首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nrf2(NF-E2-related factor 2)核因子E2相关因子是一种机体抵抗内界和外界氧化或化学等刺激的中枢调节者。Nrf2-ARE则是近年来新发现的细胞氧化应激反应的关键传导通路,当其在体内被有毒有害物质激活后转位进入细胞核能与抗氧化反应元件(antioxidant response element,ARE)结合形成Nrf2-ARE信号通路,从而调控下游抗氧化蛋白、氧化酶和Ⅱ相解毒酶等。研究发现该通路在抗衰老、抗肿瘤、抗炎症、神经损伤、眼科等多方面均有重要作用。以Nrf2为靶点的药物有望用于肿瘤、糖尿病、神经退行性疾病等。本文综述了Nrf2-ARE信号通路功能及以其为靶点的药物研究的进展。  相似文献   

2.
机体在应对活性氧(reactive oxygen species,ROS)损害时形成了一套复杂的氧化应激应答系统,当暴露于ROS时,机体自身能诱导出一系列保护性蛋白,以缓解细胞所受的损害。这一协调反应是由这些保护性基因上游调节区的抗氧化反应元件(antioxidant responsive element,ARE)来调控的。而近年来的研究发现,核因子NF-E2相关因子(nuclear fac-tor erythroid 2-related factor 2,Nrf2)是ARE的激活因子。Nrf2是外源性有毒物质和氧化应激的感受器,在参与细胞抗氧化应激和外源性有毒物质诱导的主要防御机制中发挥重要的作用。Nrf2-ARE通路是迄今为止发现的最为重要的内源性抗氧化应激通路。  相似文献   

3.
The Kelch ECH associating protein 1-nuclear factor-E2-related factor 2-antioxidant response element (Keap 1-Nrf2-ARE) signaling pathway regulates several protective mechanisms including expression of conjugating and antioxidative genes, antiinflammatory responses, the molecular chaperone/stress response system and the ubiquitin/proteasome system. The Nrf2-mediated response alters susceptibility to carcinogenesis, acute chemical toxicity, oxidative stress, asthma, acute inflammation, septic shock and neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Studies using natural and synthetic chemical inducers that activate Nrf2 signaling have demonstrated protective efficacy in many animal models of disease. Conversely, studies in Nrf2-disrupted mice indicate they exhibit increased sensitivity to many of these diseases. Thus, activation of Keap1-Nrf2-ARE signaling constitutes a broad protective response, making Nrf2 and its interacting partners important targets for chemoprevention. However, additional studies are needed to characterize Keap1-Nrf2-ARE signaling in humans to further develop exceptionally potent activators of the pathway and further understand the potential consequences of altering this system.  相似文献   

4.
5.
Mechanistic studies of the Nrf2-Keap1 signaling pathway   总被引:2,自引:0,他引:2  
  相似文献   

6.
7.
8.
9.
Kelch-like ECH-associated protein (Keap1)-nuclear factor erythroid-2-related factor 2 (Nrf2) protein-protein interaction has become an important drug target for the treatment of Alzheimer’s disease. In this study, we found a novel piperine derivative (HJ22) synthesized by our group with great ability to bind to Keap-1 and activate Keap1-Nrf2-ARE signaling pathway in vitro, driving us to investigate the beneficial effects of HJ22 on ibotenic acid (IBO)-induced neurological disorders in rats and underlying mechanisms. Interestingly, HJ22 significantly ameliorated IBO-induced cognitive impairment in Morris water maze, Y-maze and passive avoidance tests. Moreover, HJ22 significantly attenuated cholinergic dysfunction and neuronal morphological changes via inhibiting apoptotic cell death induced by IBO. Notably, HJ22 inhibited the interaction between Keap1 and Nrf2, and subsequently up-regulated nuclear Nrf2 expression, thereby inhibiting oxidative stress and Thioredoxin-interacting protein (TXNIP)-mediated Nod-like receptor protein 3 (NLRP3) inflammasome activation. These findings demonstrated that HJ22 exhibited potent therapeutic effects against IBO-induced cognitive impairment by alleviating cholinergic damage, oxidative stress, apoptosis and neuroinflammation, which might be partly attributed to its inhibitory activity on Keap1-Nrf2 protein-protein interaction.  相似文献   

10.
Stroke is a complex disease that may involve oxidative stress-related pathways in its pathogenesis. The nuclear factor erythroid-2-related factor 2/antioxidant response element (Nrf2/ARE) pathway plays an important role in inducing phase II detoxifying enzymes and antioxidant proteins and thus has been considered a potential target for neuroprotection in stroke. The aim of the present study was to determine whether eriodictyol-7-O-glucoside (E7G), a novel Nrf2 activator, can protect against cerebral ischemic injury and to understand the role of the Nrf2/ARE pathway in neuroprotection. In primary cultured astrocytes, E7G increased the nuclear localization of Nrf2 and induced the expression of the Nrf2/ARE-dependent genes. Exposure of astrocytes to E7G provided protection against oxygen and glucose deprivation (OGD)-induced oxidative insult. The protective effect of E7G was abolished by RNA interference-mediated knockdown of Nrf2 expression. In vivo administration of E7G in a rat model of focal cerebral ischemia significantly reduced the amount of brain damage and ameliorated neurological deficits. These data demonstrate that activation of Nrf2/ARE signaling by E7G is directly associated with its neuroprotection against oxidative stress-induced ischemic injury and suggest that targeting the Nrf2/ARE pathway may be a promising approach for therapeutic intervention in stroke.  相似文献   

11.
Ultraviolet radiation A (UVA)-induced oxidative stress is recognized as an important factor in the development of skin carcinogenesis. Resveratrol is demonstrated to possess remarkable antioxidant activity in the organism. The aim of this study was to investigate the protective role of resveratrol in human keratinocytes (HaCaT) against UVA-induced oxidative damage and the possible mechanism of the translocation of NF-E2-related factor-2 (Nrf2) into the nucleus. The HaCaT cells were UVA-irradiated and the effects of resveratrol on cell viability, reactive oxygen species generation and membrane-lipid peroxidation were measured. The proteins and mRNA of Nrf2 and Kelch-like-ECH-associated protein 1 (Keap1) were determined by immunofluorescence staining, Western blot and quantitative PCR, respectively. UVA exposure led to a decrease in viability and an increase in reactive oxygen species generation in HaCaT cells. Resveratrol could effectively increase the viability of HaCaT cells after UVA exposure and protect them from UVA-induced oxidative stress. Moreover, resveratrol increased the level of Nrf2 protein and facilitated Nrf2 accumulation in the nucleus; as a result, the activity of antioxidant enzymes was also upregulated. The main finding was that Keap1 protein, a repressor of Nrf2 in the cytoplasm, was clearly decreased by resveratrol treatment 12 h and beyond though the level of Keap1 mRNA still increased. Our results suggest that resveratrol can degrade Keap1 protein and facilitate Nrf2 accumulation in the nucleus, thereby protecting HaCaT cells from UVA-induced oxidative stress. Resveratrol could be a more useful natural medicine for the protection of epidermal cells from UVA-induced damage.  相似文献   

12.
Manganese has been known to induce neurological disorders similar to Parkinson's disease. One of the features of manganese-induced neurotoxicity is oxidative stress. Accumulating data implicate NF-E2-related factor 2 (Nrf2) as a key regulator in the adaptive survival response to oxidative stress. Recent studies suggest that the activation of Nrf2 is induced by manganese in PC12 cells. In the present study, we investigated possible links between reactive oxygen species (ROS), proteasome or mitogen-activated protein kinase (MAPK) signaling and Nrf2/HO-1 activation in manganese-treated PC12 cells. After MnCl(2) treatment, there was an increase in nuclear localization and subsequent binding of Nrf2 to the antioxidant-responsive element (ARE) and upregulation of heme oxygenase-1 (HO-1) protein in PC12 cells. Pretreatment with N-acetyl cysteine, a scavenger of reactive oxygen species, suppressed MnCl(2) -induced Nrf2 activation, increase in Nrf2-ARE binding and subsequent upregulation of HO-1 expression. However, pretreatment with lactacystin, an inhibitor of proteasome activity, enhanced MnCl(2) -induced Nrf2 activation, increase in Nrf2-ARE binding and subsequent upregulation of HO-1 expression. Pretreatment of cells with a pharmacological inhibitor of MAPK (ERK inhibitor PD 98059, P38 inhibitor SB203580 or JNK inhibitor SP600125) did not affect the MnCl(2) -induced Nrf2 activation, increase in Nrf2-ARE binding or subsequent upregulation of HO-1 expression. These results suggest that Nrf2/HO-1 activation by Mn in PC12 cells is associated with ROS and the ubiquitin-proteasome pathway, not MAPK signaling.  相似文献   

13.
14.
Zearalenone (ZEN) is a kind of nonsteroidal mycotoxin that is considered a risk affecting the safety of human food and livestock feed that causes oxidative damages in mammalian cells. Selenomethionine (SeMet) was indicated to have antioxidant activity and received great interest in investigating the role of SeMet as a therapeutic agent in oxidation. Therefore, the aim of this study was to investigate the hormetic role of DL-SeMet in porcine intestinal epithelial J2 (IPEC-J2) cells against ZEN-induced oxidative stress injury. As a result of this experiment, 30 μg/mL of ZEN was observed with significantly statistical effects in cell viability. Following the dose-dependent manner, 20 μg/mL was chosen for the subsequent experiments. Then, further results in the current study showed that the ZENinduced oxidative stress with subsequent suppression of the expression of antioxidant stress pathway-related genes species. Moreover, SeMet reversed the oxidative damage and cell death of ZEN toxins to some extent, by a Nrf2/Keap1-ARE pathway. The finding of this experiment provided a foundation for further research on the ZEN-caused cell oxidative damage and the cure technology.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号