首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hematopoietic stem cells (HSCs) are thought to arise in the aorta-gonad-mesonephros (AGM) region of embryo proper, although HSC activity can be detected in yolk sac (YS) and paraaortic splanchnopleura (P-Sp) when transplanted in newborn mice. We examined the role of Notch signaling in embryonic hematopoiesis. The activity of colony-forming cells in the YS from Notch1(-/-) embryos was comparable to that of wild-type embryos. However, in vitro and in vivo definitive hematopoietic activities from YS and P-Sp were severely impaired in Notch1(-/-) embryos. The population representing hemogenic endothelial cells, however, did not decrease. In contrast, Notch2(-/-) embryos showed no hematopoietic deficiency. These data indicate that Notch1, but not Notch2, is essential for generating hematopoietic stem cells from endothelial cells.  相似文献   

2.
Identifying the molecular pathways regulating hematopoietic stem cell (HSC) specification, self-renewal, and expansion remains a fundamental goal of both basic and clinical biology. Here, we analyzed the effects of Notch signaling on HSC number during zebrafish development and adulthood, defining a critical pathway for stem cell specification. The Notch signaling mutant mind bomb displays normal embryonic hematopoiesis but fails to specify adult HSCs. Surprisingly, transient Notch activation during embryogenesis via an inducible transgenic system led to a Runx1-dependent expansion of HSCs in the aorta-gonad-mesonephros (AGM) region. In irradiated adults, Notch activity induced runx1 gene expression and increased multilineage hematopoietic precursor cells approximately threefold in the marrow. This increase was followed by the accelerated recovery of all the mature blood cell lineages. These data define the Notch-Runx pathway as critical for the developmental specification of HSC fate and the subsequent homeostasis of HSC number, thus providing a mechanism for amplifying stem cells in vivo.  相似文献   

3.
Stem cells reside in customized microenvironments (niches) that contribute to their unique ability to divide asymmetrically to give rise to self and to a daughter cell with distinct properties. Notch receptors and their ligands are highly conserved and have been shown to regulate cell-fate decisions in multiple developmental systems through local cell interactions. To assess whether Notch signaling may regulate hematopoiesis to maintain cells in an immature state, we examined the functional role of the recombinant, secreted form of the Notch ligand Jagged-1 during mouse hematopoietic stem cell (HSC) and progenitor cell proliferation and maturation. We found that ligand immobilization on stromal layer or on Sepharose-4B beads is required for the induction of self-renewing divisions of days 28-35 cobblestone area-forming cell. The free, soluble Jagged-1, however, has a dominant-negative effect on self-renewal in the stem-cell compartment. In contrast, free as well as immobilized Jagged-1 promotes growth factor-induced colony formation of committed hematopoietic progenitor cells. Therefore, we propose that differences in Jagged-1 presentation and developmental stage of the Notch receptor-bearing cells influence Notch ligand-binding results toward activation or inhibition of downstream signaling. Moreover, these results suggest potential clinical use of recombinant Notch ligands for expanding human HSC populations in vitro.  相似文献   

4.
Wnt signaling plays several roles in hematopoiesis, promoting hemopoietic stem cell (HSC) self-renewal, providing proliferative signals for immature progenitors and regulating lineage commitment. To ascertain which Wnt proteins and receptors are important during hematopoietic development, we used two systems; in vitro hematopoietic differentiation of embryonic stem (ES) cells and tissues isolated from sites specific for hematopoiesis during mouse embryogenesis. Initially genes involved in hematopoiesis were profiled and indicate differentiating ES cells undergo a wave of primitive hematopoiesis (Day 3.75) similar to the mouse yolk sac, followed by a wave of more definitive hematopoiesis (Day 7.75) comparable to the aorta-gonad-mesonephros (AGM) and E15.5 liver with lineage commitment by Day 15. A similar biphasic expression pattern occurred for Wnt/Fzd/LRP genes with Wnt 3, 5a, 8a, Fzd4, and LRP5 becoming upregulated during primitive hematopoiesis, followed by Wnt3a, 6, 7b, 10b, and 16 during more definitive hematopoiesis. High expression of Wnt5a, Fzd4, and LRP5 during the first phase of hematopoiesis suggests these genes are involved in early hematopoietic regulation. Wnt3a and 16 were also expressed at specific stages, with Wnt16 detected when the earliest lymphoid progenitors are formed (AGM and 2 degrees BC of ES differentiation). Wnt3a expression corresponded with the induction of definitive hematopoiesis a period, which involves rapid expansion of HSC (Day 7.75 of ES differentiation, AGM and E15.5 liver). Supplementation with Wnt3a during ES hematopoietic differentiation increased proliferation and appeared to promote stem cell expansion. Overall this study provides valuable information on the Wnt/Fzd/LRP involved in supporting embryonic hematopoiesis.  相似文献   

5.
In normal hematopoiesis, proliferation is tightly linked to differentiation in ways that involve cell-cell interaction with stromal elements in the bone marrow stem cell niche. Numerous in vitro and in vivo studies strongly support a role for Notch signaling in the regulation of stem cell renewal and hematopoiesis. Not surprisingly, mutations in the Notch gene have been linked to a number of types of malignancies. To better define the function of Notch in both normal and neoplastic hematopoiesis, a tetracycline-inducible system regulating expression of a ligand-independent, constitutively active form of Notch1 was introduced into murine E14Tg2a embryonic stem cells. During coculture, OP9 stromal cells induce the embryonic stem cells to differentiate first to hemangioblasts and subsequently to hematopoietic stem cells. Our studies indicate that activation of Notch signaling in flk+ hemangioblasts dramatically reduces their survival and proliferative capacity and lowers the levels of hematopoietic stem cell markers CD34 and c-Kit and the myeloid marker CD11b. Global gene expression profiling of day 8 hematopoietic progenitors in the absence and presence of activated Notch yield candidate genes required for normal hematopoietic differentiation, as well as putative downstream targets of oncogenic forms of Notch including the noncanonical Wnts Wnt4 and 5A. Disclosure of potential conflicts of interest is found at the end of this article.  相似文献   

6.
Notch signaling in hematopoiesis and early lymphocyte development   总被引:8,自引:0,他引:8  
Summary:  Notch signals regulate multiple cell fate decisions during metazoan development. During hematopoiesis, Notch affects both hematopoietic stem cells and committed progenitors. In hematopoietic stem cells, Notch signaling has the propensity to expand the stem cells, promote their self-renewal, and influence their survival. In committed progenitors, Notch signaling plays a key role in determining lymphoid cell fates. This review focuses on recent developments to understand the role of Notch signaling in early events in hematopoiesis.  相似文献   

7.
8.
Hematopoietic stem cells (HSCs) can regenerate the entire hematopoietic system in vivo, providing the most relevant criteria to measure candidate HSCs derived from human embryonic stem cell (hESC) or induced pluripotent stem cell (hiPSC) sources. Here we show that, unlike primitive hematopoietic cells derived from hESCs, phenotypically identical cells derived from hiPSC are more permissive to graft the bone marrow of xenotransplantation recipients. Despite establishment of bone marrow graft, hiPSC-derived cells fail to demonstrate hematopoietic differentiation in vivo. However, once removed from recipient bone marrow, hiPSC-derived grafts were capable of in vitro multilineage hematopoietic differentiation, indicating that xenograft imparts a restriction to in vivo hematopoietic progression. This failure to regenerate multilineage hematopoiesis in vivo was attributed to the inability to downregulate key microRNAs involved in hematopoiesis. Based on these analyses, our study indicates that hiPSCs provide a beneficial source of pluripotent stem cell-derived hematopoietic cells for transplantation compared with hESCs. Since use of the human-mouse xenograft models prevents detection of putative hiPSC-derived HSCs, we suggest that new preclinical models should be explored to fully evaluate cells generated from hiPSC sources.  相似文献   

9.
10.
Development of the hematopoietic system is a stage-specific process where the bone marrow eventually becomes the principal source of hematopoiesis in the adult mammalian organism. Sustained hematopoiesis in the bone marrow, however, depends on the self-renewal of the resident hematopoietic stem cells (HSCs). The region where these HSCs are hypothesized to self renew is called the stem cell 'niche.' Recent studies have identified components of the HSC niche in the bone marrow, including cells of the osteoblastic lineage, extracellular matrix molecules and molecular signaling interactions between the stem cells and niche cells. Specific pharmacological targeting of these niche components has led to beneficial HSC effects, demonstrating a new therapeutic approach where stem cell function is altered through targeting of the niche.  相似文献   

11.
Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance   总被引:20,自引:0,他引:20  
A fundamental question in hematopoietic stem cell (HSC) biology is how self-renewal is controlled. Here we show that the molecular regulation of two critical elements of self-renewal, inhibition of differentiation and induction of proliferation, can be uncoupled, and we identify Notch signaling as a key factor in inhibiting differentiation. Using transgenic Notch reporter mice, we found that Notch signaling was active in HSCs in vivo and downregulated as HSCs differentiated. Inhibition of Notch signaling led to accelerated differentiation of HSCs in vitro and depletion of HSCs in vivo. Finally, intact Notch signaling was required for Wnt-mediated maintenance of undifferentiated HSCs but not for survival or entry into the cell cycle in vitro. These data suggest that Notch signaling has a dominant function in inhibiting differentiation and provide a model for how HSCs may integrate multiple signals to maintain the stem cell state.  相似文献   

12.
Because of the retinoic acid receptor-alpha (RARalpha) gene's involvement in acute promyelocytic leukemia, the important role of RARs in hematopoiesis is now well established. However, relatively few studies of hematopoiesis have focused on the role of the retinoid X receptors (RXRs), the obligate heterodimeric partners of the RARs. We sought to establish whether conditional targeting of RXRalpha in early hematopoietic progenitors, ideally to the level of the hematopoietic stem cell (HSC), would compromise hematopoiesis. For hematopoietic targeting of RXRalpha, we characterized IFN-inducible MxCre mice for use in studying the role of RXRalpha in hematopoiesis. We established that MxCre executes recombination of loxP-flanked RXRalpha in hematopoietic progenitors immunophenotypically enriched for HSC, leading to widespread and sustained targeting of RXRalpha in hematopoietic cells. However, we found no evidence of hematologic compromise in mice lacking RXRalpha, suggesting that RXRalpha is dispensable for normal murine hematopoiesis. Nonetheless, RXRalpha null bone marrow cells cultured in methylcellulose form colonies more efficiently than bone marrow cells obtained from control mice. This result suggests that although RXRalpha is not required for murine hematopoiesis, there may be hematopoietic signaling pathways that respond selectively to RXRalpha or settings in which combined expression of RXR (alpha, beta, and gamma) is limiting.  相似文献   

13.
We portrayed the Notch system in embryonic stem cell (ESC)-derived embryoid bodies (EBs) differentiating under the standard protocols used to assess yolk sac (YS) hematopoiesis in vitro. Notch receptors and Notch ligands were detected in virtually all cells throughout EB development. Notch 1 and Notch 2, but not Notch 4, were visualized in the nucleus of EB cells, and all these receptors were also observed as patent cytoplasmic foci. Notch ligands (Delta-like 1 and 4, Jagged 1 and 2) were immunodetected mostly as cytoplasmic foci. Widespread Notch 1 activation was evident at days 2-4 of EB differentiation, the time window of hemangioblast generation in this in vitro system. EBs experienced major spatial remodeling beyond culture day 4, the time point coincident with the transition between primitive and multilineage waves of YS hematopoiesis in vitro. At day 6, where definitive YS hematopoiesis is established in EBs, these exhibit an immature densely packed cellular region (DCR) surrounded by a territory of mesodermal-like cells and an outer layer of endodermal cells. Immunolabeling of Notch receptors and ligands was usually higher in the DCR. Our results show that Notch system components are continuously and abundantly expressed in the multicellular environments arising in differentiating EBs. In such an active Notch system, receptors and ligands do not accumulate extensively at the cell surface but instead localize at cytoplasmic foci, an observation that fits current knowledge on endocytic modulation of Notch signaling. Our data thus suggest that Notch may function as a territorial modulator during early development, where it may eventually influence YS hematopoiesis.  相似文献   

14.
By mimicking embryonic development of the hematopoietic system, we have developed an optimized in vitro differentiation protocol for the generation of precursors of hematopoietic lineages and primitive hematopoietic cells from human embryonic stem cells (ESC) and induced pluripotent stem cells (iPSCs). Factors such as cytokines, extra cellular matrix components, and small molecules as well as the temporal association and concentration of these factors were tested on seven different human ESC and iPSC lines. We report the differentiation of up to 84% human CD45+ cells (average 41% ± 16%, from seven pluripotent lines) from the differentiation culture, including significant numbers of primitive CD45+/CD34+ and CD45+/CD34+/CD38- hematopoietic progenitors. Moreover, the numbers of hematopoietic progenitor cells generated, as measured by colony forming unit assays, were comparable to numbers obtained from fresh umbilical cord blood mononuclear cell isolates on a per CD45+ cell basis. Our approach demonstrates highly efficient generation of multipotent hematopoietic progenitors with among the highest efficiencies reported to date (CD45+/CD34+) using a single standardized differentiation protocol on several human ESC and iPSC lines. Our data add to the cumulating evidence for the existence of an in vitro derived precursor to the hematopoietic stem cell (HSC) with limited engrafting ability in transplanted mice but with multipotent hematopoietic potential. Because this protocol efficiently expands the preblood precursors and hematopoietic progenitors, it is ideal for testing novel factors for the generation and expansion of definitive HSCs with long-term repopulating ability.  相似文献   

15.
Notch and the immune system   总被引:11,自引:0,他引:11  
Maillard I  Adler SH  Pear WS 《Immunity》2003,19(6):781-791
Notch proteins are used repeatedly to direct developmental cell fate decisions in multiple organs. During hematopoiesis and immune development, Notch is critical for T/B lineage specification and for generation of splenic marginal zone B cells. In early embryonic development, Notch is crucial for generating hematopoietic stem cells. Emerging data suggest that Notch may also modulate the differentiation and activity of peripheral T cells. Understanding the specific regulation of the Notch pathway in different contexts and its interaction with other signaling pathways remains an important challenge to comprehend the full spectrum of Notch effects. In this review, we critically assess recent findings regarding the function of Notch in the hematolymphoid system.  相似文献   

16.
17.
Analysis of the human fetal liver hematopoietic microenvironment   总被引:4,自引:0,他引:4  
In the adult, hematopoietic stem cells (HSCs) are resident in the bone marrow (BM) compartment and are in direct association with the BM stromal microenvironment. However, human adult HSCs are largely quiescent and undergo limited self-renewal. This is in contrast to the higher frequency of cycling HSCs undergoing self-renewal during fetal development when hematopoiesis is transiently localized to the fetal liver (FL), suggesting that FL provides a more conducive microenvironment to support HSCs. Here, we provide phenotypic and molecular characterization of primary human FL stromal cells capable of supporting human repopulating progenitors. Qualitative and quantitative analysis revealed several properties unique to FL stromal cells compared to adult BM-derived stroma that included a greater than 10-fold enhanced proliferative capacity of FL stromal vs adult BM, and a 2-fold increase in the number of N-cadherin- and osteopontin-expressing cells. Supportive of extrinsic influences likely to modulate HSC expansion, global gene expression microarray analysis revealed that FL stroma has higher expression of regulators of the Wnt signaling pathway compared to adult BM stroma, which demonstrated an increased expression of the Notch signaling pathway. Our results suggest that human FL stromal cells provide a unique microenvironment to HSCs compared to adult BM stroma by controlling Wnt signaling of HSCs during human fetal hematopoietic development, while Notch signaling is tightly regulated by the HSC microenvironment in the adult. We propose that the human HSC niche is ontogenically controlled during human development to provide appropriate expansion of fetal HSCs and subsequent maintenance of adult HSCs.  相似文献   

18.
Notch signaling is implicated in stem cell self-renewal, differentiation, and other developmental processes, and the Drosophila hairy and enhancer of split (HES) 1 basic helix-loop-helix protein is a major downstream effector in the Notch pathway. We found that HES1 was expressed at high levels in the hematopoietic stem cell (HSC)-enriched CD34+/[CD38/Lin](- /low) subpopulation but at low levels in more mature progenitor cell populations. When CD34+ cells were cultured for 1 week, the level of HES1 remained high in the CD34+ subset that had remained quiescent during ex vivo culture but was reduced in CD34+ cells that had divided. To investigate the effects of HES1 in human and mouse hematopoietic stem-progenitor cells (HSPCs), we constructed conditional lentiviral vectors (lentivectors) to introduce transgenes encoding either wild-type HES1 or a mutant lacking the DNA-binding domain (BHES1). We found that lentivector-mediated HES1 expression in CD34+ cells inhibited cell cycling in vitro and cell expansion in vivo, associated with upregulation of the cell cycle inhibitor p21(cip1/Waf1) (p21). The HES1 DNA-binding domain was required for these actions. HES1 did not induce programmed cell death or alter differentiation in HSPCs, and while short-term repopulating activity was reduced in HES1-transduced mouse and human cells, long-term reconstituting HSC function was preserved. Our data characterize the complex, cell context-dependent actions of HES1 as a major downstream Notch signaling regulator of HSPC function.  相似文献   

19.
The replenishment of all blood cell lineages is hierarchically organized by the process of hematopoiesis, which is based on the differentiation pathways of hematopoietic stem and progenitor cells (HSPCs). Due to the ability to balance between self-renewal and differentiation, hematopoietic stem cells (HSCs) can generate the appropriate cell type that is required by the immune system and peripheral blood in response to physiological or pathological conditions. Numerous studies have shown that some proinflammatory cytokines contribute to the regulation of the various hematopoietic compartments. Of these, IFN-γ is a type II interferon primarily produced by T cells and natural killer cells, and plays a major role in the defense against invading pathogens and transformed cancer cells; moreover, a growing amount of research indicates that it exerts negative or positive regulatory effect on hematopoiesis. Although IFN-γ is a widely regarded negative regulator of HSC proliferation, it also participates in some chronic infections or hematological malignancies that induce bone marrow failure. Recent studies have demonstrated unexpected effects of IFN-γ, including the promotion of HSC formation and the stimulation of myelopoiesis. Here, we review the direct and indirect effects of IFN-γ on hematopoiesis, as well as the underlying signaling mechanisms of how IFN-γ modulates the self-renewal, cell cycle entry, and proliferation of HSCs. Next, we describe how IFN-γ affects different stages of the lineage differentiation from HSCs. Finally, we discuss the relationship between IFN-γ and compensatory extramedullary hematopoiesis, as well as some related clinical diseases.  相似文献   

20.
Basic fibroblast growth factor (FGF2)-responsive definitive neural stem cells first appear in embryonic day 8.5 (E8.5) mouse embryos, but not in earlier embryos, although neural tissue exists at E7.5. Here, we demonstrate that leukemia inhibitory factor-dependent (but not FGF2-dependent) sphere-forming cells are present in the earlier (E5.5-E7.5) mouse embryo. The resultant clonal sphere cells possess self-renewal capacity and neural multipotentiality, cardinal features of the neural stem cell. However, they also retain some nonneural properties, suggesting that they are the in vivo cells' equivalent of the primitive neural stem cells that form in vitro from embryonic stem cells. The generation of the in vivo primitive neural stem cell was independent of Notch signaling, but the activation of the Notch pathway was important for the transition from the primitive to full definitive neural stem cell properties and for the maintenance of the definitive neural stem cell state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号