首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Toll-like receptors (TLRs) are pattern-recognition receptors of the innate immune system that recognize various pathogen-associated molecules. TLR ligands are potent activators of immune cells and certain TLR ligands have a synergistic ability to induce the production of pro-inflammatory cytokines. In the present study we have analyzed the potential synergy between TLR3, TLR4 and TLR7/8 ligands in type I and type III interferon (IFN) gene expression in human monocyte-derived dendritic cells (moDCs). We show that stimulation of moDCs with TLR7/8 ligand R848 together with TLR3 or TLR4 ligands, polyI:C or LPS, respectively, leads to a synergistic expression of IFN-β and IFN-λ1 mRNAs. Neutralization of type I IFNs as well as IFN priming prior to stimulation suggest that IFN-dependent positive feedback loop is at least partly responsible for the mechanism of synergy. Enhanced expression of TLR3 and especially TLR7, which are both under the regulation of type I IFNs, correlated to synergistic TLR ligand-dependent induction of IFN-β and IFN-λ1 genes. NF-κB, PI3 kinase and MAP kinase pathways were involved in TLR ligand-induced IFN gene expression as evidenced by pharmacological signaling inhibitors. The data indicates that IFNs contribute to TLR-dependent gene activation in human DCs stimulated with multiple TLR ligands.  相似文献   

2.
Dendritic cells (DCs) are key regulators of the immune system that shape T cell responses. Regulation of T cell induction by DCs may occur via the intracellular enzyme indoleamine 2,3-dioxygenase 1 (IDO), which catalyzes conversion of the essential amino acid tryptophan into kynurenine. Here, we examined the role of IDO in human peripheral blood plasmacytoid DCs (pDCs), and type 1 and type 2 conventional DCs (cDC1s and cDC2s). Our data demonstrate that under homeostatic conditions, IDO is selectively expressed by cDC1s. IFN-γ or TLR ligation further increases IDO expression in cDC1s and induces modest expression of the enzyme in cDC2s, but not pDCs. IDO expressed by conventional DCs is functionally active as measured by kynurenine production. Furthermore, IDO activity in TLR-stimulated cDC1s and cDC2s inhibits T cell proliferation in settings were DC-T cell cell-cell contact does not play a role. Selective inhibition of IDO1 with epacadostat, an inhibitor currently tested in clinical trials, rescued T cell proliferation without affecting DC maturation status or their ability to cross-present soluble antigen. Our findings provide new insights into the functional specialization of human blood DC subsets and suggest a possible synergistic enhancement of therapeutic efficacy by combining DC-based cancer vaccines with IDO inhibition.  相似文献   

3.
Dendritic cells (DCs) bridge the connection between innate and adaptive immunity. DCs present antigens to T cells and stimulate potent cytotoxic T-cell responses. Metabolic reprogramming is critical for DC development and activation; however, metabolic adaptations and regulation in DC subsets remains largely uncharacterized. Here, we mapped metabolomic and lipidomic signatures associated with the activation phenotype of human conventional DC type 1, a DC subset specialized in cross-presentation and therefore of major importance for the stimulation of CD8+ T cells. Our metabolomics and lipidomic analyses showed that Toll-like receptor (TLR) stimulation altered glycerolipids and amino acids in cDC1. Poly I:C or pRNA stimulation reduced triglycerides and cholesterol esters, as well as various amino acids. Moreover, TLR stimulation reduced expression of glycolysis-regulating genes and did not induce glycolysis. Conversely, cDC1 exhibited increased mitochondrial content and oxidative phosphorylation (OXPHOS) upon TLR3 or TLR7/8 stimulation. Our findings highlight the metabolic adaptations required for cDC1 maturation.  相似文献   

4.
Multiple physiological and pathological conditions interfere with the function of the endoplasmic reticulum (ER). However, much remains unknown regarding the impact of ER stress on inflammatory responses in dendritic cells (DCs) upon the recognition of pathogen molecules. We show that ER stress greatly potentiates the expression of inflammatory cytokines and IFN-β in murine DCs stimulated by polyIC, a synthetic mimic of virus dsRNA. Both toll-like receptor 3 and melanoma differentiation-associated gene-5 are involved in the enhanced IFN-β production, which is associated with increased activation of NF-κB and IRF3 signaling as well as the splicing of X-box-binding protein-1 (XBP-1), an important regulator involved in ER stress response. Surprisingly, silencing of XBP-1 reduces polyIC-stimulated IFN-β expression in the presence or absence of ER stress, indicating that XBP-1 may be essential for polyIC signaling and ER stress-amplified IFN-β production. Overexpression of a spliced form of XBP-1 (XBP-1s) synergistically augments polyIC-induced inflammatory response. For the first time, we show that XBP-1s overexpression-enhanced IFN-β production in DCs markedly suppresses vesicular stomatitis virus infection, revealing a previously unrecognized role for XBP-1 in an antiviral response. Our findings suggest that evolutionarily conserved ER stress response and XBP-1 may function collaboratively with innate immunity to maintain cellular homeostasis.  相似文献   

5.
Plasmacytoid dendritic cells (pDCs) are the professional interferon (IFN)-producing cells of the immune system. pDCs specifically express Toll-like receptor (TLR)7 and TLR9 molecules and produce massive amounts of type I IFN by sensing microbial nucleic acids via TLR7 and TLR9. Here we report that protein kinase C and casein kinase substrate in neurons (PACSIN) 1, is specifically expressed in human and mouse pDCs. Knockdown of PACSIN1 by short hairpin RNA (shRNA) in a human pDC cell line significantly inhibited the type I IFN response of the pDCs to TLR9 ligand. PACSIN1-deficient mice exhibited normal levels of conventional DCs and pDCs, demonstrating that development of pDCs was intact although PACSIN1-deficient pDCs showed reduced levels of IFN-α production in response to both cytosine guanine dinucleotide (CpG)-oligonucleotide (ODN) and virus. In contrast, the production of proinflammatory cytokines in response to those ligands was not affected in PACSIN1-deficient pDCs, suggesting that PACSIN1 represents a pDC-specific adaptor molecule that plays a specific role in the type I IFN signaling cascade.  相似文献   

6.
There is limited insight into the mechanisms involved in the counterregulation of TLR. Given the important role of TLR3/TIR domain-containing adaptor-inducing IFN-β (TRIF)-dependent signalling in innate immunity, novel insights into its modulation is of significance in the context of many physiological and pathological processes. Herein, we sought to perform analysis to definitively assign a mechanistic role for MyD88 adaptor-like (Mal), an activator of TLR2/4 signalling, in the negative regulation of TLR3/TRIF signalling. Biochemical and functional analysis demonstrates that Mal negatively regulates TLR3, but not TLR4, mediated IFN-β production. Co-immunoprecipitation experiments demonstrate that Mal associates with IRF7 (IRF, IFN regulatory factor), not IRF3, and Mal specifically blocks IRF7 activation. In doing so, Mal impedes TLR3 ligand-induced IFN-β induction. Interestingly, Mal does not affect the induction of IL-6 and TNF-α upon TLR3 ligand engagement. Together, these data show that the TLR adaptor Mal interacts with IRF7 and, in doing so, impairs IFN-β induction through the positive regulatory domains I-III enhancer element of the IFN-β gene following poly(I:C) stimulation. Our findings offer a new mechanistic insight into TLR3/TRIF signalling through a hitherto unknown mechanism whereby Mal inhibits poly(I:C)-induced IRF7 activation and concomitant IFN-β production. Thus, Mal is essential in restricting TLR3 signalling thereby protecting the host from unwanted immunopathologies associated with excessive IFN-β production.  相似文献   

7.
Although type I interferons (IFN-α/β) have been traditionally associated with antiviral responses, their importance in host defense against bacterial pathogens is being increasingly appreciated. Little is known, however, about the occurrence and functional role of IFN-α/β production in response to pathogenic yeasts. Here, we found that conventional DCs, but not macrophages nor plasmacytoid DCs, mounted IFN-β responses after in vitro stimulation with Candida spp. or Saccharomyces cerevisiae. These responses absolutely required MyD88, a Toll-like receptor (TLR) adaptor molecule, and were partially dependent on TLR9 and TLR7. Moreover, Candida DNA, as well as RNA, could recapitulate the IFN-β response. After intravenous challenge with Candida albicans, most mice lacking the IFN-α/β receptor died from their inability to control fungal growth, whereas all WT controls survived. These data suggest that recognition of yeast nucleic acids by TLR7 and TLR9 triggers a host-protective IFN-α/β response.  相似文献   

8.
9.
10.
Double-stranded RNA (dsRNA) is produced upon viral infection and can activate innate immunity. Polyinosinic:polycytidylic acids [poly(I:C)] is a synthetic mimetic of dsRNA and functions through an endosomal receptor, Toll-like receptor (TLR) 3 or cytosolic receptors. Another type of dsRNA, polyadenylic:polyuridylic acids [poly(A:U)], can also act as an immune adjuvant, but it remains unclear how it exhibits its adjuvant effects. Here, we have characterized the adjuvant effects of poly(A:U). Poly(A:U) could induce both IFN-alpha and IL-12p40 from murine bone marrow dendritic cells (DCs). Poly(A:U)-induced IFN-alpha production depended on a DC subset, plasmacytoid dendritic cell (pDC), and required TLR7. IL-12p40 was also produced by poly(A:U)-stimulated pDC in a TLR7-dependent manner. In addition to pDC, conventional dendritic cell (cDC) also produced IL-12p40 in response to poly(A:U). This IL-12p40 induction resulted from two cDC subsets, CD24(high) cDC and CD11b(high) cDC in a TLR3- and TLR7-dependent manner, respectively. In vivo injection of poly(A:U) with antigen led to clonal expansion of and IFN-gamma production from antigen-specific CD8(+) T cells. Consistent with the in vitro findings, TLR3 and TLR7 were required for the clonal T-cell expansion. Notably, TLR3, rather than TLR7, was critical for generating IFN-gamma-producing CD8(+) T cells. CD8(+) T-cell responses induced by poly(A:U) were independent of type I IFN signaling. Our results demonstrate that poly(A:U) functions as an in vivo immunoadjuvant mainly through TLR3 and TLR7.  相似文献   

11.
Plasmacytoid dendritic cells (pDCs) play an important role in innate and adaptive immunity and were shown to be identical to previously described natural interferon (IFN)‐α‐producing cells. Here, we describe two functionally distinct pDC subpopulations that are characterized by the differential expression of stem cell antigen‐1 (Sca‐1; Ly‐6A/E). Sca‐1? pDCs are mainly found in the BM, appear first during development, show a higher proliferative activity, and represent the more precursor phenotype. Sca‐1+ pDCs are mostly located in secondary lymphoid organs and represent a later developmental stage. Sca‐1? pDCs give rise to an Sca‐1+ subset upon activation or in response to endogenous type I IFN. Interestingly, in contrast to Sca‐1? pDCs, Sca‐1+ pDCs are defective in IFN‐α production upon endosomal TLR9 stimulation, whereas lysosomal signaling via TLR9 is functional in both subsets. Gene expression analysis revealed that osteopontin is strongly upregulated in Sca‐1? pDCs. These data provide evidence for the molecular basis of the observed functional heterogeneity, as the intracellular isoform of osteopontin couples TLR9 signaling to IFN‐α expression. Taken together, our results indicate that Sca‐1? pDCs are an early developmental stage of pDCs with distinct innate functions representing the true murine natural IFN‐α‐producing cells.  相似文献   

12.
13.
Apolipoproteins L (ApoLs) are Bcl‐2‐like proteins expressed under inflammatory conditions in myeloid and endothelial cells. We found that Toll‐like receptor (TLR) stimuli, particularly the viral mimetic polyinosinic:polycytidylic acid (poly(I:C)), specifically induce ApoLs7/11 subfamilies in murine CD8α+ dendritic cells (DCs). This induction requires the TLR3/TRIF (where TRIF is TIR domain containing adapter‐inducing interferon β) signaling pathway and is dependent on IFN‐β in all ApoLs subfamilies except for ApoL7c. Poly(I:C) treatment of DCs is also associated with induction of both cell death and autophagy. ApoLs expression is related to promotion of DC death by poly(I:C), as ApoLs7/11 knockdown increases DC survival and ApoLs7 are associated with the anti‐apoptotic protein Bcl‐xL (where Bcl‐xL is B‐cell lymphoma extra large). Similarly, in human monocyte‐derived DCs poly(I:C) induces both cell death and the expression of ApoLs, principally ApoL3. Finally, the BH3‐like peptide of ApoLs appears to be involved in the DC death‐promoting activity. We would like to propose that ApoLs are involved in cell death linked to activation of DCs by viral stimuli.  相似文献   

14.
Initiation of adaptive immunity to particulate antigens in lymph nodes largely depends on their presentation by migratory dendritic cells (DCs). DC subsets differ in their capacity to induce specific types of immunity, allowing subset-specific DC-targeting to influence vaccination and therapy outcomes. Faithful drug design, however, requires exact understanding of subset-specific versus global activation mechanisms. cDC1, the subset of DCs that excel in supporting immunity toward viruses, intracellular bacteria, and tumors, express uniquely high levels of the pattern recognition receptor TLR3. Using various murine genetic models, we show here that both, the cDC1 and cDC2 subsets of cDCs are activated and migrate equally well in response to TLR3 stimulation in a cell extrinsic and TNF-α dependent manner, but that cDC1 show a unique requirement for type I interferon signaling. Our findings reveal common and differing pathways regulating DC subset migration, offering important insights for the design of DC-based vaccination and therapy approaches.  相似文献   

15.
Type I interferon is important in anti-viral responses and in coordinating the innate immune response. Here we explore the use of interferon-β to adjuvant the response to a rabies virus (RV) vaccine vector expressing both HIV-1 Gag and IFN-β. Viral load and immune responses of immunized mice were analyzed over time. Our results indicate that the RV expressing IFN-β (IFN(+)) is highly attenuated when compared to control RV and demonstrate that the expression of IFN-β reduces viral replication approximately 100-fold. Despite the decrease in replication, those mice immunized with the IFN(+) RV had a significantly greater number of activated CD8+ T cells. The increased activation of CD8+ T cells was dependent on IFN-β signaling, as we saw no difference following infection of IFNAR−/− mice. Although mice immunized with IFN(+) have a greater primary immune response than controls, immunized mice that were challenged with vaccinia-expressing Gag had no significant difference in the number or functionality of CD8+ T cells. The increased CD8+ T cell activation in the presence of IFN-β, even with greatly reduced viral replication, indicates the beneficial effect of IFN-β for the host.  相似文献   

16.
Reciprocal induction of the Th1 and Th17 immune responses is essential for optimal protection against Mycobacterium tuberculosis (Mtb); however, only a few Mtb antigens are known to fulfill this task. A functional role for resuscitation‐promoting factor (Rpf) E, a latency‐associated member of the Rpf family, in promoting naïve CD4+ T‐cell differentiation toward both Th1 and Th17 cell fates through interaction with dendritic cells (DCs) was identified in this study. RpfE induces DC maturation by increasing expression of surface molecules and the production of IL‐6, IL‐1β, IL‐23p19, IL‐12p70, and TNF‐α but not IL‐10. This induction is mediated through TLR4 binding and subsequent activation of ERK, p38 MAPKs, and NF‐κB signaling. RpfE‐treated DCs effectively caused naïve CD4+ T cells to secrete IFN‐γ, IL‐2, and IL‐17A, which resulted in reciprocal expansions of the Th1 and Th17 cell response along with activation of T‐bet and RORγt but not GATA‐3. Furthermore, lung and spleen cells from Mtb‐infected WT mice but not from TLR4?/? mice exhibited Th1 and Th17 polarization upon RpfE stimulation. Taken together, our data suggest that RpfE has the potential to be an effective Mtb vaccine because of its ability to activate DCs that simultaneously induce both Th1‐ and Th17‐polarized T‐cell expansion.  相似文献   

17.
18.
Toll‐like receptors (TLRs) are playing important roles in stimulating the innate immune response and intensifying adaptive immune response against invading pathogens. Appropriate regulation of TLR activation is important to maintain a balance between preventing tumor activation and inhibiting autoimmunity. Toll‐like receptor 9 (TLR9) senses microbial DNA in the endosomes of plasmacytoid dendritic cells and triggers myeloid differentiation primary response gene 88 (MyD88) dependent nuclear factor kappa B (NF‐κB) pathways and type I interferon (IFN) responses. However, mechanisms of how TLR9 signals are mediated and which molecules are involved in controlling TLR9 functions remain poorly understood. Here, we report that penta EF‐hand protein grancalcin (GCA) interacts and binds with TLR9 in a yeast two‐hybrid system and an overexpression system. Using siRNA‐mediated knockdown experiments, we also revealed that GCA positively regulates type I IFN production, cytokine/chemokine production through nuclear localization of interferon regulatory factor 7 (IRF7), NF‐κB activation, and mitogen‐activated protein kinase (MAPK) activation in plasmacytoid dendritic cells. Our results indicate that heterodimerization of GCA and TLR9 is important for TLR9‐mediated downstream signaling and might serve to fine tune processes against viral infection.  相似文献   

19.
20.
Apart from direct bacterial killing, antimicrobial host defence peptides (HDPs) exert various other biological activities that also include modulation of immune responses to infection. The bovine cathelicidin BMAP-28 has been extensively studied with regard to its direct antibacterial activity while little is known about its effects on immune cell function. We have investigated its ability to affect inflammatory pathways and to influence the proinflammatory response induced by LPS in RAW 264.7 macrophages, in terms of modulation of TLR4 activation and cytokine gene induction. BMAP-28 on its own elicited ERK1/2, p38 and NF-κB activation leading to upregulation of IL-1β gene expression in these cells, suggesting it has the capacity to activate selected cellular pathways through direct effects on macrophages. As expected based on its in vitro LPS-binding properties, BMAP-28 blocked LPS-induced cytokine gene expression when added to the cell culture in combination with LPS. However it enhanced the induction of IL-1β and IL-6 genes and suppressed that of IFN-β when added prior to or following LPS stimulation over a 30-60 min time interval, or when co-administered with taxol as another TLR4 stimulant. It did not inhibit the expression of IFN-β induced by the TLR3 ligand poly(I:C). Overall these results, and the fact that BMAP-28 increased the LPS-stimulated activation of NF-κB while diminishing that of IRF-3, suggest that the peptide potentiates the early TLR4-mediated proinflammatory cytokine response while inhibiting the TLR4/TRAM/TRIF signaling pathway leading to IRF-3 activation and IFN-β gene expression. Using a TLR4-specific antibody we also found that BMAP-28 decreased the LPS-induced internalization of surface TLR4 required for initiating the TRAM/TRIF signaling pathway, which provides a mechanism for the inhibitory effect of the peptide on the TLR4/TRAM/TRIF pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号