首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
In many neurons, trains of action potentials show frequency-dependent broadening. This broadening results from the voltage-dependent inactivation of K+ currents that contribute to action potential repolarisation. In different neuronal cell types these K+ currents have been shown to be either slowly inactivating delayed rectifier type currents or rapidly inactivating A-type voltage-gated K+ currents. Recent findings show that inactivation of a Ca2+-dependent K+ current, mediated by large conductance BK-type channels, also contributes to spike broadening. Here, using whole-cell recordings in acute slices, we examine spike broadening in lateral amygdala projection neurons. Spike broadening is frequency dependent and is reversed by brief hyperpolarisations. This broadening is reduced by blockade of voltage-gated Ca2+ channels and BK channels. In contrast, broadening is not blocked by high concentrations of 4-aminopyridine (4-AP) or α-dendrotoxin. We conclude that while inactivation of BK-type Ca2+-activated K+ channels contributes to spike broadening in lateral amygdala neurons, inactivation of another as yet unidentified outward current also plays a role.  相似文献   

2.
At distal dendritic locations, the threshold for action potential generation is higher and the amplitude of back-propagating spikes is decreased. To study whether these characteristics depend upon Na+ channels, their voltage-dependent properties at proximal and distal dendritic locations were compared in CA1 hippocampal neurons. Distal Na+ channels activated at more hyperpolarized voltages than proximal (half-activation voltages were −20.4 ± 2.4 mV vs. −12.0 ± 1.7 mV for distal and proximal patches, respectively,   n = 16  ,   P < 0.01  ), while inactivation curves were not significantly different. The resting membrane potential of distal regions also appeared to be slightly but consistently more hyperpolarized than their proximal counterpart. Staurosporine, a non-selective protein kinase inhibitor, shifted the activation curves for both proximal and distal Na+ channels to the left so that they overlapped and also caused the resting potentials to be comparable. Staurosporine affected neither the inactivation kinetics of Na+ currents nor the reversal potential for Na+. These results suggest that the difference in the voltage dependence of activation of distal and proximal Na+ channels can be attributed to a different phosphorylation state at the two locations.  相似文献   

3.
Before the onset of hearing at postnatal day 12, mouse inner hair cells (IHCs) produce spontaneous and evoked action potentials. These spikes are likely to induce neurotransmitter release onto auditory nerve fibres. Since immature IHCs express both α1D (Cav1.3) Ca2+ and Na+ currents that activate near the resting potential, we examined whether these two conductances are involved in shaping the action potentials. Both had extremely rapid activation kinetics, followed by fast and complete voltage-dependent inactivation for the Na+ current, and slower, partially Ca2+-dependent inactivation for the Ca2+ current. Only the Ca2+ current is necessary for spontaneous and induced action potentials, and 29 % of cells lacked a Na+ current. The Na+ current does, however, shorten the time to reach the action-potential threshold, whereas the Ca2+ current is mainly involved, together with the K+ currents, in determining the speed and size of the spikes. Both currents increased in size up to the end of the first postnatal week. After this, the Ca2+ current reduced to about 30 % of its maximum size and persisted in mature IHCs. The Na+ current was downregulated around the onset of hearing, when the spiking is also known to disappear. Although the Na+ current was observed as early as embryonic day 16.5, its role in action-potential generation was only evident from just after birth, when the resting membrane potential became sufficiently negative to remove a sizeable fraction of the inactivation (half inactivation was at −71 mV). The size of both currents was positively correlated with the developmental change in action-potential frequency.  相似文献   

4.
Using tight-seal recordings from rat spinal cord slices, intracellular labelling and computer simulation, we analysed the mechanisms of spike frequency adaptation in substantia gelatinosa (SG) neurones. Adapting-firing neurones (AFNs) generated short bursts of spikes during sustained depolarization and were mostly found in lateral SG. The firing pattern and the shape of single spikes did not change after substitution of Ca2+ with Co2+, Mg2+ or Cd2+ indicating that Ca2+-dependent conductances do not contribute to adapting firing. Transient KA current was small and completely inactivated at resting potential suggesting that adapting firing was mainly generated by voltage-gated Na+ and delayed-rectifier K+ (KDR) currents. Although these currents were similar to those previously described in tonic-firing neurones (TFNs), we found that Na+ and KDR currents were smaller in AFNs. Discharge pattern in TFNs could be reversibly converted into that typical of AFNs in the presence of tetrodotoxin but not tetraethylammonium, suggesting that lower Na+ conductance is more critical for the appearance of firing adaptation. Intracellularly labelled AFNs showed specific morphological features and preserved long extensively branching axons, indicating that smaller Na+ conductance could not result from the axon cut. Computer simulation has further revealed that down-regulation of Na+ conductance represents an effective mechanism for the induction of firing adaptation. It is suggested that the cell-specific regulation of Na+ channel expression can be an important factor underlying the diversity of firing patterns in SG neurones.  相似文献   

5.
How the axonal distribution of Na+ channels affects the precision of spike timing is not well understood. We addressed this question in auditory relay neurons of the avian nucleus magnocellularis. These neurons encode and convey information about the fine structure of sounds to which they are tuned by generating precisely timed action potentials in response to synaptic inputs. Patterns of synaptic inputs differ as a function of tuning. A small number of large inputs innervate high- and middle-frequency neurons, while a large number of small inputs innervate low-frequency neurons. We found that the distribution and density of Na+ channels in the axon initial segments varied with the synaptic inputs, and were distinct in the low-frequency neurons. Low-frequency neurons had a higher density of Na+ channels within a longer axonal stretch, and showed a larger spike amplitude and whole-cell Na+ current than high/middle-frequency neurons. Computer simulations revealed that for low-frequency neurons, a large number of Na+ channels were crucial for preserving spike timing because it overcame Na+ current inactivation and K+ current activation during compound EPSPs evoked by converging small inputs. In contrast, fewer channels were sufficient to generate a spike with high precision in response to an EPSP induced by a single massive input in the high/middle-frequency neurons. Thus the axonal Na+ channel distribution is effectively coupled with synaptic inputs, allowing these neurons to convey auditory information in the timing of firing.  相似文献   

6.
Spike frequency adaptation (SFA) is a fundamental property of repetitive firing in motoneurones (MNs). Early SFA (occurring over several hundred milliseconds) is thought to be important in the initiation of muscular contraction. To date the mechanisms underlying SFA in spinal MNs remain unclear. In the present study, we used both whole-cell patch-clamp recordings of MNs in lumbar spinal cord slices prepared from motor functionally mature mice and computer modelling of spinal MNs to investigate the mechanisms underlying SFA. Pharmacological blocking agents applied during whole-cell recordings in current-clamp mode demonstrated that the medium AHP conductance (apamin), BK-type Ca2+-dependent K+ channels (iberiotoxin), voltage-activated Ca2+ channels (CdCl2), M-current (linopirdine) and persistent Na+ currents (riluzole) are all unnecessary for SFA. Measurements of Na+ channel availability including action potential amplitude, action potential threshold and maximum depolarization rate of the action potential were found to correlate with instantaneous firing frequency suggesting that the availability of fast, inactivating Na+ channels is involved in SFA. Characterization of this Na+ conductance in voltage-clamp mode demonstrated that it undergoes slow inactivation with a time course similar to that of SFA. When experimentally measured parameters for the fast, inactivating Na+ conductance (including slow inactivation) were incorporated into a MN model, SFA could be faithfully reproduced. The removal of slow inactivation from this model was sufficient to remove SFA. These data indicate that slow inactivation of the fast, inactivating Na+ conductance is likely to be the key mechanism underlying early SFA in spinal MNs.  相似文献   

7.
Lucifer Yellow CH (LY), a membrane-impermeant fluorescent dye, has been used in electrophysiological studies to visualize cell morphology, with little concern about its pharmacological effects. We investigated its effects on TTX-sensitive voltage-gated Na+ channels in mouse taste bud cells and hippocampal neurons under voltage-clamp conditions. LY applied inside cells irreversibly slowed the inactivation of Na+ currents upon exposure to light of usual intensities. The inactivation time constant of Na+ currents elicited by a depolarization to −15 mV was increased by fourfold after a 5 min exposure to halogen light of 3200 lx at source (3200 lx light), and sevenfold after a 1-min exposure to 12 000 lx light. A fraction of the Na+ current became non-inactivating following the exposure. The non-inactivating current was ≈ 20 % of the peak total Na+ current after a 5 min exposure to 3200 lx light, and ≈ 30 % after a 1 min exposure to 12 000 lx light. Light-exposed LY shifted slightly the current-voltage relationship of the peak Na+ current and of the steady-state inactivation curve, in the depolarizing direction. A similar light-dependent decrease in kinetics occurred in whole-cell Na+ currents of cultured mouse hippocampal neurones. Single-channel recordings showed that exposure to 6500 lx light for 3 min increased the mean open time of Na+ channels from 1.4 ms to 2.4 ms without changing the elementary conductance. The pre-incubation of taste bud cells with 1 mM dithiothreitol, a scavenger of radical species, blocked these LY effects. These results suggest that light-exposed LY yields radical species that modify Na+ channels.  相似文献   

8.
We examined changes in ionic and gating currents in CaV1.2 channels when extracellular Ca2+ was reduced from 10 m m to 0.1 μ m . Saturating gating currents decreased by two-thirds ( K D≈ 40 μ m ) and ionic currents increased 5-fold ( K D≈ 0.5 μ m ) due to increasing Na+ conductance. A biphasic time dependence for the activation of ionic currents was observed at low [Ca2+], which appeared to reflect the rapid activation of channels that were not blocked by Ca2+ and a slower reversal of Ca2+ blockade of the remaining channels. Removal of Ca2+ following inactivation of Ca2+ currents showed that Na+ currents were not affected by Ca2+-dependent inactivation. Ca2+-dependent inactivation also induced a negative shift of the reversal potential for ionic currents suggesting that inactivation alters channel selectivity. Our findings suggest that activation of Ca2+ conductance and Ca2+-dependent inactivation depend on extracellular Ca2+ and are linked to changes in selectivity.  相似文献   

9.
Voltage-dependent K+ channels in the apical dendrites of CA1 pyramidal neurones play important roles in regulating dendritic excitability, synaptic integration, and synaptic plasticity. Using cell-attached, voltage-clamp recordings, we found a large variability in the waveforms of macroscopic K+ currents in the dendrites. With single-channel analysis, however, we were able to identify four types of voltage-dependent K+ channels and we categorized them as belonging to delayed-rectifier, M-, D-, or A-type K+ channels previously described from whole-cell recordings. Delayed-rectifier-type K+ channels had a single-channel conductance of 19 ± 0.5 pS, and made up the majority of the sustained K+ current uniformly distributed along the apical dendrites. The M-type K+ channels had a single-channel conductance of 11 ± 0.8 pS, did not inactivate with prolonged membrane depolarization, deactivated with slow kinetics (time constant 100 ± 6 ms at −40 mV), and were inhibited by bath-applied muscarinic agonist carbachol (10 μ m ). The D-type K+ channels had a single-channel conductance of around 18 pS, and inactivated with a time constant of 98 ± 4 ms at +54 mV. The A-type K+ channels had a single-channel conductance of 6 ± 0.6 pS, inactivated with a time constant of 23 ± 2 ms at +54 mV, and contributed to the majority of the transient K+ current previously described. These results suggest both functional and molecular complexity for K+ channels in dendrites of CA1 pyramidal neurones.  相似文献   

10.
The acid-sensitive K+ channel, TASK1 is a member of the K+-selective tandem-pore domain (K2P) channel family. Like many of the K2P channels, TASK1 is relatively insensitive to conventional channel blockers such as Ba2+. In this paper we report the impact of mutating the pore-neighbouring histidine residues, which are involved in pH sensing, on the sensitivity to blockade by Ba2+ and Cs+; additionally we compare the selectivity of these channels to extracellular K+, Na+ and Rb+. H98D and H98N mutants showed reduced selectivity for K+ over both Na+ and Rb+, and significant permeation of Rb+. This enhanced permeability must reflect changes in the structure or flexibility of the selectivity filter. Blockade by Ba2+ and Cs+ was voltage-dependent, indicating that both ions block within the pore. In 100 m m K+, the K D at 0 mV for Ba2+ was 36 ± 10 m m  ( n = 6)  , whilst for Cs+ it was 20 ± 6.0 m m  ( n = 5)  . H98D was more sensitive to Ba2+ than the wild-type (WT); in addition, the site at which Ba2+ appears to bind was altered (WT: δ, 0.64 ± 0.16, n = 6; H98D: δ, 0.16 ± 0.03, n = 5, statistically different from WT; H98N: δ, 0.58 ± 0.09, not statistically different from WT). Thus, the pore-neighbouring residue H98 contributes not only to the pH sensitivity of TASK1, but also to the structure of the conduction pathway.  相似文献   

11.
Hyperpolarization-activated cyclic-nucleotide-gated (HCN) channels modulate the firing rates of neuronal and cardiac pacemaker cells. HCN channels resemble voltage-gated K+ channels structurally, but much less is known about their structure-function correlation. Although modulation of K+ channel gating by external K+ is a well-known phenomenon, such a link has not been established for HCN channels. Here we examined the effects of external permeant (K+, Na+ and Li+) and non-permeant (NMG+) ions on HCN1 and HCN2 gating. Substituting 64 of 96 m m external K+ with Na+, Li+ or NMG+ positively shifted steady-state activation (∼13 mV), and preferentially slowed activation of HCN1. Mutating the pore variant C-terminal to the GYG motif in HCN1, A352, to the analogous conserved Asp in K+ channels or Arg in HCN2 produced a significant hyperpolarizing activation shift (by 5–15 mV), slowed gating kinetics (up to 6-fold), and abolished or attenuated gating responses to external K+. Whereas Na+, Li+ and NMG+ substitutions produced depolarizing activation shifts of HCN2 similar to those of HCN1, deactivation but not activation of HCN2 was exclusively decelerated. We conclude that gating and permeation of HCN channels are coupled, and that modulation of this 'pore-to-gate' coupling by external K+ is isoform-specific.  相似文献   

12.
Dopamine (DA) effects on prefrontal cortex (PFC) neurons are essential for the cognitive functions mediated by this cortical area. However, the cellular mechanisms of DA neuromodulation in neocortex are not well understood. We characterized the effects of D1-type DA receptor (D1R) activation on the amplification (increase in duration and area) of excitatory postsynaptic potentials (EPSPs) at depolarized potentials, in layer 5 pyramidal neurons from rat PFC. Simulated EPSPs (sEPSPs) were elicited by current injection, to determine the effects of D1R activation independent of modulation of transmitter release or glutamate receptor currents. Application of the D1R agonist SKF81297 attenuated sEPSP amplification at depolarized potentials in a concentration-dependent manner. The SKF81297 effects were inhibited by the D1R antagonist SCH23390. The voltage-gated Na+ channel blocker tetrodotoxin (TTX) abolished the effects of SKF81297 on sEPSP amplification, suggesting that Na+ currents are necessary for the D1R effect. Furthermore, blockade of 4-AP- and TEA-sensitive K+ channels in the presence of TTX significantly increased EPSP amplification, arguing against the possibility that SKF81297 up-regulates currents that attenuate sEPSP amplification. SKF81297 application attenuated the subthreshold response to injection of depolarizing current ramps, in a manner consistent with a decrease in the persistent Na+ current. In addition, D1R activation decreased the effectiveness of temporal EPSP summation during 20 Hz sEPSP trains, selectively at depolarized membrane potentials. Therefore, the effects of D1R activation on Na+ channel-dependent EPSP amplification may regulate the impact of coincidence detection versus temporal integration mechanisms in PFC pyramidal neurons.  相似文献   

13.
We studied the properties of a voltage-operated Na+ conductance in descending vasa recta (DVR) pericytes isolated from the renal outer medulla. Whole-cell patch-clamp recordings revealed a depolarization-induced, rapidly activating and rapidly inactivating inward current that was abolished by removal of Na+ but not Ca+ from the extracellular buffer. The Na+ current ( I Na) is highly sensitive to tetrodotoxin  (TTX, K d= 2.2 n m )  . At high concentrations, mibefradil (10 μ m ) and Ni+ (1 m m ) blocked I Na. I Na was insensitive to nifedipine (10 μ m ). The L-type Ca+ channel activator FPL-64176 induced a slowly activating/inactivating inward current that was abolished by nifedipine. Depolarization to membrane potentials between 0 and 30 mV induced inactivation with a time constant of ∼1 ms. Repolarization to membrane potentials between −90 and −120 mV induced recovery from inactivation with a time constant of ∼11 ms. Half-maximal activation and inactivation occurred at −23.9 and −66.1 mV, respectively, with slope factors of 4.8 and 9.5 mV, respectively. The Na+ channel activator, veratridine (100 μ m ), reduced peak inward I Na and prevented inactivation. We conclude that a TTX-sensitive voltage-operated Na+ conductance, with properties similar to that in other smooth muscle cells, is expressed by DVR pericytes.  相似文献   

14.
A comparative study was carried out on the inactivation of Na+ channels in two types of endocrine cells in rats, β-cells and adrenal chromaffin cells (ACCs), using patch-clamp techniques. The β-cells were very sensitive to hyperpolarization; the Na+ currents increased ninefold when the holding potential was shifted from −70 mV to −120 mV. ACCs were not sensitive to hyperpolarization. The half-inactivation voltages were −90 mV (rat β-cells) and −62 mV (ACCs). The time constant for recovery from inactivation at −70 mV was 10.5 times slower in β-cells (60 ms) than in ACCs (5.7 ms). The rate of Na+-channel inactivation at physiological resting potential was more than three times slower in β-cells than in ACCs. Na+ influx through Na+ channels had no effect on the secretory machinery in rat β-cells. However, these 'silent Na+ channels' could contribute to the generation of action potentials in some conditions, such as when the cell is hyperpolarized. It is concluded that the fractional availability of Na+ channels in β-cells at a holding potential of −70 mV is about 15 % of that in ACCs. This value in rat β-cells is larger than that observed in mouse (0 %), but is smaller than those observed in human or dog (90 %).  相似文献   

15.
16.
Upon prolonged depolarizations, voltage-dependent Na+ channels open and subsequently inactivate, occupying fast and slow inactivated conformational states. Like C-type inactivation in K+ channels, slow inactivation is thought to be accompanied by rearrangement of the channel pore. Cysteine-labelling studies have shown that lidocaine, a local anaesthetic (LA) that elicits depolarization-dependent ('use-dependent') Na+ channel block, does not slow recovery from fast inactivation, but modulates the kinetics of slow inactivated states. While these observations suggest LA-induced stabilization of slow inactivation could be partly responsible for use dependence, a more stringent test would require that slow inactivation gating track the distinct use-dependent kinetic properties of diverse LA compounds, such as lidocaine and bupivacaine. For this purpose, we assayed the slow inactivation-dependent accessibility of cysteines engineered into domain III, P-segment (μ1: F1236C, K1237C) to sulfhydryl (MTSEA) modification using a high-speed solution exchange system. As expected, we found that bupivacaine, like lidocaine, protected cysteine residues from MTSEA modification in a depolarization-dependent manner. However, under pulse-train conditions where bupivacaine block of Na+ channels was extensive (due to ultra-slow recovery), but lidocaine block of Na+ channels was not, P-segment cysteines were protected from MTSEA modification. Here we show that conformational changes associated with slow inactivation track the vastly different rates of recovery from use-dependent block for bupivacaine and lidocaine. Our findings suggest that LA compounds may produce their kinetically distinct voltage-dependent behaviour by modulating slow inactivation gating to varying degrees.  相似文献   

17.
Our previous mathematical model of solute-coupled water transport through the intestinal epithelium is extended for dealing with electrolytes rather than electroneutral solutes. A 3Na+–2K+ pump in the lateral membranes provides the energy-requiring step for driving transjunctional and translateral flows of water across the epithelium with recirculation of the diffusible ions maintained by a 1Na+-1K+–2Cl cotransporter in the plasma membrane facing the serosal compartment. With intracellular non-diffusible anions and compliant plasma membranes, the model describes the dependence on membrane permeabilities and pump constants of fluxes of water and electrolytes, volumes and ion concentrations of cell and lateral intercellular space (lis), and membrane potentials and conductances. Simulating physiological bioelectrical features together with cellular and paracellular fluxes of the sodium ion, computations predict that the concentration differences between lis and bathing solutions are small for all three ions. Nevertheless, the diffusion fluxes of the ions out of lis significantly exceed their mass transports. It is concluded that isotonic transport requires recirculation of all three ions. The computed sodium recirculation flux that is required for isotonic transport corresponds to that estimated in experiments on toad small intestine. This result is shown to be robust and independent of whether the apical entrance mechanism for the sodium ion is a channel, a SGLT1 transporter driving inward uphill water flux, or an electroneutral Na+–K+–2Cl cotransporter.  相似文献   

18.
19.
The effect of dexamethasone on Na+,K+ pump subunit expression and muscle exchange of K+ during exercise in humans was investigated. Nine healthy male subjects completed a randomized double blind placebo controlled protocol, with ingestion of dexamethasone (Dex: 2 × 2 mg per day) or placebo (Pla) for 5 days. Na+,K+ pump catalytic α1 and α2 subunit expression was ∼17% higher ( P < 0.05) and the structural β1 and β2 subunit expression was ∼6–8% higher ( P < 0.05) after Dex compared with Pla. During one-legged knee-extension for 10 min at low intensity (LI; 18.6 ± 1.0 W), two moderate intensity (51.7 ± 2.4 W) exercise bouts (MI1: 5 min; 2 min recovery; MI2: exhaustive) and two high-intensity (71.7 ± 2.5 W) exercise bouts (HI1: 1 min 40 s; 2 min recovery; HI2: exhaustive), femoral venous K+ was lower ( P < 0.05) in Dex compared with Pla. Thigh K+ release was lower ( P < 0.05) in Dex compared with Pla in LI and MI, but not in HI. Time to exhaustion in MI2 tended to improve (393 ± 50 s versus 294 ± 41 s; P = 0.07) in Dex compared with Pla, whereas no difference was detected in HI2 (106 ± 10 s versus 108 ± 9 s). The results indicate that an increased Na+,K+ pump expression per se is of importance for thigh K+ reuptake at the onset of low and moderate intensity exercise, but less important during high intensity exercise.  相似文献   

20.
Transient changes in extracellular pH (pHo) occur in the retina and may have profound effects on neurotransmission and visual processing due to the pH sensitivity of ion channels. The present study characterized the effects of acidification on the activity of membrane ion channels in isolated horizontal cells (HCs) of the goldfish retina using whole-cell patch-clamp recording. Currents recorded from HCs were characterized by prominent inward rectification at potentials negative to −80 mV, a negative slope conductance between −70 and −40 mV, a sustained inward current, and outward rectification positive to 40 mV. Inward currents were identified as those of inward rectifier K+ (Kir) channels and Ca2+ channels by their sensitivity to 10 m m Cs+ or 20 μ m Cd2+, respectively. Both of these currents were reduced when pHo decreased from 7.8 to 6.8. Glutamate (1 m m )-activated currents were also identified, as were hemichannel currents that were enhanced by removal of extracellular Ca2+ and application of 1 m m quinidine. Both glutamate-activated and hemichannel currents were suppressed by a similar reduction of pHo. When all of these H+-inhibited currents were blocked, a small, sustained inward current at −60 mV increased following a decrease in pHo from 7.8 to 6.8. In addition, slope conductance between −70 and −20 mV increased during this acidification. Suppression of this H+-activated current by removal of extracellular Na+, and an extrapolated E rev near E Na, indicated that this current was carried predominantly by Na+ ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号