首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bahr U  Tobiasch E  Darai G 《Virus research》2001,74(1-2):27-38
Tupaia herpesvirus (THV) was isolated from spontaneously degenerating tissue cultures of malignant lymphoma, lung, and spleen cell cultures of tree shrews (Tupaia spp.). In order to determine the phylogenetic relatedness of THV the complete nucleotide sequence of the viral terminase (VTER) gene locus (6223 bp) of Tupaia herpesvirus strain 2 (THV-2) was elucidated and analysed. The VTER gene locus, encoding one of the most highly conserved herpes viral proteins is composed of two exons. The intron contains five potential open reading frames (ORFs). The arrangement of these ORFs is colinear with the corresponding regions in the genomes of the mammalian cytomegaloviruses. The precise primary structure of the THV-2 VTER splice junction was determined using RT-PCR and was found to be in agreement with the corresponding splice donor and acceptor sites of the mammalian cytomegaloviruses. The comparison of all six putative THV-2 proteins with the corresponding counterparts in other herpesviruses revealed that THV resides between the Human and the Murine cytomegalovirus (HCMV, MCMV). These results are in agreement with our previous statement, that THV and the known cytomegaloviruses are closely related to each other and should be classified into one taxonomic group. The genetic data presented here and in previous studies are based on the detailed comparison of highly conserved viral genes. Consequently, the classification of the Human and the cytomegaloviruses into the two genera Cyto- and Muromegalovirus, that is mainly based on overall genome structure, should be reconsidered.  相似文献   

2.
3.
The bean shoot borer, Epinotia aporema (Lep. Tortricidae), is an economically important pest of legume crops in South America. Recently, a granulovirus (EpapGV) was isolated from E. aporema larvae, and evaluated as a potential biological control agent. In order to generate a restriction map and to investigate the gene organisation of EpapGV genome, DNA isolated from occlusion bodies as well as a set of cloned genomic fragments were analysed using combinations of restriction endonucleases and Southern blot analyses that lead to a first version of the physical map. It was subsequently confirmed and refined by sequencing the termini of the cloned fragments and assessing their contiguity by comparing the sequences with databases to identify putative ORFs spanning neighbour fragments. This was also aided by PCR amplifications with primers that pointed outwards of the cloned viral DNA. The granulin gene was positioned on the physical map, cloned and sequenced. Its 747-nucleotide-long ORF encodes a predicted protein of 29kDa and the core of the baculovirus very late promoter ATAAG was found 29 nucleotides upstream the initiation codon. In addition, 27 putative ORFs were located on the map and used to explore the genome organisation by GeneParityPlot against the fully sequenced granulovirus genomes. These data, taken together with the phylogenetic tree generated by alignment of the major occlusion proteins, indicate that EpapGV is closely related to CpGV, but has a distinct gene organisation.An erratum to this article can be found at  相似文献   

4.
Herpesviruses (Herpesvirales) and tailed bacteriophages (Caudovirales) package their dsDNA genomes through an evolutionarily conserved mechanism. Much is known about the biochemistry and structural biology of phage portal proteins and the DNA encapsidation (viral genome cleavage and packaging) process. Although not at the same level of detail, studies on HSV‐1, CMV, VZV, and HHV‐8 have revealed important information on the function and structure of herpesvirus portal proteins. During dsDNA phage and herpesviral genome replication, concatamers of viral dsDNA are cleaved into single length units by a virus‐encoded terminase and packaged into preformed procapsids through a channel located at a single capsid vertex (portal). Oligomeric portals are formed by the interaction of identical portal protein monomers. Comparing portal protein primary aa sequences between phage and herpesviruses reveals little to no sequence similarity. In contrast, the secondary and tertiary structures of known portals are remarkable. In all cases, function is highly conserved in that portals are essential for DNA packaging and also play a role in releasing viral genomic DNA during infection. Preclinical studies have described small molecules that target the HSV‐1 and VZV portals and prevent viral replication by inhibiting encapsidation. This review summarizes what is known concerning the structure and function of herpesvirus portal proteins primarily based on their conserved bacteriophage counterparts and the potential to develop novel portal‐specific DNA encapsidation inhibitors.  相似文献   

5.
6.
A gene was identified within the DNA sequences of theEcoRI DNA fragment N (4.3 kbp) of the genome of equine herpesvirus type 2 (EHV-2) coding for a protein (179 amino acid residues) homologous to the cytokine synthesis inhibitory factor (CSIF; interleukin 10) of the human and mouse, and to the Epstein-Barr virus (EBV) protein BCRF1. This finding is further significant evidence that the interleukin 10 (IL-10) and/or IL-10-like gene can indeed be present in the genomes of members of the herpesviral family.  相似文献   

7.
Genomewide function conservation and phylogeny in the Herpesviridae   总被引:2,自引:1,他引:2  
The Herpesviridae are a large group of well-characterized double-stranded DNA viruses for which many complete genome sequences have been determined. We have extracted protein sequences from all predicted open reading frames of 19 herpesvirus genomes. Sequence comparison and protein sequence clustering methods have been used to construct herpesvirus protein homologous families. This resulted in 1692 proteins being clustered into 243 multiprotein families and 196 singleton proteins. Predicted functions were assigned to each homologous family based on genome annotation and published data and each family classified into seven broad functional groups. Phylogenetic profiles were constructed for each herpesvirus from the homologous protein families and used to determine conserved functions and genomewide phylogenetic trees. These trees agreed with molecular-sequence-derived trees and allowed greater insight into the phylogeny of ungulate and murine gammaherpesviruses.  相似文献   

8.
We have determined the complete nucleotide and amino acid sequences of the Polish Pepino mosaic virus (PepMV) isolate marked as PepMV-PK. The PepMV-PK genome consists of a single positive-sense RNA strand of 6412-nucleotide-long that contains five open reading frames (ORFs). ORF1 encodes the putative viral polymerase (RdRp), ORFs 2–4 the triple gene block (TGB 1–3), and ORF5-coat protein CP. Two short untranslated regions flank the coding ones and there is a poly (A) tail at the 3′ end of the genomic RNA. Thus, the genome organization of PepMV-PK is that of a typical member of the genus Potexvirus. Phylogenetic analysis based on full-length genomes of PepMV sequences showed that PepMV-PK was most closely related to the Ch2 isolate from Chile. Comparison of PepMV-PK and Ch2 showed the following nucleotide identities: 98% for the RdRp, 99% for the CP genes, and 98, 99, and 98% for the TGB1, TGB2, and TBG3, respectively. This high level of nucleotide sequence identity between the Chilean and Polish PepMV-PK isolates suggest their common origin.  相似文献   

9.
We have identified the lef-1 genes from two multiple nucleopolyhedroviruses that infect natural populations of Choristoneura fumiferana. The lef-1 genes in both viruses are directly upstream and in the opposite orientation of their respective ecdysteroid UDP-glucosyltransferase (egt) genes. This gene organization pattern is similar to that found in the genomes of AcMNPV and of OpMNPV. As well, the coding regions and putative protein sequences share a high degree of similarity. Alignment of the predicted amino acid sequences of all known baculovirus lef-1 genes suggests that the LEF-1 proteins have a relatively high degree of conservation, particularly at four identified and distinct domains. Moreover, LEF-1 proteins bear clear similarity to some eukaryotic primases, predominately at three of the four domains where certain amino acids are absolutely conserved.  相似文献   

10.
Jakob NJ  Darai G 《Virus genes》2002,25(3):299-316
Chilo iridescent virus (CIV) or Insect iridescent virus 6 (IIV-6) is the type species of the genus iridovirus, a member of the Iridoviridae family. CIV is highly pathogenic for a variety of insect larvae and this implicates a possible use as a biological insecticide. CIV progeny and assembly occur in the cytoplasm of the infected cell and accumulate in the fatbody of the infected insects. Since the discovery of CIV in 1966, many attempts were made to elucidate the viral genome structure and the amino acid sequences of different viral gene products. The elucidation of the coding capacity and strategy of CIV was the first step towards understanding the underlying mechanisms of viral infection, replication and virus-host interaction. The virions contain a single linear ds DNA molecule that is circularly permuted and terminally redundant. The coding capacity of the CIV genome was determined by the analysis of the complete DNA nucleotide sequence consisting of 212,482bp that represent 468 open reading frames encoding for polypeptides ranging from 40 to 2432 amino acid residues. The analysis of the coding capacity of the CIV genome revealed that 50% (234 ORFs) of all identified ORFs (468 ORFs) were non-overlapping. The identification of several putative viral gene products including a DNA ligase and a viral antibiotic peptide is a powerful tool for the investigation of the phylogenetic relatedness of this evolutionary and ecologically relevant eukaryotic virus.  相似文献   

11.
Herpesviruses, which are important pathogens for both animals and humans, have large and complex genomes with a coding capacity for up to 225 open reading frames (ORFs). Due to the large genome size and the slow replication kinetics in vitro of some herpesviruses, mutagenesis of viral genes in the context of the viral genome by conventional recombination methods in cell culture has been difficult. Given that mutagenesis of viral genes is the basic strategy to investigate function, many of the herpesvirus ORFs could not be defined functionally. Recently, a completely new approach for the construction of herpesvirus mutants has been developed, based on cloning of the virus genome as a bacterial artificial chromosome (BAC) in E. coli. This technique allows the maintenance of viral genomes as a plasmid in E. coli and the reconstitution of viral progeny by transfection of the BAC plasmid into eukaryotic cells. Any genetic modification of the viral genome in E. coli using prokaryotic recombination proteins is possible, thereby allowing the generation of mutant viruses and facilitating the analysis of herpesvirus genomes cloned as infectious BACs. In this review, we describe the principle of cloning a viral genome as a BAC using murine gammaherpesvirus 68 (MHV-68), a mouse model for gammaherpesvirus infections, as an example.  相似文献   

12.
During egg-laying, some endoparasitic wasps transmit a polydnavirus to their caterpillar host, causing physiological disturbances that benefit the wasp larva. Members of the two recognized polydnavirus taxa, ichnovirus (IV) and bracovirus (BV), have large, segmented, dsDNA genomes containing virulence genes expanded into families. A recent comparison of IV and BV genomes revealed taxon-specific features, but the IV database consisted primarily of the genome sequence of a single species, the Campoletis sonorensis IV (CsIV). Here we describe analyses of two additional IV genomes, the Hyposoter fugitivus IV (HfIV) and the Tranosema rostrale IV (TrIV), which we compare to the sequence previously reported for CsIV. The three IV genomes share several features including a low coding density, a strong A+T bias, similar estimated aggregate genome sizes ( approximately 250 kb) and the presence of nested genome segments. In addition, all three IV genomes contain members of six conserved gene families: repeat element, cysteine motif, viral innexin, viral ankyrin, N-family, and a newly defined putative family, the polar-residue-rich proteins. The three genomes, however, differ in their degree of segmentation, in within-family gene frequency and in the presence, in TrIV, of a unique gene family (TrV). These interspecific variations may reflect differences in parasite/host biology, including virus-induced pathologies in the latter.  相似文献   

13.
Summary A restriction map of the chloroplast genome has been determined for kiwifruit, Actinidia deliciosa. Single and multiple enzyme digests of kiwifruit chloroplast DNA were hybridised to a set of Brassica chloroplast probes, and the kiwifruit bands aligned with the known Brassica map. The chloroplast DNA of kiwifruit is typical of the majority of angiosperm chloroplast genomes; it is 160 kb in size, contains a 15–34 kb inverted repeat, and its gene content and gene order are similar to those of the Brassica chloroplast genome.  相似文献   

14.
Herpesviruses encode protein kinases. A subset of these proteins, represented by HSV-1 UL13, are conserved throughout all members of the Herpesviridae, and here, are designated CHPKs (conserved herpesvirus protein kinases). In addition to conserved gene products like CHPKs, herpesviruses encode genes specific to respective herpesviruses. When acting upon conserved viral gene products or cellular factors, CHPKs may play conserved roles in the life cycles of herpesviruses. CHPKs may also express unique functions within the infectious process of individual herpesviruses when specific viral gene products are targeted. CHPKs demonstrate specific activity in multiple herpesvirus infections, functioning in the regulation of viral gene expression in HSV-1, tissue tropism in VZV, and viral DNA synthesis, encapsidation and egress from the nucleus in HCMV. The HCMV CHPK, however, can partially substitute for the HSV-1 CHPK. Representative CHPKs from all Herpesviridae subfamilies can also facilitate the hyperphosphorylation of the cellular translation factor, EF-1delta. This indicates that CHPKs have conserved functions. Recent data have shown that both CHPKs and a cellular protein kinase, cdc2, phosphorylate the same amino acid residues of target proteins. Thus, CHPKs may mimic cdc2 function in infected cells.  相似文献   

15.
The overall arrangement of genes in the unique central part of the bovine herpesvirus type 4 (BHV-4) genome has been deduced by analysis of short DNA sequences. Twenty-three genes conserved in at least one of the completely sequenced herpesviruses have been identified and localized. All of these genes encoded amino acid sequences with higher similarity to proteins of the gammaherpesviruses Epstein-Barr virus (EBV) and herpesvirus saimiri (HVS) than to the homologous products of the alphaherpesviruses varicella-zoster virus and herpes simplex virus type 1 or the betaherpesvirus human cytomegalovirus. The genome organization of BHV-4 had also an overall colinearity with that of the gammaherpesviruses EBV and HVS. Furthermore, the BHV-4 genes content and arrangement were more similar to those of HVS than to those of EBV, suggesting that BHV-4 and HVS are evolutionarily more closely related to each other than either are to EBV. BHV-4 DNA sequences were generally deficient in CpG dinucleotide. This CpG deficiency is characteristic of gammaherpesvirus genomes and suggests that the BHV-4 latent genome is extensively methylated. Despite several biological features similar to those of betaherpesviruses, BHV-4 displays the molecular characteristics of the representative members of the gammaherpesvirinae subfamily.  相似文献   

16.
A comprehensive dataset of NDV genome sequences was evaluated using bioinformatics to characterize the evolutionary forces affecting NDV genomes. Despite evidence of recombination in most genes, only one event in the fusion gene of genotype V viruses produced evolutionarily viable progenies. The codon-associated rate of change for the six NDV proteins revealed that the highest rate of change occurred at the fusion protein. All proteins were under strong purifying (negative) selection; the fusion protein displayed the highest number of amino acids under positive selection. Regardless of the phylogenetic grouping or the level of virulence, the cleavage site motif was highly conserved implying that mutations at this site that result in changes of virulence may not be favored. The coding sequence of the fusion gene and the genomes of viruses from wild birds displayed higher yearly rates of change in virulent viruses than in viruses of low virulence, suggesting that an increase in virulence may accelerate the rate of NDV evolution.  相似文献   

17.
18.
Comparative analysis of the protein sequences encoded in the four euryarchaeal species whose genomes have been sequenced completely (Methanococcus jannaschii, Methanobacterium thermoautotrophicum, Archaeoglobus fulgidus, and Pyrococcus horikoshii) revealed 1326 orthologous sets, of which 543 are represented in all four species. The proteins that belong to these conserved euryarchaeal families comprise 31%-35% of the gene complement and may be considered the evolutionarily stable core of the archaeal genomes. The core gene set includes the great majority of genes coding for proteins involved in genome replication and expression, but only a relatively small subset of metabolic functions. For many gene families that are conserved in all euryarchaea, previously undetected orthologs in bacteria and eukaryotes were identified. A number of euryarchaeal synapomorphies (unique shared characters) were identified; these are protein families that possess sequence signatures or domain architectures that are conserved in all euryarchaea but are not found in bacteria or eukaryotes. In addition, euryarchaea-specific expansions of several protein and domain families were detected. In terms of their apparent phylogenetic affinities, the archaeal protein families split into bacterial and eukaryotic families. The majority of the proteins that have only eukaryotic orthologs or show the greatest similarity to their eukaryotic counterparts belong to the core set. The families of euryarchaeal genes that are conserved in only two or three species constitute a relatively mobile component of the genomes whose evolution should have involved multiple events of lineage-specific gene loss and horizontal gene transfer. Frequently these proteins have detectable orthologs only in bacteria or show the greatest similarity to the bacterial homologs, which might suggest a significant role of horizontal gene transfer from bacteria in the evolution of the euryarchaeota.  相似文献   

19.
A consensus primer PCR method which amplifies a region of herpesviral DNA-directed DNA polymerase (EC 2.7.7.7) and which uses degenerate primers in a nested format was developed. Primers were designed to target sequences coding for highly conserved amino acid motifs covering a region of approximately 800 bp. The assay was applied to 22 species of herpesviruses (8 human and 14 animal viruses), with PCR products obtained for 21 of 22 viruses. In the process, 14 previously unreported amino acid-coding sequences from herpesviral DNA polymerases were obtained, including regions of human herpesviruses 7 and 8. The 50 to 60 amino acid-coding sequences recovered in the present study were determined to be unique to each viral species studied, with very little sequence variation between strains of a single species when studied. Template dilution studies in the presence of human carrier DNA demonstrated that six human herpesviruses (herpesviruses 1, 2, 3, 4, 5, and 6B) could be detected at levels at or below 100 genome equivalents per 100 ng of carrier DNA. These data suggest that consensus primer PCR targeted to herpesviral DNA polymerase may prove to be useful in the detection and identification of known herpesviruses in clinical samples and the initial characterization of new herpesviral genomes.  相似文献   

20.
Summary A physical map of the mitochondrial genome of the aquatic phycomycete Allomyces macrogynus strain Burma 3–35 (35°C) has previously been published (Borkhardt and Delius 1983). This map has been extended in this study by locating 37 additional recognition sites for five new restriction enzymes in the mitochondrial genome. Homologous regions for the genes coding for cytochrome oxidase subunits 1, 2, and 3, apocytochrome b, ATPase subunits 6 and 9, the small and large ribosomal RNA, URF1, URF5, and perhaps urfa, a presumptive gene hitherto found only in the mitochondrial genome of the fission yeast Schizosaccharomyces pombe, were located in the mitochondrial genome of A. macrogynus by heterologous hybridizations with specific, mitochondria) gene probes from Saccharomyces cerevisiae, Aspergillus nidulans, Neurospora crassa, and S. pombe. The mitochondrial gene order in A. macrogynus was found to be identical to that of A. arbuscula; a gene order hitherto found only among members of the family Blastocladiaceae. Spontaneous insertion mutations have been found to occur quite frequently in the mitochondrial genome of A. macrogynus. In all mutated mitochondrial genomes so far studied, insertions have been located in a specific region located between the genes coding for the ATPase subunit 9 and the large ribosomal RNA. In two of the mutated mitochondrial genomes the insertional event(s) resulted in the presence of mitochondrial DNA molecules differing in size by multiples of approximately 70 base pairs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号