首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Modulation of unscheduled DNA synthesis by dehydroepiandrosterone (DHEA) after exposure to various chemical carcinogens was investigated in the primary rat hepatocytes. Unscheduled DNA synthesis was induced by treatment of such direct acting carcinogens as methyl methanesulfonate (MMS) and ethyl methanesulfonate (EMS) or procarcinogens including benzo(a)pyrene (BaP) and 7,12-dimethylbenz(a)anthracene (DMBA). Unscheduled DNA synthesis was determined by measuring [methyl-3H]thymidine radioactivity incorporated into nuclear DNA of hepatocytes treated with carcinogens in the presence or absence of DHEA. Hydroxyurea (5x10(-3) M) was added to growth medium to selectively suppress normal replication. DHEA at concentrations ranging from 1x10(-6) M to 5x10(-4) M did not significantly inhibit unscheduled DNA synthesis induced by either MMS (1x10(-4) M) or EMS (1x10(-2) M). In contrast, DHEA significantly inhibited unscheduled DNA synthesis induced by BaP (6.5x10(-5) M) and DMBA (2x10(-5) M). DHEA-induced hepatotoxicity in rats was examined using lactate dehydrogenase (LDH) release as an indicator of cytotoxicity. DHEA exhibit no significant increase in LDH release compared with the solvent control at 18 h. These data suggest that nontoxic concentration of DHEA does not affect the DNA excision repair process, but it probably influence the enzymatic system responsible for the metabolic activation of procarcinogens and thereby decreases the amount of the effective DNA adducts formed by the ultimate reactive carcinogenic species.  相似文献   

2.
3.
High doses of Metofluthrin (MTF) have been shown to produce liver tumours in rats by a mode of action (MOA) involving activation of the constitutive androstane receptor leading to liver hypertrophy, induction of cytochrome P450 (CYP) forms and increased cell proliferation. The aim of this study was to compare the effects of MTF with those of the known rodent liver tumour promoter phenobarbital (PB) on the induction CYP2B forms and replicative DNA synthesis in cultured rat and human hepatocytes. Treatment with 50 μM MTF and 50 μM PB for 72 h increased CYP2B1 mRNA levels in male Wistar rat hepatocytes and CYP2B6 mRNA levels in human hepatocytes. Replicative DNA synthesis was determined by incorporation of 5-bromo-2′-deoxyuridine over the last 24 h of a 48 h treatment period. Treatment with 10–1000 μM MTF and 100–500 μM PB resulted in significant increases in replicative DNA synthesis in rat hepatocytes. While replicative DNA synthesis was increased in human hepatocytes treated with 5–50 ng/ml epidermal growth factor or 5–100 ng/ml hepatocyte growth factor, treatment with MTF and PB had no effect. These results demonstrate that while both MTF and PB induce CYP2B forms in both species, MTF and PB only induced replicative DNA synthesis in rat and not in human hepatocytes. These results provide further evidence that the MOA for MTF-induced rat liver tumour formation is similar to that of PB and some other non-genotoxic CYP2B form inducers and that the key event of increased cell proliferation would not occur in human liver.  相似文献   

4.
DEA, an amino alcohol, and its fatty acid condensates are widely used in commerce. DEA is hepatocarcinogenic in mice, but shows no evidence of mutagenicity or clastogenicity in a standard testing battery. However, it increased the number of morphologically transformed colonies in the Syrian hamster embryo (SHE) cell morphologic transformation assay. The goal of this work was to test the hypothesis that DEA treatment causes morphologic transformation by a mechanism involving altered cellular choline homeostasis. As a first step, the ability of DEA to disrupt the uptake and intracellular utilization of choline was characterized. SHE cells were cultured in medium containing DEA (500 microg/ml), and (33)P-phosphorus or (14)C-choline was used to label phospholipid pools. After 48 h, SHE cells were harvested, lipids were extracted, and radioactive phospholipids were quantified by autoradiography after thin layer chromatographic separation. In control cells, phosphatidylcholine (PC) was the major phospholipid, accounting for 43 +/- 1% of total phospholipid synthesis. However, with DEA treatment, PC was reduced to 14 +/- 2% of total radioactive phospholipids. DEA inhibited choline uptake into SHE cells at concentrations > or = 50 microg /ml, reaching a maximum 80% inhibition at 250-500 microg/ml. The concentration dependence of the inhibition of PC synthesis by DEA (0, 10, 50, 100, 250, and 500 microg/ml) was determined in SHE cells cultured over a 7-day period under the conditions of the transformation assay and in the presence or absence of excess choline (30 mM). DEA treatment decreased PC synthesis at concentrations > or = 100 microg/ml, reaching a maximum 60% reduction at 500 microg/ml. However, PC synthesis was unaffected when DEA-treated cells were cultured with excess choline. Under 7-day culture conditions, (14)C-DEA was incorporated into SHE lipids, and this perturbation was also inhibited by choline supplementation. Finally, DEA (10-500 microg/ml) transformed SHE cells in a concentration-dependent manner, whereas with choline supplementation, no morphologic transformation was observed. Thus, DEA disrupts intracellular choline homeostasis by inhibiting choline uptake and altering phospholipid synthesis. However, excess choline blocks these biochemical effects and inhibits cell transformation, suggesting a relationship between the two responses. Overall, the results provide a plausible mechanism to explain the morphologic transformation observed with DEA and suggest that the carcinogenic effects of DEA may be caused by intracellular choline deficiency.  相似文献   

5.
Diethanolamine (DEA) is a widely used ingredient in many consumer products and in a number of industrial applications. It has been previously reported that dermal administration of DEA to mice diminished hepatic stores of choline and altered brain development in the fetus. The aim of this study was to use mouse neural precursor cells in vitro to assess the mechanism underlying the effects of DEA. Cells exposed to DEA treatment (3mM) proliferated less (by 5-bromo-2-deoxyuridine incorporation) at 48 h (24% of control [CT]), and had increased apoptosis at 72 h (308% of CT). Uptake of choline into cells was reduced by DEA treatment (to 52% of CT), resulting in diminished intracellular concentrations of choline and phosphocholine (55 and 12% of CT, respectively). When choline concentration in the growth medium was increased threefold (to 210 microM), the effects of DEA exposure on cell proliferation and apoptosis were prevented, however, intracellular phosphocholine concentrations remained low. In choline kinase assays, we observed that DEA can be phosphorylated to phospho-DEA at the expense of choline. Thus, the effects of DEA are likely mediated by inhibition of choline transport into neural precursor cells and by altered metabolism of choline. Our study suggests that prenatal exposure to DEA may have a detrimental effect on brain development.  相似文献   

6.
7.
The purpose of the present experiments was to test the hypothesis that diethanolamine (DEA), an alkanolamine shown to be hepatocarcinogenic in mice, induces hepatic choline deficiency and to determine whether altered choline homeostasis was causally related to the carcinogenic outcome. To examine this hypothesis, the biochemical and histopathological changes in male B6C3F1 mice made choline deficient by dietary deprivation were first determined. Phosphocholine (PCho), the intracellular storage form of choline was severely depleted, decreasing to about 20% of control values with 2 weeks of dietary choline deficiency. Other metabolites, including choline, glycerophosphocholine (GPC), and phosphatidylcholine (PC) also decreased. Hepatic concentrations of S-adenosylmethionine (SAM) decreased, whereas levels of S-adenosylhomocysteine (SAH) increased. Despite these biochemical changes, fatty liver, which is often associated with choline deficiency, was not observed in the mice. The dose response, reversibility, and strain-dependence of the effects of DEA on choline metabolites were studied. B6C3F1 mice were dosed dermally with DEA (0, 10, 20, 40, 80, and 160 mg/kg) for 4 weeks (5 days/week). Control animals received either no treatment or dermal application of 95% ethanol (1.8 ml/kg). PCho was most sensitive to DEA treatment, decreasing at dosages of 20 mg/kg and higher and reaching a maximum 50% depletion at 160 mg/kg/day. GPC, choline, and PC also decreased in a dose-dependent manner. At 80 and 160 mg/kg/day, SAM levels decreased while SAH levels increased in liver. A no-observed effect level (NOEL) for DEA-induced changes in choline homeostasis was 10 mg/kg/day. Choline metabolites, SAM and SAH returned to control levels in mice dosed at 160 mg/kg for 4 weeks and allowed a 2-week recovery period prior to necropsy. In a manner similar to dietary choline deficiency, no fatty change was observed in the liver of DEA-treated mice. In C57BL/6 mice, DEA treatment (160 mg/kg) also decreased PCho concentrations, without affecting hepatic SAM levels, suggesting that strain-specific differences in intracellular methyl group regulation may influence carcinogenic outcome with DEA treatment. Finally, in addition to the direct effects of DEA on choline homeostasis, dermal application of 95% ethanol for 4 weeks decreased hepatic betaine levels, suggesting that the use of ethanol as a vehicle for dermal application of DEA may exacerbate or confound the biochemical actions of DEA alone. Collectively, the results demonstrate that DEA treatment causes a spectrum of biochemical changes consistent with choline deficiency in mice and demonstrate a clear dose concordance between DEA-induced choline deficiency and hepatocarcinogenic outcome.  相似文献   

8.
BACKGROUND AND PURPOSE: Left ventricular hypertrophy (LVH) is a maladaptive process associated with increased cardiovascular risk. Regression of LVH is associated with reduced complications of hypertension. Moxonidine is an antihypertensive imidazoline compound that reduces blood pressure primarily by central inhibition of sympathetic outflow and by direct actions on the heart to release atrial natriuretic peptide, a vasodilator and an antihypertrophic cardiac hormone. This study investigated the effect of moxonidine on LVH and the mechanisms involved in this effect. EXPERIMENTAL APPROACH: Spontaneously hypertensive rats were treated with several doses of moxonidine (s.c.) over 4 weeks. Blood pressure and heart rate were continuously monitored by telemetry. Body weight and water and food intake were measured weekly. Measurements also included left ventricular mass, DNA content, synthesis, fragmentation, and apoptotic/anti-apoptotic pathway proteins. KEY RESULTS: The decrease in mean arterial pressure stabilized at approximately -10 mm Hg after 1 week of treatment and thereafter. Compared to vehicle-treated rats (100%), left ventricular mass was dose- and time-dependently reduced by treatment. This reduction remained significantly lower after normalizing to body weight. Moxonidine reduced left ventricular DNA content and inhibited DNA synthesis. DNA fragmentation transiently, but significantly increased at 1 week of moxonidine treatment and was paralleled by elevated active caspase-3 protein. The highest dose significantly decreased the apoptotic protein Bax and all doses stimulated anti-apoptotic Bcl-2 after 4 weeks of treatment. CONCLUSIONS AND IMPLICATIONS: These studies implicate the modulation of cardiac DNA dynamics in the control of left ventricular mass by moxonidine in a rat model of hypertension.  相似文献   

9.
The effect of aphidicolin on DNA synthesis in herpes simplex virus type 1 (HSV-1) infected and uninfected Vero cells was determined by isodensity banding of [32P]-labelled DNA. A 50% inhibition of HSV-1 DNA synthesis was observed at 0.07 μM aphidicolin while 2.1 and 1.3 μM were required to inhibit the cellular DNA synthesis to 50% in infected and uninfected Vero cells, respectively. When the viral DNA synthesis was totally inhibited by 10 μM aphidicolin, the cellular DNA synthesis was inhibited to about 90% in both infected and uninfected cells. Aphidicolin inhibited the cellular DNA synthesis in HSV-1 infected and uninfected Vero cells remaining in the presence of 250 μM foscarnet to the same extent as the DNA synthesis in the absence of foscarnet.  相似文献   

10.
Ochratoxin A (OTA) is a widespread contaminant in human staple food. Exposure of humans to this mycotoxin is a matter of concern because OTA is a known rodent carcinogen. As the urothelium is one target tissue of this mycotoxin, primary cultured human urothelial cells (HUC) from adults and children were used to analyze the induction of unscheduled DNA synthesis (UDS) by OTA. HUC were isolated from the ureters or renal pelves of two nephrectomized adults and of two children with ureteropelvic junction stenosis and cultured under serum-free conditions. After a confluency of 70-80% was reached, cell proliferation was suppressed by arginine-deficient medium (ADM), and UDS was assessed autoradiographically by 3H-thymidine incorporation upon exposure to OTA (10-2000 nM), ethyl methanesulfonate (EMS, 5 mM, positive control), or dimethyl sulfoxide (DMSO, 0.2%, solvent control). In control cultures the level of UDS was low. Exposure to EMS resulted in an induction of UDS (2-to 5-fold compared to control), thus allowing the sensitive detection of repair resulting from induction of DNA lesions in all four specimens, and demonstrating that repair of EMS-induced DNA lesions can take place under the chosen culture conditions. In two HUC cultures derived from adults, a significant induction of UDS was observed in the concentration range of 50-500 nM OTA. The highest fraction of cells in repair (CIR) was found at 50 nM OTA for the HUC from the older male (50% CIR). The maximum response in the other specimens from the adult female and the 7-year-old boy were seen at OTA concentrations of 500 and 250 nM, respectively. In contrast to all other specimens, no significant induction of UDS by OTA was found in the HUC cultures derived from an infant's urothelium. Signs of cytotoxicity were observed above 500 nM OTA in all cultures. The varying susceptibility toward OTA observed in vitro may hint at varying predispositions of individuals in vivo.  相似文献   

11.
12.
Testicular cells of male mice were isolated, and the incorporation of tritium labeled thymidine into the DNA of the cells was estimated after exposure to various chemical mutagens. The normal semiconservative DNA synthesis was suppressed by the addition of hydroxyurea. Thirteen compounds were tested. Unscheduled DNA synthesis (UDS) was stimulated by ethyl methanesulfonate (EMS), methyl methanesulfonate (MMS), N-methyl-N-nitro-N-nitrosoguanidine (MNNG) and triaziquone, and, to a lesser extent, by 4-nitroquinoline 1-oxide (4-NQO), mitomycin C, ICR-191 and nitrogen mustard (HN-2). No thymidine incorporation could be estimated after incubation of the cells with 9 aminoacridine, hydroxyurethane, -naphthylamine, 2-acetylaminofluorene (AAF) nor with N-hydroxy-2-acetylaminofluorene (N-OH-AAF).Parts of these investigations were presented in the poster session at the sixth annual meeting of the EEMS in Gernrode, Democratic Republic of Germany 1976  相似文献   

13.
Diethanolamine (DEA) is a common ingredient of personal careproducts. Dermal administration of DEA diminishes hepatic storesof the essential nutrient choline and alters brain development.We previously reported that 80 mg/kg/day of DEA during pregnancyin mice reduced neurogenesis and increased apoptosis in thefetal hippocampus. This study was designed to establish thedose-response relationships for this effect of DEA. Timed-pregnantC57BL/6 mouse dams were dosed dermally from gestation day 7–17with DEA at 0 (controls), 5, 40, 60, and 80 mg/kg body/day.Fetuses (embryonic day 17 [E17]) from dams treated dermallywith 80 mg/kg body/day DEA had decreased neural progenitor cellmitosis at the ventricular surface of the ventricular zone (hippocampus,54.1 ± 5.5%; cortex, 58.9 ± 6.8%; compared tocontrols; p < 0.01). Also, this dose of DEA to dams increasedrates of apoptosis in E17 fetal hippocampus (to 177.2 ±21.5% of control; measured using activated caspase-3; p <0.01). This dose of DEA resulted in accumulation of DEA andits metabolites in liver and in plasma. At doses of DEA lessthan 80 mg/kg body/day to dams, there were no differences betweentreated and control groups. In a small group of human subjects,dermal treatment for 1 month with a commercially available skinlotion containing 1.8 mg DEA per gram resulted in detectableplasma concentrations of DEA and dimethyldiethanolamine, butthese were far below those concentrations associated with perturbedbrain development in the mouse.  相似文献   

14.
Four chemicals that are known to induce in rats thyroid follicular-cell adenomas and carcinomas were assayed for their ability to induce DNA damage and DNA repair synthesis in primary cultures of human thyroid cells. Significant dose-dependent increases in the frequency of DNA single-strand breaks and alkali-labile sites, as measures by the Comet assay, were obtained after a 20-h exposure to the following subtoxic concentrations of the four test compounds: 2,4-diaminoanisole (DAA) from 0.10 to 1.0 mM, 4,4'-methylene-bis(N,N-dimethyl)benzenamine (MDB) from 0.32 to 1.8 mM, propylthiouracil (PTU) from 1.8 to 5.6 mM, and 4,4'-thiodianiline (THA) from 0.032 to 0.18 mM. Under the same experimental conditions, DNA repair synthesis, as evaluated by quantitative autoradiography, was present in thyreocytes exposed to DAA but absent after treatment with MDB, PTU, and THA. Consistent with their thyroid-specific carcinogenic activity, all the four chemicals, administered p.o. in rats in a single dose corresponding to 1/2 LD50, induced a statistically significant degree of DNA fragmentation in the thyroid, whereas any substantial evidence of DNA lesions was absent in liver, kidney, and lung, which, with the exception of liver tumors caused by THA, are not targets of the carcinogenic activity of the four test compounds. These findings indicate that the DNA damage observed in thyroid cells was consistent with the carcinogenicity of the four test compounds, and suggest that DAA, MDB, PTU, and THA might be carcinogenic to thyroid in humans.  相似文献   

15.
Nongenotoxic rodent hepatocarcinogens do not damage DNA but cause liver tumours in the rat and mouse, associated with the induction of hepatic DNA synthesis. Previously, we have demonstrated that nongenotoxic hepatocarcinogens such as phenobarbitone and the peroxisome proliferator (PP), nafenopin, also suppress rat hepatocyte apoptosis. The nongenotoxic chemicals 1,4-dichlorobenzene (DCB) and the PP, diethylhexyl phthalate (DEHP), both induce high levels of DNA synthesis in rat liver in vivo, but only DEHP is hepatocarcinogenic in this species. Here, we investigate whether the difference in rat carcinogenicity of these two hepatic mitogens may be due to differences in their ability to suppress hepatocyte apoptosis. In rat hepatocytes in vitro, MEHP (the active metabolite of DEHP) induced DNA synthesis 2.5-fold (P = 0.001) and suppressed 10- and 4-fold, respectively both spontaneous (P = 0.0008) and transforming growth factor β1 (TGFβ1)-induced (P = 0.0001) apoptosis. DCB gave a small (1.7-fold) increase in DNA synthesis (P = 0.03) and a small (1.7- to 2-fold) suppression of both spontaneous (P = 0.022) and TGFβ1-induced (P = 0.015) apoptosis. We next analysed the induction of DNA synthesis and the suppression of apoptosis in rat liver in vivo. Both DEHP and DCB were able to induce DNA synthesis although, as seen in vitro, the induction by DCB (4.2-fold; P = 0.023) was less marked than that with DEHP (13.4-fold; P = 0.007). Similarly, DEHP and DCB were both able to suppress rat hepatocyte apoptosis in vivo but the magnitude of the suppression was comparable; apoptosis was reduced to undetectable levels in four out of five animals with DCB and three out of five with DEHP. Since both chemicals suppressed apoptosis and induced DNA synthesis in rat liver but, overall, DCB was less potent, the disparate hepatocarcinogenic potential of these two chemicals could arise from differences in the magnitude of growth perturbation. To test this hypothesis, we repeated the studies in mouse, a species where both DCB and DEHP are hepatocarcinogenic. Both in vitro and in vivo, DCB and DEHP/MEHP were able to suppress apoptosis and induce hepatocyte DNA synthesis in the mouse with comparable potencies. The data support the hypothesis that the carcinogenicity of nongenotoxic hepatocarcinogens is associated strongly with the ability to perturb hepatocyte growth regulation. However, the ability to effect such changes is not unique to nongenotoxic carcinogens and is common to some noncarcinogenic chemicals, such as DCB, suggesting that the growth perturbation may need to exceed a threshold for carcinogenesis. Received: 9 June 1998 / Accepted: 23 September 1998  相似文献   

16.
Diethylhexylphthalate (DEHP) and diisononylphthalate (DINP) are plasticizers with many important commercial, industrial and medical applications. However, both DEHP and DINP are rodent peroxisome proliferators (PPs), a class of compounds that cause rodent liver tumours associated with peroxisome proliferation, induction of hepatic DNA synthesis and the suppression of apoptosis. Despite these effects in the rodent, humans appear to be nonresponsive to the adverse effects of PPs. Previously, we have shown that the fibrate hypolipidaemic peroxisome proliferator, nafenopin, induced DNA synthesis and suppressed apoptosis in rat but not in human hepatocytes. In this work, we have examined species differences in the response of rat and human hepatocytes to DEHP and DINP in vitro. In rat hepatocytes in vitro, both DINP and MEHP (a principle metabolite of DEHP and the proximal peroxisome proliferator) caused a concentration-dependent induction of DNA synthesis and suppression of both spontaneous and transforming growth factor β1 (TGFβ1)-induced apoptosis. Similarly, both MEHP and DINP caused a concentration-dependent induction of peroxisomal β-oxidation although the response to DINP was less robust. In contrast to the pleiotropic response noted in rat hepatocytes, neither DINP nor MEHP caused an induction of β-oxidation, stimulation of DNA synthesis and suppression of apoptosis in human hepatocytes cultured from three separate donors. These data provide evidence for species differences in the hepatic response to the phthalates DEHP and DINP, confirming that human hepatocytes appear to be refractory to the hepatocarcinogenic effects of PPs first noted in rodents. Received: 16 August 1999 / Accepted: 21 September 1999  相似文献   

17.
Sulfur mustard (SM) is powerful alkylator and highly cytotoxic blisterogen in both humans and animals. This study in male guinea pigs shows that, at an early stage (5 h) after SM exposure, a marked increase occurred in epithelial nuclear vacuolation, epidermal thickening, and dermal acute inflammation. Topical iodine treatment reduced the severity of these parameters. The rate of DNA synthesis expressed by incorporation of bromodeoxyuridine was reduced upon topical treatment with iodine only or SM only by 46 and 72%, respectively. Iodine treatment following SM exposure exerted an effect similar to that of SM only, indicating that DNA synthesis is not directly involved in the mechanism of action of iodine-induced protection.  相似文献   

18.
3,3'-Dimethoxybenzidine (DMB), a congener of benzidine used in the dye industry and previously found to be carcinogenic in rats, was evaluated for its genotoxic activity in primary cultures of rat and human hepatocytes and of cells from human urinary bladder mucosa, as well as in liver and bladder mucosa of intact rats. A similar modest dose-dependent frequency of DNA fragmentation was revealed by the alkaline elution technique in metabolically competent primary cultures of both rat and human hepatocytes exposed for 20 h to subtoxic DMB concentrations ranging from 56 to 180 microM. Replicating rat hepatocytes displayed a modest increase in the frequency of micronucleated cells after a 48-h exposure to 100 and 180 microM concentrations. In primary cultures of human urinary bladder mucosa cells exposed for 20 h to 100 and 180 microM DMB, the Comet assay revealed a clear-cut increase of DNA fragmentation. In rats given one-half LD50 of DMB as a single oral dose, the GSH level was reduced in both the liver and urinary bladder mucosa, whereas DNA fragmentation was detected only in the bladder mucosa. Taken as a whole, these results suggest that DMB should be considered a potentially genotoxic chemical in both rats and humans; the selective effect on the rat urinary bladder might be the consequence of pharmacokinetic behavior.  相似文献   

19.
20.
We investigated the effects of branched-chain amino acids on DNA synthesis and proliferation in primary cultures of adult rat hepatocytes. Of the branched-chain amino acids, only leucine (10−5–10−3 M) induced hepatocyte DNA synthesis and proliferation in a time- and dose-dependent manner. The addition of valine or isoleucine on its own had no significant effects on the hepatocyte DNA synthesis and proliferation. When combined, isoleucine competitively antagonized leucine-stimulated hepatocyte mitogenesis. U73122 (10−6 M), AG1478 (10−7 M), wortmannin (10−7 M), PD98059 (10−6 M) and rapamycin (10 ng/ml) inhibited the ability of leucine to stimulate the hepatocyte DNA synthesis and proliferation, suggesting that phospholipase C, tyrosine kinase, phosphatidylinositol 3-kinase, mitogen-activated protein (MAP) kinase, and p70 S6 kinase are involved in leucine signaling. The mitogenic effects of leucine are completely abolished by the addition of anti-transforming growth factor- (TGF-) antibody to the culture medium. Furthermore, leucine stimulated TGF- secretion into the culture medium and the leucine effect was inhibited by U73122. Isoleucine alone had no significant effect on TGF- secretion but this agent blocked leucine-induced TGF- secretion. The results suggest that leucine triggers TGF- secretion through a putative leucine receptor. The secreted TGF- then stimulates hepatocyte DNA synthesis and proliferation through activation of TGF- receptor to induce tyrosine kinase/MAP kinase activity and other downstream growth-related signal transducers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号