首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
2.
Transplantation of olfactory ensheathing cells (OECs) is a potential therapy for the regeneration of damaged neurons. While they maintain tissue homeostasis in the olfactory mucosa (OM) and olfactory bulb (OB), their regenerative properties also support the normal sense of smell by enabling continual turnover and axonal regrowth of olfactory sensory neurons (OSNs). However, the molecular physiology of OECs is not fully understood, especially that of OECs from the mucosa. Here, we carried out whole-cell patch-clamp recordings from individual OECs cultured from the OM and OB of the adult rat, and from the human OM. A subset of OECs from the rat OM cultured 1–3 days in vitro had large weakly rectifying K+ currents, which were sensitive to Ba2+ and desipramine, blockers of Kir4-family channels. Kir4.1 immunofluorescence was detectable in cultured OM cells colabeled for the OEC marker S100, and in S100-labeled cells found adjacent to OSN axons in mucosal sections. OECs cultured from rat OB had distinct properties though, displaying strongly rectifying inward currents at hyperpolarized membrane potentials and strongly rectifying outward currents at depolarized potentials. Kir4.1 immunofluorescence was not evident in OECs adjacent to axons of OSNs in the OB. A subset of human OECs cultured from the OM of adults had membrane properties comparable to those of the rat OM that is dominated by Ba2+-sensitive weak inwardly rectifying currents. The membrane properties of peripheral OECs are different to those of central OECs, suggesting they may play distinct roles during olfaction.  相似文献   

3.
Whereas our understanding of the dopaminergic system in mammals allows for a distinction between ventral tegmental area (VTA) and substantia nigra pars compacta (SNc), no clear evidence for separate structures in anamniotes has been presented to date. To broaden the insight into the organization and regulation of neuromodulatory systems in anuran amphibians, tracing and immunohistochemical investigations were performed in the Oriental fire-bellied toad, Bombina orientalis. Topographically organized catecholaminergic “nigrostriatal,” “mesolimbic,” “mesocortical,” and spinal cord projections arising from the posterior tubercle and mesencephalic tegmentum were identified. We compared these results with published data from lampreys, chondrichthyes, teleosts, amphibians, reptiles, birds, and mammals. Based on the pattern of organization, as well as the differential innervation by the habenular nuclei, domains gradually comparable to the mammalian paranigral VTA, ventral tier of the SNc, interfascicular nucleus of the VTA, and supramamillary/retromamillary area were identified. Additionally, we could demonstrate topographic separate populations of habenula neurons projecting via a direct excitatory or indirect GABAergic pathway onto the catecholaminergic VTA/SNc homologs and serotonergic raphe nuclei. The indirect GABAergic habenula pathway derives from neurons in the superficial mamillary area, which in terms of its connectivity and chemoarchitecture resembles the mammalian rostromedial tegmental nucleus. These results demonstrate a much more elaborate interconnection principle of the anuran dopaminergic system than previously assumed. Based on the data presented it seems that most features of the dopaminergic system of amniotes had already evolved when the amphibian line of evolution diverged from that leading up to mammals, reptiles, and birds.  相似文献   

4.
5.
The mesolimbic dopamine (DA) circuitry determines which behaviors are positively reinforcing and therefore should be encoded in the memory to become a part of the behavioral repertoire. Natural reinforcers, like food and sex, activate this pathway, thereby increasing the likelihood of further consummatory, social, and sexual behaviors. Oxytocin (OT) has been implicated in mediating natural reward and OT‐synthesizing neurons project to the ventral tegmental area (VTA) and nucleus accumbens (NAc); however, direct neuroanatomical evidence of OT regulation of DA neurons within the VTA is sparse. To phenotype OT‐receptor (OTR) expressing neurons originating within the VTA, we delivered Cre‐inducible adeno‐associated virus that drives the expression of fluorescent marker into the VTA of male mice that had Cre‐recombinase driven by OTR gene expression. OTR‐expressing VTA neurons project to NAc, prefrontal cortex, the extended amygdala, and other forebrain regions but less than 10% of these OTR‐expressing neurons were identified as DA neurons (defined by tyrosine hydroxylase colocalization). Instead, almost 50% of OTR‐expressing cells in the VTA were glutamate (GLU) neurons, as indicated by expression of mRNA for the vesicular GLU transporter (vGluT). About one‐third of OTR‐expressing VTA neurons did not colocalize with either DA or GLU phenotypic markers. Thus, OTR expression by VTA neurons implicates that OT regulation of reward circuitry is more complex than a direct action on DA neurotransmission. J. Comp. Neurol. 525:1094–1108, 2017. © 2016 Wiley Periodicals, Inc.  相似文献   

6.
Many animals rely on acoustic cues to decide what action to take next. Unraveling the wiring patterns of the auditory neural pathways is prerequisite for understanding such information processing. Here, we reconstructed the first step of the auditory neural pathway in the fruit fly brain, from primary to secondary auditory neurons, at the resolution of transmission electron microscopy. By tracing axons of two major subgroups of auditory sensory neurons in fruit flies, low-frequency tuned Johnston's organ (JO)-B neurons and high-frequency tuned JO-A neurons, we observed extensive connections from JO-B neurons to the main second-order neurons in both the song-relay and escape pathways. In contrast, JO-A neurons connected strongly to a neuron in the escape pathway. Our findings suggest that heterogeneous JO neuronal populations could be recruited to modify escape behavior whereas only specific JO neurons contribute to courtship behavior. We also found that all JO neurons have postsynaptic sites at their axons. Presynaptic modulation at the output sites of JO neurons could affect information processing of the auditory neural pathway in flies.  相似文献   

7.
We employed an anti‐transducin antibody (Gαt‐S), in combination with other markers, to characterize the Gαt‐S‐immunoreactive (ir) system in the CNS of the sea lamprey, Petromyzon marinus. Gαt‐S immunoreactivity was observed in some neuronal populations and numerous fibers distributed throughout the brain. Double Gαt‐S‐ and opsin‐ir neurons (putative photoreceptors) are distributed in the hypothalamus (postoptic commissure nucleus, dorsal and ventral hypothalamus) and caudal diencephalon, confirming results of García‐Fernández et al. (Cell and Tissue Research, 288, 267–278, 1997). Singly Gαt‐S‐ir cells were observed in the midbrain and hindbrain, increasing the known populations. Our results reveal for the first time in vertebrates the extensive innervation of many brain regions and the spinal cord by Gαt‐S‐ir fibers. The Gαt‐S innervation of the habenula is very selective, fibers densely innervating the lamprey homologue of the mammalian medial nucleus (Stephenson‐Jones et al., Proceedings of the National Academy of Sciences of the United States of America, 109, E164–E173, 2012), but not the lateral nucleus homologue. The lamprey neurohypophysis was not innervated by Gαt‐S‐ir fibers. We also analyzed by double immunofluorescence the relation of this system with other systems. A dopaminergic marker (TH), serotonin (5‐HT) or GABA do not co‐localize with Gαt‐S‐ir neurons although codistribution of fibers was observed. Codistribution of Gαt‐S‐ir fibers and isolectin‐labeled extrabulbar primary olfactory fibers was observed in the striatum and hypothalamus. Neurobiotin retrograde transport from the spinal cord combined with immunofluorescence revealed spinal‐projecting Gαt‐S‐ir reticular neurons in the caudal hindbrain. Present results in an ancient vertebrate reveal for the first time a collection of brain targets of Gαt‐S‐ir neurons, suggesting they might mediate non‐visual modulation by light in many systems.  相似文献   

8.
The aim of this study was to determine whether the transmission from sensory inputs to reticulospinal neurons is modulated during fictive locomotion in lampreys. Reticulospinal neurons play a key role in the control of locomotion; modulation of sensory transmission to these neurons might be of importance for the adaptation of the control they exert during locomotion. In this series of experiments, intracellular synaptic responses of reticulospinal neurons of the posterior rhombencephalic reticular nucleus elicited by electrical stimulation of vestibular nerves on each side were studied during fictive locomotion induced by 50 microM N-methyl-D-aspartate (NMDA). Interestingly, shortly after NMDA had reached the bath and much before locomotor discharges were apparent in the recorded ventral roots, there was a significant depression of the synaptic transmission from vestibular nerves. The effect was reversed by washing out the NMDA and persisted in the isolated brainstem after spinal transection at the first segmental level. As locomotor discharges appeared in the ventral roots, synaptic responses elicited by vestibular nerve stimulation showed a clear phasic modulation of their amplitude during the locomotor cycle. Responses to stimulation of the ipsilateral vestibular nerve were smaller during the ipsilateral burst discharge than during the contralateral activity, whilst responses to stimulation of the contralateral vestibular nerve were minimal during contralateral activity and maximal during ipsilateral activity. This opposite pattern of modulation observed in the same reticulospinal neuron suggests that the phasic modulation of vestibular transmission is not due to changes in the membrane properties of the reticulospinal cell but is produced at a pre-reticular level.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The spinal circuitry underlying the generation of basic locomotor synergies has been described in substantial detail in lampreys and the cellular mechanisms have been identified. The initiation of locomotion, on the other hand, relies on supraspinal networks and the cellular mechanisms involved are only beginning to be understood. This review examines some of the findings relative to the neural mechanisms involved in the initiation of locomotion of lampreys. Locomotion can be elicited by sensory stimulation or by internal cues associated with fundamental needs of the animal such as food seeking, exploration, and mating. We have described mechanisms by which escape swimming is elicited in lampreys in response to mechanical skin stimulation. A rather simple neural connectivity is involved, including sensory and relay neurons, as well as the brainstem rhombencephalic reticulospinal cells, which act as command neurons. We have shown that reticulospinal cells have intrinsic membrane properties that allow them to transform a short duration sensory input into a long-lasting excitatory command that activates the spinal locomotor networks. These mechanisms constitute an important feature for the activation of escape swimming. Other sensory inputs can also elicit locomotion in lampreys. For instance, we have recently shown that olfactory signals evoke sustained depolarizations in reticulospinal neurons and chemical activation of the olfactory bulbs with local injections of glutamate induces fictive locomotion. The mechanisms by which internal cues initiate locomotion are less understood. Our research has focused on one particular locomotor center in the brainstem, the mesencephalic locomotor region (MLR). The MLR is believed to channel inputs from many brain regions to generate goal-directed locomotion. It activates reticulospinal cells to elicit locomotor output in a graded fashion contrary to escape locomotor bouts, which are all-or-none. MLR inputs to reticulospinal cells use both glutamatergic and cholinergic transmission; nicotinic receptors on reticulospinal cells are involved. MLR excitatory inputs to reticulospinal cells in the middle (MRRN) are larger than those in the posterior rhombencephalic reticular nucleus (PRRN). Moreover at low stimulation strength, reticulospinal cells in the MRRN are activated first, whereas those in the PRRN require stronger stimulation strengths. The output from the MLR on one side activates reticulospinal neurons on both sides in a highly symmetrical fashion. This could account for the symmetrical bilateral locomotor output evoked during unilateral stimulation of the MLR in all animal species tested to date. Interestingly, muscarinic receptor activation reduces sensory inputs to reticulospinal neurons and, under natural conditions, the activation of MLR cholinergic neurons will likely reduce sensory inflow. Moreover, exposing the brainstem to muscarinic agonists generates sustained recurring depolarizations in reticulospinal neurons through pre-reticular effects. Cells in the caudal half of the rhombencephalon appear to be involved and we propose that the activation of these muscarinoceptive cells could provide additional excitation to reticulospinal cells when the MLR is activated under natural conditions. One important question relates to sources of inputs to the MLR. We found that substance P excites the MLR, whereas GABA inputs tonically maintain the MLR inhibited and removal of this inhibition initiates locomotion. Other locomotor centers exist such as a region in the ventral thalamus projecting directly to reticulospinal cells. This region, referred to as the diencephalic locomotor region, receives inputs from several areas in the forebrain and is likely important for goal-directed locomotion. In summary, this review focuses on the most recent findings relative to initiation of lamprey locomotion in response to sensory and internal cues in lampreys.  相似文献   

10.
The prefrontal cortex (PFC) is usually defined as the frontal cortical area receiving a mediodorsal thalamic (MD) innervation. Certain areas in the medial wall of the rat frontal area receive a MD innervation. A second frontal area that is the target of MD projections is located dorsal to the rhinal sulcus and often referred to as the orbitofrontal cortex (OFC). Both the medial PFC and OFC are comprised of a large number of cytoarchitectonic regions. We assessed the afferent innervation of the different areas of the OFC, with a focus on projections arising from the mediodorsal thalamic nucleus, the basolateral nucleus of the amygdala, and the midbrain dopamine neurons. Although there are specific inputs to various OFC areas, a simplified organizational scheme could be defined, with the medial areas of the OFC receiving thalamic inputs, the lateral areas of the OFC being the recipient of amygdala afferents, and a central zone that was the target of midbrain dopamine neurons. Anterograde tracer data were consistent with this organization of afferents, and revealed that the OFC inputs from these three subcortical sites were largely spatially segregated. This spatial segregation suggests that the central portion of the OFC (pregenual agranular insular cortex) is the only OFC region that is a prefrontal cortical area, analogous to the prelimbic cortex in the medial prefrontal cortex. These findings highlight the heterogeneity of the OFC, and suggest possible functional attributes of the three different OFC areas.  相似文献   

11.
Dopamine (DA) neurons derived from human embryonic stem cells (hESCs) are a promising unlimited source of cells for cell replacement therapy in Parkinson's disease (PD). A number of studies have demonstrated functionality of DA neurons originating from hESCs when grafted to the striatum of rodent and non‐human primate models of PD. However, several questions remain in regard to their axonal outgrowth potential and capacity to integrate into host circuitry. Here, ventral midbrain (VM) patterned hESC‐derived progenitors were grafted into the midbrain of 6‐hydroxydopamine‐lesioned rats, and analyzed at 6, 18, and 24 weeks for a time‐course evaluation of specificity and extent of graft‐derived fiber outgrowth as well as potential for functional recovery. To investigate synaptic integration of the transplanted cells, we used rabies‐based monosynaptic tracing to reveal the origin and extent of host presynaptic inputs to grafts at 6 weeks. The results reveal the capacity of grafted neurons to extend axonal projections toward appropriate forebrain target structures progressively over 24 weeks. The timing and extent of graft‐derived dopaminergic fibers innervating the dorsolateral striatum matched reduction in amphetamine‐induced rotational asymmetry in the animals where recovery could be observed. Monosynaptic tracing demonstrated that grafted cells integrate with host circuitry 6 weeks after transplantation, in a manner that is comparable with endogenous midbrain connectivity. Thus, we demonstrate that VM patterned hESC‐derived progenitors grafted to midbrain have the capacity to extensively innervate appropriate forebrain targets, integrate into the host circuitry and that functional recovery can be achieved when grafting fetal or hESC‐derived DA neurons to the midbrain.  相似文献   

12.
The ionotropic serotonin receptor, 5‐HT3, is expressed by many developing neurons within the central nervous system. Since the olfactory epithelium continues to generate new olfactory sensory neurons (OSNs) throughout life, we investigated the possibility that 5‐HT3 is expressed in the adult epithelium. Using a transgenic mouse in which the promoter for the 5‐HT3a subunit drives expression of green fluorescent protein (GFP), we assessed the expression of this marker in the olfactory epithelium of adult mice. Both the native 5‐HT3a mRNA and GFP are expressed within globose basal cells of the olfactory and vomeronasal epithelium in adult mice. Whereas the 5‐HT3a mRNA disappears relatively quickly after final cell division, the GFP label persists for about 5 days, thereby labeling immature OSNs in both the main olfactory system and vomeronasal organ. The GFP‐labeled cells include both proliferative globose basal cells as well as immature OSNs exhibiting the hallmarks of ongoing differentiation including GAP43, PGP9.5, but the absence of olfactory marker protein. Some of the GFP‐labeled OSNs show characteristics of more mature yet still developing OSNs including the presence of cilia extending from the apical knob and expression of NaV1.5, a component of the transduction cascade. These findings suggest that 5‐HT3a is indicative of a proliferative or developmental state, regardless of age, and that the 5‐HT3AGFP mice may prove useful for future studies of neurogenesis in the olfactory epithelium. J. Comp. Neurol. 525:1743–1755, 2017. © 2016 Wiley Periodicals, Inc.  相似文献   

13.
The transplantation of dopaminergic (DA) progenitors derived from pluripotent stem cells improves the behavior of Parkinson's disease model animals. However, the survival of DA progenitors is low, and the final yield of DA neurons is only approximately 0.3%–2% the number of transplanted cells. Zonisamide (ZNS) increases the number of survived DA neurons upon the transplantation of mouse-induced pluripotent stem (iPS) cell-derived DA progenitors in the rat striatum. In this study, we induced DA progenitors from human iPS cells and transplanted them into the striatum of female rats with daily administration of ZNS. The number of survived DA neurons was evaluated 1 and 4 months after transplantation by immunohistochemistry, which revealed that the number of survived DA neurons was significantly increased with the administration of ZNS. To assess the mechanism of action of ZNS, we performed a gene expression analysis to compare the gene expression profiles in striatum treated with or without ZNS. The analysis revealed that the expression of SLIT-and NTRK-like protein 6 (SLITRK6) was upregulated in rat striatum treated with ZNS. In conclusion, ZNS promotes the survival of DA neurons after the transplantation of human-iPS cell-derived DA progenitors in the rat striatum. SLITRK6 is suggested to be involved in this supportive effect of ZNS by modulating the environment of the host brain.  相似文献   

14.
Principal neurons in the ventral cochlear nucleus (VCN) receive powerful ascending excitation and pass on the auditory information with exquisite temporal fidelity. Despite being dominated by ascending inputs, the VCN also receives descending cholinergic connections from olivocochlear neurons and from higher regions in the pontomesencephalic tegmentum. In Mongolian gerbils, acetylcholine acts as an excitatory and modulatory neurotransmitter on VCN neurons, but the anatomical structure of cholinergic innervation of gerbil VCN is not well described. We applied fluorescent immunohistochemical staining to elucidate the development and the cellular localization of presynaptic and postsynaptic components of the cholinergic system in the VCN of the Mongolian gerbil. We found that cholinergic fibers (stained with antibodies against the vesicular acetylcholine transporter) were present before hearing onset at P5, but innervation density increased in animals after P10. Early in development cholinergic fibers invaded the VCN from the medial side, spread along the perimeter and finally innervated all parts of the nucleus only after the onset of hearing. Cholinergic fibers ran in a rostro‐caudal direction within the nucleus and formed en‐passant swellings in the neuropil between principal neurons. Nicotinic and muscarinic receptors were expressed differentially in the VCN, with nicotinic receptors being mostly expressed in dendritic areas while muscarinic receptors were located predominantly in somatic membranes. These anatomical data support physiological indications that cholinergic innervation plays a role in modulating information processing in the cochlear nucleus.  相似文献   

15.
The Drosophila dopaminergic (DAergic) system consists of a relatively small number of neurons clustered throughout the brain and ventral nerve cord. Previous work shows that clusters of DA neurons innervate different brain compartments, which in part accounts for functional diversity of the DA system. We analyzed the association between DA neuron clusters and specific brain lineages, developmental and structural units of the Drosophila brain that provide a framework of connections that can be followed throughout development. The hatching larval brain contains six groups of primary DA neurons (born in the embryo), which we assign to six distinct lineages. We can show that all larval DA clusters persist into the adult brain. Some clusters increase in cell number during late larval stages, whereas others do not become DA positive until early pupa. Ablating neuroblasts with hydroxyurea (HU) prior to onset of larval proliferation (generates secondary neurons) confirms that these added DA clusters are primary neurons born in the embryo, rather than secondary neurons. A single cluster that becomes DA positive in the late pupa, PAM1/lineage DALcm1/2, forms part of a secondary lineage that can be ablated by larval HU application. By supplying lineage information for each DA cluster, our analysis promotes further developmental and functional analyses of this important system of neurons. J. Comp. Neurol. 525:363–379, 2017. © 2016 Wiley Periodicals, Inc.  相似文献   

16.
The raphe nuclei provide serotonergic innervation widely in the brain, thought to mediate a variety of neuromodulatory effects. The mammalian olfactory bulb (OB) is a prominent recipient of serotonergic fibers, particularly in the glomerular layer (GL), where they are thought to gate incoming signals from the olfactory nerve. The dorsal raphe nucleus (DRN) and the median raphe nucleus (MRN) are known to densely innervate the OB. The majority of such projections are thought to terminate in the GL, but this has not been explicitly tested. We sought to investigate this using recombinant adeno-associated viruses (rAAV)-mediated expression of green fluorescent protein (GFP)-synaptophysin targeted specifically to neurons of the DRN or the MRN. With DRN injections, labeled fibers were found mostly in the granule cell layer (GCL), not the GL. Conversely, dense labeling in the GL was observed with MRN injections, suggesting that the source of GL innervation is the MRN, not the DRN, as previously thought. The two raphe nuclei thus give dual innervation within the OB, with distinct innervation patterns. J. Comp. Neurol. 523:805–813, 2015. © 2015 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.  相似文献   

17.
The mammalian visual system is one of the most well-studied brain systems. Visual information from the retina is relayed to the dorsal lateral geniculate nucleus of the thalamus (LGd). The LGd then projects topographically to primary visual cortex (VISp) to mediate visual perception. In this view, the VISp is a critical network hub where visual information must traverse LGd–VISp circuits to reach higher order “extrastriate” visual cortices, which surround the VISp on its medial and lateral borders. However, decades of conflicting reports in a variety of mammals support or refute the existence of extrastriate LGd connections that can bypass the VISp. Here, we provide evidence of bidirectional extrastriate connectivity with the mouse LGd. Using small, discrete coinjections of anterograde and retrograde tracers within the thalamus and cortex, our cross-validated approach identified bidirectional connectivity between LGd and extrastriate visual cortices. We find robust reciprocal connectivity of the medial extrastriate regions with LGd neurons distributed along the “ventral strip” border with the intergeniculate leaflet. In contrast, LGd input to lateral extrastriate regions is sparse, but lateral extrastriate regions return stronger descending projections to localized LGd areas. We show further evidence that axons from lateral extrastriate regions can overlap onto medial extrastriate-projecting LGd neurons in the ventral strip, providing a putative subcortical LGd pathway for communication between medial and lateral extrastriate regions. Overall, our findings support the existence of extrastriate LGd circuits and provide novel understanding of LGd organization in rodent visual system.  相似文献   

18.
Odor information is regulated by olfactory inputs, bulbar interneurons, and centrifugal inputs in the olfactory bulb (OB). Cholinergic neurons projecting from the nucleus of the horizontal limb of the diagonal band of Broca and the magnocellular preoptic nucleus are one of the primary centrifugal inputs to the OB. In this study, we focused on cholinergic regulation of the OB and analyzed neural morphology with a particular emphasis on the projection pathways of cholinergic neurons. Single‐cell imaging of a specific neuron within dense fibers is critical to evaluate the structure and function of the neural circuits. We labeled cholinergic neurons by infection with virus vector and then reconstructed them three‐dimensionally. We also examined the ultramicrostructure of synapses by electron microscopy tomography. To further clarify the function of cholinergic neurons, we performed confocal laser scanning microscopy to investigate whether other neurotransmitters are present within cholinergic axons in the OB. Our results showed the first visualization of complete cholinergic neurons, including axons projecting to the OB, and also revealed frequent axonal branching within the OB where it innervated multiple glomeruli in different areas. Furthermore, electron tomography demonstrated that cholinergic axons formed asymmetrical synapses with a morphological variety of thicknesses of the postsynaptic density. Although we have not yet detected the presence of other neurotransmitters, the range of synaptic morphology suggests multiple modes of transmission. The present study elucidates the ways that cholinergic neurons could contribute to the elaborate mechanisms involved in olfactory processing in the OB. J. Comp. Neurol. 525:574–591, 2017. © 2016 Wiley Periodicals, Inc.  相似文献   

19.
The thalamostriatal system is a major network in the mammalian brain, originating principally from the intralaminar nuclei of thalamus. Its functions remain unclear, but a subset of these projections provides a pathway through which the cerebellum communicates with the basal ganglia. Both the cerebellum and basal ganglia play crucial roles in motor control. Although songbirds have yielded key insights into the neural basis of vocal learning, it is unknown whether a thalamostriatal system exists in the songbird brain. Thalamic nucleus DLM is an important part of the song system, the network of nuclei required for learning and producing song. DLM receives output from song system basal ganglia nucleus Area X and sits within dorsal thalamus, the proposed avian homolog of the mammalian intralaminar nuclei that also receives projections from the cerebellar nuclei. Using a viral vector that specifically labels presynaptic axon segments, we show in Bengalese finches that dorsal thalamus projects to Area X, the basal ganglia nucleus of the song system, and to surrounding medial striatum. To identify the sources of thalamic input to Area X, we map DLM and cerebellar‐recipient dorsal thalamus (DTCbN). Surprisingly, we find both DLM and dorsal anterior DTCbN adjacent to DLM project to Area X. In contrast, the ventral medial subregion of DTCbN projects to medial striatum outside Area X. Our results suggest the basal ganglia in the song system, like the mammalian basal ganglia, integrate feedback from the thalamic region to which they project as well as thalamic regions that receive cerebellar output.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号