首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this report is to communicate the observed advantage of intensity-modulated radiotherapy (IMRT) in a patient with bilateral metallic hip prostheses. In this patient with early-stage low-risk disease, a dose of 74 Gy was planned in two phases--an initial 50 Gy to the prostate and seminal vesicles and an additional 24 Gy to the prostate alone. Each coplanar beam avoided the prosthesis in the beam's eye view. Using the same target expansions for each phase, IMRT and 3D-conformal radiotherapy (CRT) plans were compared for target coverage and inhomogeneity as well as dose to the bladder and rectum. The results of the analysis demonstrated that IMRT provided superior target coverage with reduced dose to normal tissues for both individual phases of the treatment plan as well as for the composite treatment plan. The dose to the rectum was significantly reduced with the IMRT technique, with a composite V 80 of 35% for the IMRT plan versus 70% for 3D-CRT plan. Similarly, the dose to the bladder was significantly reduced with a V 80 of 9% versus 20%. Overall, various dosimetric parameters revealed the corresponding 3D-CRT plan would not have been acceptable. The results indicate significant success with IMRT in a clinical scenario where there were no curative alternatives for local treatment other than external beam radiotherapy. Therefore, definitive external beam radiation of prostate cancer patients with bilateral prosthesis is made feasible with IMRT. The work described herein may also have applicability to other groups of patients, such as those with gynecological or other pelvic malignancies.  相似文献   

2.
We evaluated a step-and-shoot IMRT plan in the postoperative irradiation of the vaginal vault compared with equispaced beam arrangements (3–5) 3D-radiotherapy (RT) optimized plans. Twelve patients were included in this analysis. Four plans for each patient were compared in terms of dose-volume histograms, homogeneity index (HI), and conformity index (CI): (1) 3 equispaced beam arrangement 3D-RT; (2) 4 equispaced beam arrangement 3D-RT; (3) 5 equispaced beam arrangement 3D-RT; (4) step-and-shoot IMRT technique. CI showed a good discrimination between the four plans. The mean scores of CI were 0.58 (range: 0.38–0.67) for the 3F-CRT plan, 0.58 (range: 0.41–0.66) for 4F-CRT, 0.62 (range: 0.43–0.68) for 5F-CRT and 0.69 (range: 0.58–0.78) for the IMRT plan. A significant improvement of the conformity was reached by the IMRT plan (p < 0.001 for all comparisons). As expected, the increment of 3D-CRT fields was associated with an improvement of target dose conformity and homogeneity; on the contrary, in the IMRT plans, a better conformity was associated to a worse target dose homogeneity. A significant reduction in terms of Dmean, V90%, V95%, V100% was recorded for rectal and bladder irradiation with the IMRT plan. Surprisingly, IMRT supplied a significant dose reduction also for rectum and bladder V30% and V50%. A significant dosimetric advantage of IMRT over 3D-RT in the adjuvant treatment of vaginal vault alone in terms of treatment conformity and rectum and bladder sparing is shown.  相似文献   

3.
IMRT to Escalate the Dose to the Prostate while Treating the Pelvic Nodes   总被引:1,自引:0,他引:1  
Background and Purpose: To assess and quantify the benefit of introducing intensity–modulated radiotherapy (IMRT) over conventional approaches to cover the pelvic nodes while escalating the dose to the prostate gland.Material and Methods: The pelvic lymphatics were planned to receive 50 Gy at 2 Gy per fraction by four–field box (4FB) technique and standard field blocks drawn on digitally reconstructed radiographs (DRR), 4FB with field blocks according to the position of pelvic nodes as contoured on serial planning CT slices, or IMRT. The lateral fields included three different variations of field blocks to assess the role of various degrees of rectal shielding. The boost consisted in 26 Gy in 13 fractions delivered via six–field three–dimensional conformal radiotherapy (3DCRT) or IMRT. By the combination of a pelvic treatment and boost, several plans were obtained for each patient, all normalized to be isoeffective with regard to prostate–planning target volume (PTV–P) coverage. Plans were compared with respect to dose–volume histogram (DVH) of pelvic nodes/seminal vesicles–PTV (PTV–PN/SV), rectum, bladder and intestinal cavity. Reported are the results obtained in eight patients.Results: Pelvic IMRT with a conformal boost provided superior sparing of both bladder and rectum over any of the 4FB plans with the same boost. For the rectum the advantage was around 10% at V70 and even larger for lower doses. Coverage of the pelvic nodes was adequate with initial IMRT with about 98% of the volume receiving 100% of the prescribed dose. An IMRT boost provided a gain in rectal sparing as compared to a conformal boost. However, the benefit was always greater with pelvic IMRT followed by a conformal boost as compared to 4FB with IMRT boost. Finally, the effect of utilizing an IMRT boost with initial pelvic IMRT was greater for the bladder than for the rectum (at V70, about 9% and 3% for the bladder and rectum, respectively).Conclusion: IMRT to pelvic nodes with a conformal boost allows dose escalation to the prostate while respecting current dose objectives in the majority of patients and it is dosimetrically superior to 4FB. An IMRT boost should be considered for patients who fail to meet bladder dose objectives.  相似文献   

4.
5.
We investigated the possible treatment and dosimetric advantage of volumetric modulated arc therapy (VMAT) over step-and-shoot intensity-modulated radiation therapy (step-and-hhoot IMRT) and helical tomotherapy (HT). Twelve prostate cancer patients undergoing VMAT to the prostate were included. Three treatment plans (VMAT, step-and-shoot IMRT, HT) were generated for each patient. The doses to clinical target volume and 95% of planning target volume were both ≥78 Gy. Target coverage, conformity index, dose to rectum/bladder, monitor units (MU), treatment time, equivalent uniform dose (EUD), normal tissue complication probability (NTCP) of targets, and rectum/bladder were compared between techniques. HT provided superior conformity and significantly less rectal volume exposed to 65 Gy and 40 Gy, as well as EUD/NTCP of rectum than step-and-shoot IMRT, whereas VMAT had a slight dosimetric advantage over step-and-shoot IMRT. Notably, significantly lower MUs were needed for VMAT (309.7 ± 35.4) and step-and-shoot IMRT (336.1 ± 16.8) than for HT (3368 ± 638.7) (p < 0.001). The treatment time (minutes) was significantly shorter for VMAT (2.6 ± 0.5) than step-and-shoot IMRT (3.8 ± 0.3) and HT (3.8 ± 0.6) (p < 0.001). Dose verification of VMAT using point dose and film dosimetry met the accepted criteria. VMAT and step-and-shoot IMRT have comparable dosimetry, but treatment efficiency is significantly higher for VMAT than for step-and-shoot IMRT and HT.  相似文献   

6.
The purpose of this planning study was to determine whether intensity-modulated radiation therapy (IMRT) reduces the radiation dose to organs at risk (OAR) when compared with 3D conventional radiation therapy (3D-CRT) in patients with vulvar cancer treated by irradiation. This study also investigated the use of sequential IMRT boost (seq-IMRT) and simultaneous integrated boost (SIB-IMRT) for dose escalation in the treatment of locally advanced vulvar cancer. Five vulvar cancer patients treated in the postoperative setting and 5 patients treated with definitive intent (def-group) were evaluated. For the postoperative group, 3D-CRT and IMRT plans to a total dose (TD) of 45 Gy were generated. For the def-group, 4 plans were generated: a 3D-CRT and an IMRT plan to a TD of 56.4 Gy, a SIB-IMRT plan to a TD of 56 Gy, and a SIB-IMRT with dose escalation (SIB-IMRT-esc): TD of 67.2 Gy. Mean dose and dose-volume histograms were compared using Student's t-test. IMRT significantly (all p < 0.05) reduced the Dmean, V30, and V40 for all OAR in the adjuvant setting. The V45 was also significantly reduced for all OAR except the bladder. For patients treated in the def-group, all IMRT techniques significantly reduced the Dmean, V40, and V45 for all OAR. The mean femur doses with SIB-IMRT and SIB-IMRT-esc were 47% and 49% lower compared with 3D-CRT. SIB-IMRT-esc reduced the doses to the OAR compared with seq-3D-CRT but increased the Dmax. for the small bowel, rectum, and bladder. IMRT reduces the dose to the OAR compared with 3D-CRT in patients with vulvar cancer receiving irradiation to a volume covering the vulvar region and nodal areas without compromising the dosimetric coverage of the target volume. IMRT for vulvar cancer is feasible and an attractive option for dose escalation studies.  相似文献   

7.
李勤  伍钢 《放射学实践》2005,20(1):73-76
目的 :通过三维放射治疗计划系统分别采用不同照射技术设计 ,以探讨调强适形放射治疗技术 (IMRT)的最佳剂量分布。方法 :选取一前列腺癌病例 ,对其分别进行常规、适形和调强适形三种放射治疗计划的设计 ,利用剂量体积曲线图 (DVH)等方法评价不同技术对肿瘤靶区和正常组织受照剂量的结果 ,治疗剂量为 3 0Gy。结果 :在得到相同处方剂量的前提下 ,直肠和膀胱受照剂量 >2 0Gy的体积百分比 ,常规计划照射分别为 82 %和 85 % ;适形计划照射分别为 68%和3 5 % ;而调强适形计划照射则均为 3 2 %。结论 :虽然三种放射治疗技术均能满足肿瘤靶区的剂量学要求 ,但对正常组织的受照剂量则有很大的差异 ,IMRT剂量分布对正常组织的保护有明显的优势。  相似文献   

8.
The potential of intensity modulated radiotherapy (IMRT) to improve the therapeutic ratio in prostate cancer by dose escalation of intraprostatic tumour nodules (IPTNs) was investigated using a simultaneous integrated boost technique. The prostate and organs-at-risk were outlined on CT images from six prostate cancer patients. Positions of IPTNs were transferred onto the CT images from prostate maps derived from sequential large block sections of whole prostatectomy specimens. Inverse planned IMRT dose distributions were created to irradiate the prostate to 70 Gy and all the IPTNs to 90 Gy. A second plan was produced to escalate only the dominant IPTN (DIPTN) to 90 Gy, mimicking current imaging techniques. These plans were compared with homogeneous prostate irradiation to 70 Gy using dose-volume histograms, tumour control probability (TCP) and normal tissue complication probability (NTCP) for the rectum. The mean dose to IPTNs was increased from 69.8 Gy to 89.1 Gy if all the IPTNs were dose escalated (p=0.0003). This corresponded to a mean increase in TCP of 8.7-31.2% depending on the alpha/beta ratio of prostate cancer (p<0.001), and a mean increase in rectal NTCP of 3.0% (p<0.001). If only the DIPTN was dose escalated, the TCP was increased by 6.4-27.5% (p<0.003) and the rectal NTCP was increased by 1.8% (p<0.01). In the dose escalated DIPTN IMRT plans, the highest rectal NTCP was seen in patients with IPTNs in the posterior peripheral zone close to the anterior rectal wall, and the lowest NTCP was seen with IPTNs in the lateral peripheral zone. The ratio of increased TCP to NTCP may represent an improvement in the therapeutic ratio, but was dependent on the position of the IPTN relative to the anterior rectal wall. Improvements in prostate imaging and prostate immobilization are required before clinical implementation would be possible. Clinical trials are required to confirm the clinical benefits of these improved dose distributions.  相似文献   

9.
A pelvic phantom was developed for use in testing image-guided radiation therapy (IGRT) and adaptive applications in radiation therapy (ART) with simulating the anterior-posterior internal organ motions during prostate radiotherapy. Measurements could be done with an ionization chamber (IC) in the simulated prostate. The rectum was simulated by air-equivalent material (AEM). The volume superior to the IC placement was considered as the bladder. The extension of AEM volume could be varied. The vertical position of the IC placement could be shifted by ±1 cm to simulate the prostate motion parallel to the changes in bladder volume. The reality of the simulation was inspected. Three-millimeter-slice-increment computed tomography (CT) scans were taken for irradiation planning. The structure set was adapted to the phantom from a treated patient. Planning target volume was delineated according to the RTOG 0126 study. IMRT and 3D conformal radiation therapy (3D-CRT) plans were made. Prostate motion and rectum volume changes were simulated in the phantom. IC displacement was corrected by phantom shifting. The delivered dose was measured with IC in 7 cases using intensity-modulated radiation therapy (IMRT) and 3D-CRT fractions, and single square-shaped beams: anteroposterior (AP), posteroanterior (PA), and lateral (LAT). Variations from the calculated doses were slightly below 1% at IMRT and around 1% at 3D-CRT; below 4.5% at square AP beam; up to 9% at square PA beam; and around 0.5% at square LAT beam. Other authors have already shown that by using planning systems and ultrasonic and cone beam CT guidance, correction of organ motions in a real patient during prostate cancer IGRT does not have a significant dosimetric effect. The inspection of our phantom—as described here—ended with similar results. Our team suggested that our model is sufficiently realistic and can be used for IGRT and ART testing.  相似文献   

10.
Quality of life is an important consideration in the treatment of early prostate cancer. Laboratory and clinical data suggest that higher radiation doses delivered to the bulb of penis and proximal penile structures correlates with higher rates of post-radiation impotence. The goal of this investigation was to determine if intensity-modulated radiation therapy (IMRT) spares dose to the penile bulb while maintaining coverage of the prostate. 10 consecutive patients with clinically organ confined prostate cancer were planned with 3D conformal radiation therapy (3D-CRT) or IMRT to give a dose of 74 Gy without specifically constraining the plans to spare the penile bulb. All 10 patients were ultimately treated with IMRT. Dose-volume histograms were evaluated and the doses to prostate, rectum, bladder and penile bulb were compared. IMRT reduced the mean penile bulb doses compared with 3D-CRT (33.2 Gy vs 48.9 Gy, p<0.001), the percentage of penile bulb receiving over 40 Gy (37.7% vs 67.2%, p<0.001) and the dose received by >95% of penile bulb (5.3 Gy vs 11.7 Gy, p=0.003). Maximum penile bulb doses were higher with IMRT (81.2 Gy vs 73.1 Gy, p<0.001) although the volume of this high dose region was small. Both methods resulted in similar coverage of the prostate. The volume of rectum receiving 70 Gy was significantly reduced with IMRT (18.4% vs 21.9%, p=0.003) but the volumes of bladder receiving 70 Gy were similar (p=0.3). IMRT may potentially reduce long term sexual morbidity by reducing the dose to the majority of the penile bulb.  相似文献   

11.
Radiotherapy of the posterior fossa for medulloblastoma treatment can induce ototoxicity, especially when combined with cisplatin chemotherapy. Sensorineural hearing loss can be severe enough to cause permanent disability, which may compromise cognitive development in paediatric patients. This study evaluates the sparing of the cochlea in conventional radiotherapy, three-dimensional conformal radiotherapy (3D-CRT), and intensity-modulated radiotherapy (IMRT). CT scans of three patients were used to plan posterior fossa radiotherapy using coplanar beam arrangements. The posterior fossa and the cochlea were contoured as well as other organs-at-risk (non-posterior fossa brain, lenses, optic nerves, pituitary and cervical spinal cord). Three treatment plans were compared: conventional two-dimensional treatment (parallel-opposed lateral pair); 3D-CRT (two wedged posterior oblique fields); and a four-field coplanar IMRT plan. 3D-CRT and IMRT reduced cochlear doses to less than 70% of the mean target dose. These plans also reduced dose to the non-posterior fossa brain and cervical spinal cord. IMRT showed no advantage over 3D-CRT in sparing the optic nerves and lenses, compared with 3D-CRT. Normal tissue doses were higher in both conformal techniques than in the IMRT plans. Conformal techniques reduced the dose to the cochlea, non-posterior fossa brain and cervical spinal cord. The small size and proximity to the planning target volume (PTV) of the cochlea limited the effectiveness of the IMRT plan. Coplanar 3D-CRT was judged superior to coplanar IMRT, particularly in children, because it achieved adequate sparing of the cochlea and anterior cranial structures, such as the lenses and optic nerves, without compromising the dose to the posterior fossa.  相似文献   

12.
PURPOSE: To determine the extent of target motion in postprostatectomy radiotherapy (RT) and the value of intensity-modulated radiotherapy (IMRT) compared to three-dimensional conformal radiotherapy (3D-CRT). PATIENTS AND METHODS: 20 patients underwent CT scans in supine position with both a full bladder (FB) and an empty bladder (EB) before RT and at three dates during the RT series. Displacements of the CTV (clinical target volume) center of mass and the posterior border were determined. 3D-CRT and IMRT treatment plans were compared regarding homogeneity, conformity, and dose to organs at risk. RESULTS: In the superior-inferior direction, larger displacements were found for EB compared to FB scans; anterior-posterior and right-left displacements were similar. With an initial rectum volume of < 115 cm(3), 90% of displacements at the posterior border were within a margin of 6 mm. The non-target volume irradiated in the high-dose area doubled in 3D-CRT versus IMRT plans (80 cm(3) vs. 38 cm(3) encompassed by the 95% isodose). Bladder dose was significantly lower with IMRT, but no advantage was found for the integral rectal dose. An adequate bladder filling was paramount to reduce the dose to the bladder. CONCLUSION: Postprostatectomy RT can be recommended with FB due to an improved CTV position consistency and a lower dose to the bladder. With improved non-target tissue and bladder volume sparing, IMRT is an option for dose escalation. However, this analysis did not find an advantage concerning the integral rectal dose with IMRT versus 3D-CRT.  相似文献   

13.
目的 比较三维适形放疗(3D-CRT)与5野、7野调强适形放疗(IMRT)的剂量分布,以探讨IMRT对直肠癌术前放疗的价值。方法 对10例术前新辅助放化疗直肠癌患者,分别设计3D- CRT、5野IMRT、7野IMRT计划,应用剂量体积直方图(DVH),比较3种治疗计划的靶区适形度指数(CI)、不均匀性指数(HI)和正常器官受量。结果 适形度指数(CI)7野IMRT计划>5野IMRT>3D- CRT,不均匀性指数(HI)5野IMRT计划>7野IMRT>3D- CRT。5野、7野IMRT计划比3D- CRT均可以减少高剂量照射小肠、膀胱、股骨头体积,7野IMRT计划比5野可以减少高剂量照射的骨髓和膀胱的体积。结论 直肠癌术前放疗中IMRT计划在靶区剂量适形度方面均优于3D- CRT计划,对正常组织的保护也存在明显的优势。7野IMRT计划较5野IMRT计划技术有更好的剂量适形度与剂量均匀性。  相似文献   

14.
This study focuses on understanding the impact of intensity-modulated radiotherapy (IMRT) delivery effects when applied to plans generated by commercial treatment-planning systems such as Pinnacle (ADAC Laboratories Inc.) and CadPlan/Helios (Varian Medical Systems). These commercial planning systems have had several version upgrades (with improvements in the optimization algorithm), but the IMRT delivery effects have not been incorporated into the optimization process. IMRT delivery effects include head-scatter fluence from IMRT fields, transmission through leaves and the effect of the rounded shape of the leaf ends. They are usually accounted for after optimization when leaf sequencing the "optimal" fluence profiles, to derive the delivered fluence profile. The study was divided into two main parts: (a) analysing the dose distribution within the planning-target volume (PTV), produced by each of the commercial treatment-planning systems, after the delivered fluence had been renormalized to deliver the correct dose to the PTV; and (b) studying the impact of the IMRT delivery technique on the surrounding critical organs such as the spinal cord, lungs, rectum, bladder etc. The study was performed for tumours of (i) the oesophagus and (ii) the prostate and pelvic nodes. An oesophagus case was planned with the Pinnacle planning system for IMRT delivery, via multiple-static fields (MSF) and compensators, using the Elekta SL25 with a multileaf collimator (MLC) component. A prostate and pelvic nodes IMRT plan was performed with the Cadplan/Helios system for a dynamic delivery (DMLC) using the Varian 120-leaf Millennium MLC. In these commercial planning systems, since IMRT delivery effects are not included into the optimization process, fluence renormalization is required such that the median delivered PTV dose equals the initial prescribed PTV dose. In preparing the optimum fluence profile for delivery, the PTV dose has been "smeared" by the IMRT delivery techniques. In the case of the oesophagus, the critical organ, spinal cord, received a greater dose than initially planned, due to the delivery effects. The increase in the spinal cord dose is of the order of 2-3 Gy. In the case of the prostate and pelvic nodes, the IMRT delivery effects led to an increase of approximately 2 Gy in the dose delivered to the secondary PTV, the pelvic nodes. In addition to this, the small bowel, rectum and bladder received an increased dose of the order of 2-3 Gy to 50% of their total volume. IMRT delivery techniques strongly influence the delivered dose distributions for the oesophagus and prostate/pelvic nodes tumour sites and these effects are not yet accounted for in the Pinnacle and the CadPlan/Helios planning systems. Currently, they must be taken into account during the optimization stage by altering the dose limits accepted during optimization so that the final (sequenced) dose is within the constraints.  相似文献   

15.
The emergent use of a combined modality approach (chemotherapy and radiation) in pancreatic cancer is associated with increased gastrointestinal toxicity. Intensity-modulated radiation therapy (IMRT) has the potential to deliver adequate dose to the tumor volume while decreasing the dose to critical structures such as the small bowel. We evaluated the influence of IMRT with inverse treatment planning on the dose-volume histograms (DVHs) of normal tissue compared to standard 3-dimensional conformal radiation treatment (3D-CRT) in patients with pancreatic cancer. Between July 1999 and May 2001, 10 randomly selected patients with adenocarcinoma of the pancreatic head were planned simultaneously with 3D-CRT and inverse-planned IMRT using the volume at risk approach (VaRA) and compared for various dosimetric parameters. DVH and normal tissue complication probability (NTCP) were calculated using IMRT and 3D-CRT plans. The aim of the treatment plan was to deliver 61.2 Gy to the gross tumor volume (GTV) and 45 Gy to the clinical treatment volume (CTV) while maintaining critical normal tissues to below specified tolerances. IMRT plans were more conformal than 3D-CRT plans. The average dose delivered to one third of the small bowel was lower with the IMRT plan compared to 3D-CRT. The IMRT plan resulted in one third of the small bowel receiving 30.2+/-12.9 Gy vs. 38.5+/-14.2 Gy with 3D-CRT (p = 0.006). The median volume of small bowel that received greater than either 50 or 60 Gy was reduced with IMRT. The median volume of small bowel exceeding 50 Gy was 19.2+/-11.2% (range 3% to 45%) compared to 31.4+/-21.3 (range 7% to 70%) for 3D-CRT (p = 0.048). The median volume of small bowel that received greater than 60 Gy was 12.5+/-4.8% for IMRT compared to 19.8+/-18.6% for 3D-CRT (p = 0.034). The VaRA approach employing IMRT techniques resulted in a lower dose per volume of small bowel that exceeded 60 Gy. We used the Lyman-Kutcher models to compare the probability of small bowel injury employing IMRT compared to 3D-CRT. The BIOPLAN model predicted a small bowel complication probability of 9.3+/-6% with IMRT compared to 24.4+/-18.9% with 3D-CRT delivery of dose (p = 0.021). IMRT with an inverse treatment plan has the potential to significantly improve radiation therapy of pancreatic cancers by reducing normal tissue dose, and simultaneously allow escalation of dose to further enhance locoregional control.  相似文献   

16.
《Medical Dosimetry》2023,48(1):8-15
Whole pelvic radiotherapy (WPRT) can sterilize microscopic lymph node metastases in treatment of prostate cancer. WPRT, compared to prostate only radiotherapy (PORT), is associated with increased acute gastrointestinal, and hematological toxicities. To further explore minimizing normal tissue toxicities associated with WPRT in definitive IMRT for prostate cancer, this planning study compared dosimetric differences between static 9-field-IMRT, full arc VMAT, and mixed partial-full arc VMAT techniques. In this retrospective study, 12 prostate cancer patients who met the criteria for WPRT were randomly selected for this study. The initial volume, PTV46, included the prostate, seminal vesicles, and pelvic nodes with margin and was prescribed to 4600 cGy. The cone-down volume, PTV78, included the prostate and proximal seminal vesicles with margin to a total dose of 7800 cGy. For each CT image set, 3 plans were generated for each of the PTVs: an IMRT plan, a full arc (FA) VMAT plan, and a mixed partial-full arc (PFA) VMAT plan, using 6MV photons energy. According to RTOG protocols none of the plans had a major Conformity Index (CI) violation by any of the 3 planning techniques. PFA plan had the best mean CI index of 1.00 and significantly better than IMRT (p = 0.03) and FA (p = 0.007). For equivalent PTV coverage, the average composite gradient index of the PFA plans was better than the IMRT and the FA plans with values 1.92, 2.03, and 2.01 respectively. The defference was statistically significant between PFA/IMRT and PFA/FA, with p- values of < 0.001. The IMRT plans and the PFA plans provided very similar doses to the rectum, bladder, sigmoid colon, and femoral heads, which were lower than the dose in the FA plans. There was a significant decrease in the mean dose to the rectum from 4524 cGy with the FA to 4182 cGy with the PFA and 4091 cGy with IMRT (p < 0.001). The percent of rectum receiving 4000 cGy was also the highest with FA at 66.1% compared to 49.9% (PFA) and 47.5% (IMRT). There was a significant decrease in the mean dose to the bladder from 3922 cGy (FA) to 3551 cGy (PFA) and 3612 cGy (IMRT) (p < 0.001). The percent of bladder receiving 4000 cGy was also the highest with FA at 45.4% compared to 36.6% (PFA) and 37.4% (IMRT). The average mean dose to the sigmoid colon decreased from 4177 cGy (FA) to 3893 cGy (PFA) and 3819 cGy (IMRT). The average mean dose to the femoral heads decreased from 2091 cGy (FA) to 2026 cGy (PFA) and 1987 cGy (IMRT). Considering the improvement in plan quality indices recorded in this study including the dose gradient and the dose to organs at risk, mixed partial-full arc plans may be the preferred VMAT treatment technique over full arc plans for prostate cancer treatments that include nodal volumes.  相似文献   

17.
When treating prostate patients having a metallic prosthesis with radiation, a 3D conformal radiotherapy (3DCRT) treatment plan is commonly created using only those fields that avoid the prosthesis in the beam’s-eye view (BEV). With a limited number of portals, the resulting plan may compromise the dose sparing of the rectum and bladder. In this work, we investigate the feasibility of using intensity-modulated radiotherapy (IMRT) to treat prostate patients having a metallic prosthesis. Three patients, each with a single metallic prosthesis, who were previously treated at the University of Chicago Medical Center for prostate cancer, were selected for this study. Clinical target volumes (CTV = prostate + seminal vesicles), bladder, and rectum volumes were identified on CT slices. Planning target volumes (PTV) were generated in 3D by a 1-cm expansion of the CTVs. For these comparative studies, treatment plans were generated from CT data using 3DCRT and IMRT treatment planning systems. The IMRT plans used 9 equally-spaced 6-MV coplanar fields, with each field avoiding the prosthesis. The 3DCRT plans used 5 coplanar 18-MV fields, with each field avoiding the prosthesis. A 1-cm margin around the PTV was used for the blocks. Each of the 9-field IMRT plans spared the bladder and rectum better than the corresponding 3DCRT plan. In the IMRT, plans, a bladder volume receiving 80% or greater dose decreased by 20–77 cc, and a volume rectal volume receiving 80% or greater dose decreased by 24–40 cc. One negative feature of the IMRT plans was the homogeneity across the target, which ranged from 95% to 115%.  相似文献   

18.
In this study, we evaluate the impact of daily image-guided patient repositioning on dose delivery to prostate and sensitive organs in the treatment of prostate carcinoma with 3-dimensional conformal radiation therapy (3DCRT). Five patients with substantial ultrasound-documented interfractional prostate motion during their 3DCRT treatment course were selected. Starting with the original treatment plan, 2 additional plans were retrospectively generated for each patient. In one set, organ contours were moved for each fraction, thus simulating positioning with misalignment caused by organ motion if ultrasound guidance were not used. In a second set of plans, the isocenter was shifted, as were the organ contours, simulating realignment based on the ultrasound image. In all cases, the number of planned monitor units was set to those of the original plan. For a given patient, isodose distributions, dose-volume histograms (DVHs), equivalent uniform dose (EUD) for prostate, and generalized equivalent uniform dose (gEUDs) for bladder and rectum were calculated for each fraction and then combined for each shift condition. In all reconstructed plans, the results show no substantial changes in dose coverage of the prostate <0.21% change in EUD) compared to the original plan. However, in some cases with no realignment, a larger volume of the bladder or rectum gets higher dose, with the consequent gEUD for each organ significantly greater compared to the original plan.  相似文献   

19.
目的 研究宫颈癌术后螺旋断层放疗(helical tomotherapy,HT)与常规静态调强放疗(IMRT)的剂量学特点。方法 采用10例宫颈癌术后患者CT图像,统一勾画靶区及危及器官(膀胱、直肠、小肠及双侧股骨头),分别传输至HT计划系统和IMRT计划系统,比较两组计划剂量体积直方图、适形度指数(CI)、均匀指数(HI)和危及器官所接受的照射剂量和体积,统一给予阴道残端60 Gy/25次,亚临床病灶50 Gy/25次,同时限定膀胱、直肠、小肠、股骨头等危及器官受照射剂量与体积。统一应用50 Gy处方剂量评价和比较CI和HI。结果 HT组适形指数(0.94±0.03)和均匀指数(1.28±0.02)均明显好于IMRT组(0.85±0.01和1.36±0.03)(t =5.12和-6.34, P<0.01);HT组PTV平均剂量为51.77Gy显著低于IMRT组54.53Gy(t =-8.01, P<0.05);HT组膀胱、直肠和小肠最大剂量、平均剂量、V30V40V50照射体积均显著低于IMRT组;HT组左、右侧股骨头最大剂量、平均剂量、V30V40照射体积均显著低于IMRT组。结论 HT与IMRT计划均有较好的靶区剂量分布,但HT组在适形指数、均匀指数及对周围危及器官的保护均比IMRT组有明显优势。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号