epileptic onset, a pronounced upregulation of PYK2 and phospho-PYK2 immunoreactivities was evident in microglial cells, as demonstrated by double-immunostaining with the microglial marker OX42. These results provide, for the first time, in situ localization of tyrosine-phosphorylated PYK2 in neuronal stress pathways in the adult rat brain and are consistent with the role of PYK2 as an upstream regulator of p38MAPK signaling cascades in response to stress signals.  相似文献   

7.
Cellular mechanisms implicated in Parkinson disease (PD) include oxidative stress, inflammatory response, excess dopamine, DNA damage, and loss of trophic support. These stimuli have been observed to induce changes in cell cycle proteins in several cell types. One of the key regulators of cell cycle progression is the retinoblastoma protein (pRb); therefore, we assessed the staining for pRb and its inactive hyperphosphorylated isoform, ppRb, in autopsy tissue from patients with PD. In PD we found abundant pRb staining in neuronal cytoplasm of the substantia nigra, mid-frontal cortex, and hippocampus by immunohistochemistry. In controls, pRb weakly stained nucleoli of neurons in the substantia nigra and exhibited no detectable staining in mid-frontal cortex and hippocampus. Staining for ppRb resulted in a shift from weak cytoplasmic staining in neurons from control cases to strong nuclear staining in PD cases, especially within the substantia nigra, mid-frontal cortex, and hippocampus. In the substantia nigra, ppRb also co-localized to Lewy bodies, which are a pathologic feature of PD. Lewy bodies are also found in diffuse Lewy body disease (DLBD) that do not consistently exhibit changes in pRb or ppRb. These results indicate that there are changes in pRb and its inactive phospho-isoform in neurons responding to neurodegenerative stimuli associated with PD.  相似文献   

8.
Regular use of non-steroidal anti-inflammatory drugs (NSAIDs) seems to reduce the progression of several diseases, including colon cancer, lung cancer, breast cancer and Alzheimer disease (AD). Several studies have shown that NSAIDs can modulate cell cycle progression, especially in the G0/G1 phase. The main target of most NSAIDs is the enzyme cyclo-oxygenase (COX), which occurs in 2 isoforms, COX-1 and COX-2. In AD and non-demented control brain, COX-2 is expressed in neuronal cells. In this study the expression of COX-2, cyclin D1, and cyclin E was investigated at the immunohistochemical level in AD and non-demented control temporal cortex. COX-2, cyclin D1, and cyclin E expression was detected in pyramidal neurons in both AD and control patients. The number of COX-2-immunoreactive neurons positively correlated with the number of cyclin E- and cyclin D1-immunoreactive neurons. Moreover, immunostaining of sequential tissue sections and double immunofluorescence labeling revealed co-expression of COX-2 and cyclin D1 and E in neuronal cells. In addition, an inverse correlation was observed between the neuronal expression of COX-2 and cyclin E and the Braak score for amyloid beta deposits. Our findings suggest a relationship between the neuronal expression of COX-2 and cell cycle markers, which may be involved early in AD pathology.  相似文献   

9.
Chang RC  Wong AK  Ng HK  Hugon J 《Neuroreport》2002,13(18):2429-2432
Inhibition of protein translation is a mode of inducing neuronal apoptosis and neurodegeneration in Alzheimer's disease (AD). Phosphorylation of eukaryotic initiation factor-2alpha (eIF2alpha) terminates global protein translation and induces apoptosis. We examined whether this signaling pathway occurs in degenerating neurons of AD. Brain sections from young individuals, age-matched control individuals and AD patients were examined for immunoreactivity of phosphorylated eIF2alpha by immunohistochemical analysis. While young brain sections did not display and age-matched brain sections have mild immunoreactive positive cells, AD brain sections revealed intense immunoreactivity for phosphorylated eIF2alpha. Most of the phosphorylated eIF2alpha immunoreactive positive neurons have high immunoreactivity for phosphorylated tau using AT8 antibody. Also, intense staining of phosphorylated eIF2alpha is associated vacuoles in degenerating neurons. This phenomenon was also observed for the immunohistochemical staining of phosphorylated PKR (double-stranded RNA-dependent protein kinase), the upstream kinase for eIF2alpha. Activation of PKR-eIF2alpha pathway is considered to be pro-apoptotic. In addition, formation of autophagy is regulated by eIF2alpha kinase. Therefore, it is concluded that phosphorylation of eIF2alpha is associated with the degeneration of neurons in AD.  相似文献   

10.
The retinoblastoma susceptibility gene product (pRb) and E2F1 have been found to exhibit altered localization and increased staining in several neurodegenerative diseases. We have observed similar localization in primary murine cortical cultures treated with neurotrophic factors (NTF) or chemokines. In untreated cultures, E2F1 exhibited minimal immunostaining using the KH95 antibody, which recognizes the pRb interaction domain. In primary E16 murine cortical cultures, NTF- or chemokine-treated neurons, KH95 E2F1 staining was increased in the cytoplasm. However, an antibody recognizing the amino-terminus of E2F1 (KH20) stained the cytoplasm of both untreated and treated neurons. Taken together these results suggest that the change seen in E2F1 using the KH95 antibody is due to antigen unmasking of a carboxy-terminal epitope in response to NTF and chemokines. When we assessed staining for the hyperphosphorylated, inactive form of pRb (ppRb) in untreated cultures, ppRb was predominantly cytoplasmic. In response to NTF or chemokine treatment, staining for ppRb was observed predominantly in nuclei of neurons indicating a change in subcellular distribution. Immunoblot analysis demonstrated increased levels of ppRb in response to NTF and chemokines. Inhibitors of translation, nuclear export, and phoshpatidylinositol-3-kinase blocked NTF- and chemokine-induced nuclear ppRb localization while having no effect on E2F1 staining. Instead increased cytoplasmic KH95 E2F1 staining was dependent on cytoskeletal destabilization which did not influence ppRb localization. These findings demonstrate that alterations in ppRb distribution and E2F1 antigen availability by NTF and chemokines occur by distinct mechanisms suggesting that E2F1 function may be independent of pRb regulation in post-mitotic neurons.  相似文献   

11.
12.
Epidemiological and clinical studies suggest that nonsteroidal anti-inflammatory drugs (NSAIDs) that inhibit cyclooxygenase (COX) slow the progression and delay the onset of Alzheimer disease (AD). Two isoforms of cyclooxygenase have been identified. Although much effort has recently been focused on the inducible COX-2 isoform, little is known about COX-1 expression in human brain. We report that COX-1 message and immunoreactivity are localized to human hippocampal CA3 and CA4 neurons, granular neurons in neocortical layer IV, and occasional cortical pyramidal neurons. Quantitative in situ hybridization showed no differences between COX-1 mRNA levels in control and AD CA3 hippocampal neurons. COX-1 immunoreactivity was also present in microglial cells in gray and white matter in all brain regions examined. COX-1 appeared to be expressed in microglial cells regardless of their activation state as determined by HLA-DR immunostaining. However, COX-1 immunopositive microglia were found in association with Abeta plaques, and the density of COX-1 immunopositive microglia in AD fusiform cortex was increased. This pattern suggests an overall increase of COX-1 expression in AD. Currently used NSAIDs inhibit both isoforms of cyclooxygenase. The present study shows that COX-1 is widely expressed in human brain, and raises the possibility that COX-1 may contribute to CNS pathology.  相似文献   

13.
The immunocytochemical distribution of the neuronal form of nitric oxide synthase (nNOS) was compared with neuropathological changes and with cell death related DNA damage (as revealed by in situ end labeling, ISEL) in the hippocampal formation and entorhinal cortex of 12 age-matched control subjects and 12 Alzheimer's disease (AD) patients. Unlike controls, numerous nNOS-positive reactive astrocytes were found in AD patients around beta-amyloid plaques in CA1 and subiculum and at the places of clear and overt neuron loss, particularly in the entorhinal cortex layer II and CA4. This is the first evidence of nNOS-like immunoreactivity in reactive astrocytes in AD. In contrast to controls, in all but one AD subject, large numbers of ISEL-positive neuronal nuclei and microglial cells were found in the CA1 and CA4 regions and subiculum. Semiquantitative analysis showed that neuronal DNA fragmentation in AD match with the distribution of nNOS-expressing reactive astroglial cells in CA1 (r = 0.74, P < 0.01) and CA4 (r = 0.58, P < 0.05). A portion of the nNOS-positive CA2/CA3 pyramidal neurons was found to be spared even in the most affected hippocampi. A significant inverse correlation between nNOS expression and immunoreactivity to abnormally phosphorylated tau proteins (as revealed by AT8 monoclonal antibody) in perikarya of these CA2/3 neurons (r = -0.85, P < 0.01) suggests that nNOS expression may provide selective resistance to neuronal degeneration in AD. In conclusion, our results imply that an upregulated production of NO by reactive astrocytes may play a key role in the pathogenesis of AD.  相似文献   

14.
Cyclooxygenase-2 (COX-2), a key enzyme in prostanoid biosynthesis, may represent an important therapeutic target in Alzheimer's disease (AD). In the present study, we explored the regulation of COX-2 in the hippocampal formation in sporadic AD. Using semiquantitative immunocytochemical techniques, we found that in AD cases (vs. age-matched controls) neurons of the CA1-CA4 subdivisions of the hippocampal pyramidal layer showed elevation of COX-2 signal; COX-2 levels correlated with amyloid plaque density. In contrast, the level of COX-2 immunostaining in the dentate gyrus granule neurons was not elevated in AD. No expression of COX-2 in cells with glial morphology was found in any case examined. In parallel, in vitro studies found that neurons derived from transgenic mice with neuronal overexpression of COX-2 are more susceptible to beta-amyloid (Abeta) toxicity, with potentiation of redox impairment. The results indicate elevated expression of neuronal COX-2 in subregions of the hippocampal formation in AD and that such elevation may potentiate Abeta-mediated oxidative stress.  相似文献   

15.
16.
Besides being used as a spice, ginger has been applied in oriental medicine to ameliorate symptoms such as inflammatory, rheumatic disorders, and gastrointestinal discomforts. The effects of ginger on neuronal cells, however, have not been explored. We investigate the effect of 1-(3,4-dimethoxyphenyl)-3,5-dodecenedione (I(6)), a derivative of gingerdione, on cultured cortical neurons. After a 5-day maturation period in vitro, cortical neurons were treated with I(6) for 24 hr and cell viability was assessed using MTT assay. I(6) induced neuronal death in a concentration-dependent manner. Hoechst 33342, propidium iodide (PI), and TUNEL staining confirmed that the reduced cell viability by I(6) was due to apoptosis. Pre-treatment of cell with N-acetylcysteine (NAC) prevented cell death in a concentration-dependent manner. N-acetylcysteine increased phosphorylated levels of p42 and p44 extracellular signal-regulated kinases (ERKs). In parallel, farnesyltransferase and MEK inhibitors blocked ERK phosphorylation and neuroprotective effect of NAC. Unexpectedly, NAC also increased phosphorylated level of p38 mitogen-activated protein kinase (MAPK) and p38 specific inhibitors dose-dependently attenuated the effect of NAC. Farnesyltransferase and MEK inhibitors completely abolished NAC-induced p38 phosphorylation whereas p38 inhibitor did not influence NAC-induced ERK phosphorylation. These results show that NAC serially activates ERKs and p38 MAPK, and ERKs and p38 work together to mediate the neuroprotective effect of NAC.  相似文献   

17.
Accumulation of amyloid beta peptides (Abeta) in the brain, which is a hallmark of Alzheimer's disease (AD), is associated with progressive damage to neuronal processes resulting in extensive neuritic dystrophy. This process may contribute to cognitive decline, but it is not known how Abeta elicits neuritic injury. Our analysis of AD brains and related transgenic mouse models suggests an involvement of the interferon-induced serine-threonine protein kinase, PKR, which is best known for its activation upon binding to double-stranded RNA. PKR activation is a component of stress-activated pathways that mobilize somatic cell death programs, but its roles in neurological disease largely remain to be defined. An antibody specific to the activated form of PKR (phosphorylated at T451) was used to determine the pattern of PKR activation in postmortem brain tissues from humans or from transgenic mice that express high levels of familial AD-mutant human amyloid precursor protein (hAPP) and hAPP-derived Abeta in neurons. In contrast to nondemented controls, AD cases showed prominent granular phospho-PKR immunoreactivity in association with neuritic plaques and pyramidal neurons in the hippocampus and neocortex. The distribution of phospho-PKR matched the distributions of abnormally phosphorylated tau and active p38 MAP kinase in adjacent sections. Compared with nontransgenic controls, hAPP transgenic mice also showed strong increases in phospho-PKR in the brain, primarily in association with plaques and dystrophic neurites. These findings support a role for PKR activation in the pathogenesis of AD.  相似文献   

18.
Mutations in the presenilin-1 gene (PS-1) on chromosome 14 are causative for early-onset familial Alzheimer's disease (AD). In order to study the localization of PS-1 in human brain, a polyclonal antibody, SB63, against a N-terminal epitope of PS-1 (25VRSQNDNRERQEHND40), was raised in rabbits and characterized. Immunolabeling with SB63 of formalin-fixed sections of hippocampus from cases of PS-1-linked AD (PS-1 I143T (AD/A), G384A (AD/B)), sporadic AD, and controls showed a predominant neuronal staining pattern with a stronger immunoreactivity in pyramidal neurons. Staining was mainly granular and localized in the neuronal cell body as well as in neuronal processes. In AD some dystrophic neurites surrounding the amyloid plaques were stained, but no immunoreactivity was observed in the amyloid core. Although PS-1 was present in tangle bearing neurons, colocalization of PS-1 and tau could not be detected using immunofluorescence double labeling. Our data indicate that the pattern of PS-1 immunoreactivity in the hippocampus does not substantially differ between PS-1-linked AD, sporadic AD, and controls.  相似文献   

19.
This post mortem immunohistochemical study examined the localization and distribution of ubiquilin‐1 (UBL), a shuttle protein which interacts with ubiquitin and the proteasome, in the hippocampus from Alzheimer's disease (AD) dementia cases, and age‐matched cases without dementia. In Braak stages 0–I–II cases, UBL immunoreactivity was detected in a dense fiber network in the neuropil, and in the cell cytoplasm and nucleoplasm of neurons in Cornu Ammonis (CA) fields and dentate gyrus granular neurons. In Braak stages III‐IV and V‐VI cases, UBL immunoreactivity was reduced in the neuropil and in the cytoplasm of the majority of CA1 neurons; some CA1 pyramidal neurons and the majority of CA2/3 pyramidal, CA4 multipolar, and dentate granular neurons had markedly increased UBL immunoreactivity in the nucleoplasm. Dual immunofluorescence analysis of UBL and antibody clone AT8 revealed co‐localization most frequently in CA1 pyramidal neurons in Braak stage III‐IV and V‐VI cases. Further processing using the pan‐amyloid marker X‐34 revealed prominent UBL/X‐34 dual labeling of extracellular NFT confined to the CA1/subiculum in Braak stage V‐VI cases. Our results demonstrate that in AD hippocampus, early NFT changes are associated with neuronal up‐regulation of UBL in nucleoplasm, or its translocation from the cytoplasm to the nucleus. The perseverance of UBL changes in CA2/3, CA4 and dentate gyrus, generally considered as more resistant to NFT pathology, but not in the CA1, may mark a compensatory, potentially protective response to increased tau phosphorylation in hippocampal neurons; the failure of such a response may contribute to neuronal degeneration in end‐stage AD.  相似文献   

20.
Studies of acetylcholine degrading enzymes acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) in Alzheimer's disease (AD) have suggested their potential role in the development of fibrillar amyloid‐β (Aβ) plaques (amyloid plaques). A recent genome‐wide association study analysis identified a novel association between genetic variations in the BCHE locus and amyloid burden. We studied BChE immunoreactivity in hippocampal tissue sections from AD and control cases, and examined its relationship with amyloid plaques, neurofibrillary tangles (NFT), dystrophic neurites (DN) and neuropil threads (NT). Compared to controls, AD cases had greater BChE immunoreactivity in hippocampal neurons and neuropils in CA2/3, but not in the CA1, CA4 and dentate gyrus. The majority of amyloid plaques (> 80%, using a pan‐amyloid marker X‐34) contained discrete neuritic clusters which were dual‐labeled with antibodies against BChE and phosphorylated tau (clone AT8). There was no association between overall regional BChE immunoreaction intensity and amyloid plaque burden. In contrast to previous reports, BChE was localized in only a fraction (~10%) of classic NFT (positive for X‐34). A similar proportion of BChE‐immunoreactive pyramidal cells were AT8 immunoreactive. Greater NFT and DN loads were associated with greater BChE immunoreaction intensity in CA2/3, but not in CA1, CA4 and dentate gyrus. Our results demonstrate that in AD hippocampus, BChE accumulates in neurons and plaque‐associated neuritic clusters, but only in a small proportion of NFT. The association between greater neurofibrillary pathology burden and markedly increased BChE immunoreactivity, observed selectively in CA2/3 region, could reflect a novel compensatory mechanism. Since CA2/3 is generally considered more resistant to AD pathology, BChE upregulation could impact the cholinergic modulation of glutamate neurotransmission to prevent/reduce neuronal excitotoxicity in AD hippocampus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号