首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
We addressed the requirement for stromal interaction molecule 1 (STIM1), the endoplasmic reticulum (ER) Ca(2+)-sensor, and Orai1, a Ca(2+) selective channel, in regulating Ca(2+) entry through the store-operated channels mouse transient receptor potential canonical (TRPC) 4 or human TRPC1. Studies were made using murine and human lung endothelial cells (ECs) challenged with thrombin known to induce Ca(2+) entry via TRPC1/4. Deletion or knockdown of TRPC4 abolished Ca(2+) entry secondary to depletion of ER Ca(2+) stores, preventing the disruption of the endothelial barrier. Knockdown of STIM1 (but not of Orai1or Orai3) or expression of the dominant-negative STIM1(K684E-K685E) mutant in ECs also suppressed Ca(2+) entry secondary to store depletion. Ectopic expression of WT-STIM1 or WT-Orai1 in TRPC4(-/-)-ECs failed to rescue Ca(2+) entry; however, WT-TRPC4 expression in TRPC4(-/-)-ECs restored Ca(2+) entry indicating the requirement for TRPC4 in mediating store-operated Ca(2+) entry. Moreover, expression of the dominant-negative Orai1(R91W) mutant or Orai3(E81W) mutant in WT-ECs failed to prevent thrombin-induced Ca(2+) entry. In contrast, expression of the dominant-negative TRPC4(EE647-648KK) mutant in WT-ECs markedly reduced thrombin-induced Ca(2+) entry. In ECs expressing YFP-STIM1, ER-store Ca(2+) depletion induced formation of fluorescent membrane puncta in WT but not in TRPC4(-/-) cells, indicating that mobilization of STIM1 and engagement of its Ca(2+) sensing function required TRPC4 expression. Coimmunoprecipitation studies showed coupling of TRPC1 and TRPC4 with STIM1 on depletion of ER Ca(2+) stores. Thus, TRPC1 and TRPC4 can interact with STIM1 to form functional store-operated Ca(2+)-entry channels, which are essential for mediating Ca(2+) entry-dependent disruption of the endothelial barrier.  相似文献   

2.
1. Agonists increase endothelial cell intracellular Ca(2+), in part, by capacitative entry, which is triggered by the filling state of intracellular Ca(2+) stores. It has been suggested that depletion of endoplasmic reticulum (ER) Ca(2+) stores either leads to a physical coupling between the ER and a plasma membrane channel, or results in production of an intracellular messenger which affects the gating of membrane channels. As an axis involving the IP(3) receptor has been implicated in a physical coupling mechanism the aim of this study was to examine the effects of the putative IP(3) receptor antagonists/modulators, 2 aminoethoxydiphenyl borate (2APB) and xestospongin C, on endothelial cell Ca(2+) entry. 2. Studies were conducted in fura 2 loaded cultured bovine aortic endothelial cells and endothelial cells isolated from rat heart. 3. 2APB (30 - 300 microM) inhibited Ca(2+) entry induced by both agonists (ATP 1 microM, bradykinin 0.1 microM) and receptor-independent mechanisms (thapsigargin 1 microM, ionomycin 0.5 and 5 microM). 2APB did not diminish endothelial cell ATP-induced production of IP(3) nor effect in vitro binding of [(3)H]-IP(3) to an adrenal cortex binding protein. Capacitative Ca(2+) entry was also blocked by disruption of the actin cytoskeleton with cytochalasin (100 nM) while the initial Ca(2+) release phase was unaffected. 4. Similarly to 2APB, xestospongin C (3 - 10 microM) inhibited ATP-induced Ca(2+) release and capacitative Ca(2+) entry. Further, xestospongin C inhibited capacitative Ca(2+) entry induced by thapsigargin (1 microM) and ionomycin (0.5 microM). 5. The data are consistent with a mechanism of capacitative Ca(2+) entry in vascular endothelial cells which requires (a) IP(3) receptor binding and/or an event distal to the activation of the ER receptor and (b) a spatial relationship, dictated by the cytoskeleton, between Ca(2+) release and entry pathways.  相似文献   

3.
The endoplasmic reticulum (ER) is a morphologically and functionally diverse organelle capable of integrating multiple extracellular and internal signals and generating adaptive cellular responses. It plays fundamental roles in protein synthesis and folding and in cellular responses to metabolic and proteotoxic stress. In addition, the ER stores and releases Ca(2+) in sophisticated scenarios that regulate a range of processes in excitable cells throughout the body, including muscle contraction and relaxation, endocrine regulation of metabolism, learning and memory, and cell death. One or more Ca(2+) ATPases and two types of ER membrane Ca(2+) channels (inositol trisphosphate and ryanodine receptors) are the major proteins involved in ER Ca(2+) uptake and release, respectively. There are also direct and indirect interactions of ER Ca(2+) stores with plasma membrane and mitochondrial Ca(2+)-regulating systems. Pharmacological agents that selectively modify ER Ca(2+) release or uptake have enabled studies that revealed many different physiological roles for ER Ca(2+) signaling. Several inherited diseases are caused by mutations in ER Ca(2+)-regulating proteins, and perturbed ER Ca(2+) homeostasis is implicated in a range of acquired disorders. Preclinical investigations suggest a therapeutic potential for use of agents that target ER Ca(2+) handling systems of excitable cells in disorders ranging from cardiac arrhythmias and skeletal muscle myopathies to Alzheimer disease.  相似文献   

4.
Disturbances of endoplasmic reticulum (ER) Ca2+ homeostasis or protein processing can lead to ER stress-induced cell death. Increasing evidence suggests that oxidative stress (OS) plays an important role in a variety of cell death mechanisms. To investigate the role of OS in ER stress, we measured OS in response to three ER stress agents: econazole (Ec), which stimulates ER Ca2+ release and blocks Ca2+ influx; thapsigargin (Tg), a sarco(endo)plasmic reticulum Ca2+ ATPase inhibitor that releases ER Ca2+ and stimulates Ca2+ influx; and tunicamycin (Tu), a glycosylation inhibitor that causes protein accumulation in the ER. Ec, but not Tg or Tu, caused a rapid increase in OS. Reactive oxygen species (ROS) generation was observed within mitochondria immediately after exposure to Ec. Furthermore, Ec hyperpolarized the mitochondrial membrane and inhibited adenine nucleotide transport in cell-free mitochondria, suggesting a mitochondrial target. Antimycin A, an inhibitor of complex III in electron transport, reversed mitochondrial hyperpolarization, OS generation, ER Ca2+ depletion, and cell death by Ec, suggesting complex III dependence for these effects. Antioxidants butylated hydroxytoluene and N-Acetyl-L-cysteine prevented ER Ca2+ depletion and cell death by Ec. However, inhibition of Ca2+ influx by Ec was unaffected by either antimycin A or the antioxidants, suggesting that this target is distinct from the mitochondrial target of Ec. Atractyloside, an adenine nucleotide transport inhibitor, generated ROS and stimulated ER Ca2+ release, but it did not block Ca2+ influx, deplete the ER or induce cell death. Taken together, these results demonstrate that combined mitochondrial ROS generation and Ca2+ influx blockade by Ec is required for cell death.  相似文献   

5.
This study investigates the mechanism of cell death induced by cadmium (Cd) in Chinese hamster ovary (CHO) cells. Cells exposed to 4 microM Cd for 24 h did not show signs of apoptosis, such as DNA fragmentation and caspase-3 activation. The pro-apoptotic (Bax) or anti-apoptotic (Bcl-2 and Bcl-xL) protein levels in the Bcl-2 family were not altered. However, an increase in propidium iodide uptake and depletion of ATP, characteristics of necrotic cell death, were observed. Cd treatment increased the intracellular calcium (Ca2+) level. Removal of the Ca2+ by a chelator, BAPTA-AM, efficiently inhibited Cd-induced necrosis. The increased Ca2+ subsequently mediated calpain activation and intracellular ROS production. Calpains then triggered mitochondrial depolarization resulting in cell necrosis. Cyclosporin A, an inhibitor of mitochondrial permeability transition, recovered the membrane potential and reduced the necrotic effect. The generated ROS reduced basal NF-kappaB activity and led cells to necrosis. An increase of NF-kappaB activity by its activator, PMA, attenuated Cd-induced necrosis. Calpains and ROS act cooperatively in this process. The calpain inhibitor and the ROS scavenger synergistically inhibited Cd-induced necrosis. Results in this study suggest that Cd stimulates Ca2+-dependent necrosis in CHO cells through two separate pathways. It reduces mitochondrial membrane potential by activating calpain and inhibits NF-kappaB activity by increasing the ROS level.  相似文献   

6.
Uncontrolled cytosolic Ca(2+) overload is a common cause of cell death in several pathological conditions. Recent evidences reveal a more regulated role for intracellular Ca(2+) stores in controlling cell death. Proteins of the BCL-2 family include anti- and proapoptotic members that control the mitochondrial amplification loop of apoptosis. The antiapoptotic protein BCL-2 prevents this mitochondrial loop, while the "multidomain" proapoptotic proteins BAX and BAK are crucial to initiate it. BCL-2, BAX and BAK localize also to the endoplasmic reticulum (ER), the main intracellular Ca(2+) store. Overexpression of BCL-2 reduces resting ER Ca(2+) and death in response to apoptotic stimuli that mobilize Ca(2+). Our recent data indicate that multidomain proapoptotics also influence Ca(2+) metabolism. Cells deficient for Bax, Bak (DKO) display lowered steady state ER Ca(2+) concentrations ([Ca(2+)](er)) and secondarily decreased mitochondrial Ca(2+) uptake. Genetic and pharmacologic correction of [Ca(2+)](er) indicates that it controls death in response to Ca(2+)-dependent, mitochondria utilizing signals such as oxidative stress and lipid mediators; and that it participates in the regulation of the apoptotic response to most intrinsic stimuli, such as staurosporine. Thus, BAX and BAK control apoptosis not only at the mitochondria, but also at the ER, an obligate checkpoint for Ca(2+)-dependent apoptotic stimuli.  相似文献   

7.
STIM1 is a Ca(2+) sensing molecule. Once the Ca(2+) stores are depleted, STIM1 moves towards the plasma membrane (PM) (translocation), forms puncta (clustering), and triggers store-operated Ca(2+) entry (SOCE). Although this process has been regarded as a main mechanism for store-operated Ca(2+) channel activation, the STIM1 clustering is still unclear. Here we discovered a new phenomenon of STIM1 clustering, which is not triggered by endoplasmic reticulum (ER) Ca(2+) depletion. STIM1 subplasmalemmal translocation and clustering can be induced by ER Ca(2+) store depletion with thapsigargin (TG), G-protein-coupled receptor activator trypsin and ryanodine receptor (RyR) agonists caffeine and 4-chloro-3-ethylphenol (4-CEP) in the HEK293 cells stably transfected with STIM1-EYFP. The STIM1 clustering induced by TG was more sustained than that induced by trypsin and RyR agonists. Interestingly, 4-CEP-induced STIM1 clustering also happened in the cytosol without ER Ca(2+) store depletion. Application of some pharmacological regulators including flufenamic acid, 2-APB, and carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP) at concentrations without affecting ER Ca(2+) store also evoked cytosolic STIM1 clustering. However, the direct store-operated ORAI channel blockers (SKF-96365, Gd(3+) and diethylstilbestrol) or the signaling pathway inhibitors (genistein, wortmannin, Y-27632, forskolin and GF109203X) did not change the STIM1 movement. Disruption of cytoskeleton by colchicine and cytochalasin D also showed no effect on STIM1 movement. We concluded that STIM1 clustering and translocation are two dynamic processes that can be pharmacologically dissociated. The ER Ca(2+) store-independent mechanism for STIM1 clustering is a new alternative mechanism for regulating store-operated channel activity, which could act as a new pharmacological target.  相似文献   

8.
Ca(2+) uptake by mitochondria is a key element in the control of cellular Ca(2+) homeostasis and Ca(2+)-dependent phenomena. It has been known for many years that this Ca(2+) uptake is mediated by the mitochondrial Ca(2+) uniporter, a specific Ca(2+) channel of the inner mitochondrial membrane. We have shown previously that this channel is strongly activated by a series of natural phytoestrogenic flavonoids. We show here that several agonists and antagonists of estrogen receptors (ERs) also modulate the activity of the uniporter. The specific alpha-ER agonist 4,4',4'-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (PPT) was the strongest activator, increasing the rate of mitochondrial Ca(2+) uptake in permeabilized HeLa cells by 10-fold at 2 microM. Consistently, PPT largely increased the histamine-induced mitochondrial [Ca(2+)] peak and reduced the cytosolic one. Diethylstilbestrol and 17-beta-estradiol (but not 17-alpha-estradiol) were active at pharmacological concentrations while the beta-estrogen-receptor agonist 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN) was little effective. The ER modulators tamoxifen and 4-hydroxy-tamoxifen inhibited mitochondrial Ca(2+) uptake (IC(50) 2.5+/-1.5 and 2.5+/-1.4 microM, mean+/-s.d., respectively) both in the presence and in the absence of PPT, but raloxifene and the pure estrogen antagonist ICI 182,780 produced no effect.Activation by PPT was immediate and inhibition by tamoxifen or 4-hydroxy-tamoxifen required only 5 min to reach maximum. Tamoxifen did not modify mitochondrial membrane potential and PPT induced a slow mitochondrial depolarization at higher concentrations than those required to activate mitochondrial Ca(2+) uptake. These results suggest that some kind of ER or related protein located in mitochondria controls the activity of the Ca(2+) uniporter by a nongenomic mechanism. This novel mechanism of action of estrogen agonists and antagonists can provide a new interpretation for several previously reported effects of these compounds.  相似文献   

9.
BACKGROUND AND PURPOSE: The thiourea derivative KB-R7943, originally developed as inhibitor of the plasma membrane Na(+)/Ca(2+) exchanger, has been shown to protect against myocardial ischemia-reperfusion injury. We have studied here its effects on mitochondrial Ca(2+) fluxes. EXPERIMENTAL APPROACH: [Ca(2+)] in cytosol, mitochondria and endoplasmic reticulum (ER), and mitochondrial membrane potential were monitored using both luminescent (targeted aequorins) and fluorescent (fura-2, tetramethylrhodamine ethyl ester) probes in HeLa cells. KEY RESULTS: KB-R7943 was also a potent inhibitor of the mitochondrial Ca(2+) uniporter (MCU). In permeabilized HeLa cells, KB-R7943 inhibited mitochondrial Ca(2+) uptake with a Ki of 5.5+/-1.3 microM (mean+/-S.D.). In intact cells, 10 microM KB-R7943 reduced by 80% the mitochondrial [Ca(2+)] peak induced by histamine. KB-R7943 did not modify the mitochondrial membrane potential and had no effect on the mitochondrial Na(+)/Ca(2+) exchanger. KB-R7943 inhibited histamine-induced ER-Ca(2+) release in intact cells, but not in cells loaded with a Ca(2+)-chelator to damp cytosolic [Ca(2+)] changes. Therefore, inhibition of ER-Ca(2+)-release by KB-R7943 was probably due to the increased feedback Ca(2+)-inhibition of inositol 1,4,5-trisphosphate receptors after MCU block. This mechanism also explains why KB-R7943 reversibly blocked histamine-induced cytosolic [Ca(2+)] oscillations in the same range of concentrations required to inhibit MCU. CONCLUSIONS AND IMPLICATIONS: Inhibition of MCU by KB-R7943 may contribute to its cardioprotective activity by preventing mitochondrial Ca(2+)-overload during ischemia-reperfusion. In addition, the effects of KB-R7943 on Ca(2+) homeostasis provide new evidence for the role of mitochondria modulating Ca(2+)-release and regenerative Ca(2+)-oscillations. Search for permeable and selective MCU inhibitors may yield useful pharmacological tools in the future.  相似文献   

10.
Mitochondrial regulation of apoptotic cell death   总被引:27,自引:0,他引:27  
Although it has long been known that impairment of mitochondrial function may lead to ATP depletion and necrotic cell death, recent work has revealed that these organelles also play an important role in the regulation of apoptotic cell death by mechanisms which have been conserved through evolution. Thus, it seems that a number of toxicants target the mitochondria and promote their release of cytochrome c and other pro-apoptotic proteins, which can trigger caspase activation and other parts of the apoptotic process. Cytochrome c release is governed by the Bcl-2 family of proteins, whereas subsequent caspase activation is modulated by other proteins, including inhibitor of apoptosis proteins (IAPs) and heat shock proteins. Recent findings indicate that cytochrome c extrusion occurs by a two-step process, which is initiated by a disruption of the association of the hemoprotein with cardiolipin, the phospholipid that anchors it to the outer surface of the inner mitochondrial membrane. Release of the solubilized pool of cytochrome c into the cytosol may then occur by permeabilization of the outer mitochondrial membrane mediated by pro-apoptotic Bcl-2 family proteins, notably Bax and Bak, or by Ca2+-triggered mitochondrial permeability transition. Taken together, these findings have placed the mitochondria in the focus of apoptosis research and further underlined the important function of these organelles in cell life and death.  相似文献   

11.
In excitable cell types, activation of cell-surface Ca(2+) channels triggers Ca(2+) release from the endplasmic or sarcoplasmic reticulum (ER/SR). This Ca(2+) signal amplification, termed Ca(2+)-induced or voltage-induced Ca(2+) release (CICR/VICR), requires the ryanodine receptor as an intracellular Ca(2+) channel, which is predominantly localized in the junctional membrane complex between the plasma membrane and the ER/SR. Junctophilin is an ER/SR membrane protein that contributes to the formation of the junctional membrane structure. Ryanodine receptor and junctophilin subtypes are derived from distinct genes and show different tissue-specific expression. Recent gene-knockout studies have defined physiological functions of both Ca(2+) release via ryanodine receptors and junctional membrane structures constituted by junctophilins in excitable cells. Moreover, several human genetic diseases are caused by mutations at the ryanodine receptor and junctophilin subtype genes.  相似文献   

12.
Oxidant-induced lipid peroxidation and cell death are major components of ischemia/reperfusion and toxicant injury. Our previous studies showed that renal proximal tubular cells (RPTCs) express Ca(2+)-independent phospholipase A(2)γ (iPLA(2)γ) in endoplasmic reticulum (ER) and mitochondria and that iPLA(2)γ is cytoprotective. Our present studies reveal the role of ER-iPLA(2)γ in oxidant-induced ER lipid peroxidation, Ca(2+) release, and cell death. Oxidant tert-butyl hydroperoxide (TBHP) caused ER lipid peroxidation and Ca(2+) release in isolated rabbit kidney cortex microsomes. ER-iPLA(2)γ inhibition, using bromoenol lactone (BEL), potentiated both oxidant-induced ER lipid peroxidation and Ca(2+) release. Assessment of fatty acids using electrospray ionization-mass spectrometry revealed that ER-iPLA(2)γ mediates the TBHP-induced release of arachidonic acid (20:4), linoleic acid (18:2), and their oxidized forms (18:2-OH, 18:2-OOH, 20:4-OH, 20:4-OOH, 20:4-(OH)(3). iPLA(2)γ inhibition also accelerated oxidant-induced ER Ca(2+) release in RPTC. Depletion of ER Ca(2+) stores in RPTC with thapsigargin, an ER Ca(2+) pump inhibitor, prior to TBHP exposure reduced necrotic cell death and blocked the potentiation of TBHP-induced necrotic cell death by BEL. Together, these data provide strong evidence that ER-iPLA(2)γ protects renal cells from oxidant-induced necrotic cell death by releasing unsaturated and/or oxidized fatty acids from ER membranes, thereby preserving ER membrane integrity and preventing ER Ca(2+) release.  相似文献   

13.
1. We evaluated the role of the cross-linking of Fc epsilon RI-mediated inositol 1,4,5-triphosphate (IP(3)) in the increase in cytosolic Ca(2+) level ([Ca(2+)](i)) using xestospongin C, a selective membrane permeable blocker of IP(3) receptor, in RBL-2H3 mast cells. 2. In the cells sensitized with anti-dinitrophenol (DNP) IgE, DNP-human serum albumin (DNP-HSA) and thapsigargin induced degranulation of beta-hexosaminidase and a sustained increase in [Ca(2+)](i). Xestospongin C (3 - 10 microM) inhibited both of these changes that were induced by DNP-HSA without changing those induced by thapsigargin. 3. In the absence of external Ca(2+), DNP-HSA induced a transient increase in [Ca(2+)](i). Xestospongin C (3 - 10 microM) inhibited this increase in [Ca(2+)](i). 4. In the cells permeabilized with beta-escin, the application of IP(3) decreased Ca(2+) in the endoplasmic reticulum (ER) as evaluated by mag-fura-2. Xestospongin C (3 - 10 microM) inhibited the effect of IP(3). 5. After the depletion of Ca(2+) stores due to stimulation with DNP-HSA or thapsigargin, the addition of Ca(2+) induced capacitative calcium entry (CCE). Xestospongin C (3 - 10 microM) inhibited the DNP-HSA-induced CCE, whereas it did not affect the thapsigargin-induced CCE. 6. These results suggest that Fc epsilon RI-mediated generation of IP(3) contributes to Ca(2+) release not only in the initial phase but also in the sustained phase of the increase in [Ca(2+)](i), resulting in prolonged Ca(2+) depletion in the ER. The ER Ca(2+) depletion may subsequently activate CCE to achieve a continuous [Ca(2+)](i) increase, which is necessary for degranulation in the RBL-2H3 mast cells. Xestospongin C may inhibit Ca(2+) release and consequently may attenuate degranulation.  相似文献   

14.
1. Nitric oxide (NO) is a key modulator of cellular Ca(2+) signalling and a determinant of mitochondrial function. Here, we demonstrate that NO governs capacitative Ca(2+) entry (CCE) into HEK293 cells by impairment of mitochondrial Ca(2+) handling. 2. Authentic NO as well as the NO donors 1-[2-(carboxylato)pyrrolidin-1-yl]diazem-1-ium-1,2-diolate (ProliNO) and 2-(N,N-diethylamino)-diazenolate-2-oxide (DEANO) suppressed CCE activated by thapsigargin (TG)-induced store depletion. Threshold concentrations for inhibition of CCE by ProliNO and DEANO were 0.3 and 1 micro M, respectively. 3. NO-induced inhibition of CCE was not mimicked by peroxynitrite (100 micro M), the peroxynitrite donor 3-morpholino-sydnonimine (SIN-1, 100 micro M) or 8-bromoguanosine 3',5'-cyclic monophosphate (8-BrcGMP, 1 mM). In addition, the guanylyl cyclase inhibitor 1H-[1,2,4] oxadiazole[4,3-a] quinoxalin-1-one (ODQ, 30 micro M) failed to antagonize the inhibitory action of NO on CCE. 4. DEANO (1-10 micro M) suppressed mitochondrial respiration as evident from inhibition of cellular oxygen consumption. Experiments using fluorescent dyes to monitor mitochondrial membrane potential and mitochondrial Ca(2+) levels, respectively, indicated that DEANO (10 micro M) depolarized mitochondria and suppressed mitochondrial Ca(2+) sequestration. The inhibitory effect of DEANO on Ca(2+) uptake into mitochondria was confirmed by recording mitochondrial Ca(2+) during agonist stimulation in HEK293 cells expressing ratiometric-pericam in mitochondria. 5. DEANO (10 micro M) failed to inhibit Ba(2+) entry into TG-stimulated cells when extracellular Ca(2+) was buffered below 1 micro M, while clear inhibition of Ba(2+) entry into store depleted cells was observed when extracellular Ca(2+) levels were above 10 micro M. Moreover, buffering of intracellular Ca(2+) by use of N,N'-[1,2-ethanediylbis(oxy-2,1-phenylene)] bis [N-[25-[(acetyloxy) methoxy]-2-oxoethyl]]-, bis[(acetyloxy)methyl] ester (BAPTA/AM) eliminated inhibition of CCE by NO, indicating that the observed inhibitory effects are based on an intracellular, Ca(2+) dependent-regulatory process. 6. Our data demonstrate that NO effectively inhibits CCE cells by cGMP-independent suppression of mitochondrial function. We suggest disruption of local Ca(2+) handling by mitochondria as a key mechanism of NO induced suppression of CCE.  相似文献   

15.
Guttiferone-A (GA) is a natural occurring polyisoprenylated benzophenone with cytotoxic action in vitro and anti-tumor action in rodent models. We addressed a potential involvement of mitochondria in GA toxicity (1-25 μM) toward cancer cells by employing both hepatic carcinoma (HepG2) cells and succinate-energized mitochondria, isolated from rat liver. In HepG2 cells GA decreased viability, dissipated mitochondrial membrane potential, depleted ATP and increased reactive oxygen species (ROS) levels. In isolated rat-liver mitochondria GA promoted membrane fluidity increase, cyclosporine A/EGTA-insensitive membrane permeabilization, uncoupling (membrane potential dissipation/state 4 respiration rate increase), Ca2+ efflux, ATP depletion, NAD(P)H depletion/oxidation and ROS levels increase. All effects in cells, except mitochondrial membrane potential dissipation, as well as NADPH depletion/oxidation and permeabilization in isolated mitochondria, were partly prevented by the a NAD(P)H regenerating substrate isocitrate. The results suggest the following sequence of events: 1) GA interaction with mitochondrial membrane promoting its permeabilization; 2) mitochondrial membrane potential dissipation; 3) NAD(P)H oxidation/depletion due to inability of membrane potential-sensitive NADP+ transhydrogenase of sustaining its reduced state; 4) ROS accumulation inside mitochondria and cells; 5) additional mitochondrial membrane permeabilization due to ROS; and 6) ATP depletion. These GA actions are potentially implicated in the well-documented anti-cancer property of GA/structure related compounds.  相似文献   

16.
We investigated the cell death effects of eight xanthones on PC12 rat pheochromocytoma cells. Among these compounds, alpha-mangostin, from the fruit hull of Garcinia mangostana L., had the most potent effect with the EC(50) value of 4 microM. Alpha-mangostin-treated PC12 cells demonstrated typical apoptotic DNA fragmentation and caspase-3 cleavage (equivalent to activation). The flow cytometric analysis indicated that this compound induced apoptosis in time-and concentration-dependent manners. Alpha-mangostin showed the features of the mitochondrial apoptotic pathway such as mitochondrial membrane depolarization and cytochrome c release. Furthermore, alpha-mangostin inhibited the sarco(endo)plasmic reticulum Ca(2+)-ATPase markedly. There was a correlation between the Ca(2+)-ATPase inhibitory effects and the apoptotic effects of the xanthone derivatives. On the other hand, c-Jun NH(2)-terminal kinase (JNK/SAPK), one of the signaling molecules of endoplasmic reticulum (ER) stress, was activated with alpha-mangostin treatment. These results suggest that alpha-mangostin inhibits Ca(2+)-ATPase to cause apoptosis through the mitochondrial pathway.  相似文献   

17.
Adenosine triphosphate (ATP) is released as an autocrine/paracrine signal from a variety of cells. The present study was undertaken to clarify the Ca(2+)-signal pathway involved in the caffeine-inducible release of ATP from cultured smooth muscle cells (SMC). The release of ATP induced by caffeine (3 mM) was almost completely inhibited by ryanodine and tetracaine, but not by 2-APB, thus being mediated by ryanodine receptors (RyR). The expression of messenger RNA from only RyR-2 was detected in the cells. Furthermore, the induced release was attenuated by mitochondrial inhibitors, rotenone and oligomycin and by Cl(-) channel blockers, niflumic acid, and 5-nitro-2-(3-phenylpropylamino)-benzoic acid. Increase in Ca(2+)-signals with fluo 4 and rhod-2 caused by caffeine were reduced by tetracaine and oligomycin plus carbonyl cyanide m-chlorophenylhydrazone, respectively. A close spatial relation between the endoplasmic reticulum (ER) and mitochondria was electromicroscopically observed in the SMC, supporting the existence of a Ca(2+)-signaling bridge on both the organelli. These results suggest that caffeine stimulates ryanodine receptor (RyR-2) and facilitates a Ca(2+)-signal transducing system from ER to mitochondria, and then, the signal appears to accelerate the ATP synthesis in mitochondria. In addition, the mitochondrial event may lead further cell signaling to the cell membrane and activates Cl(-) channels, resulting in the extracellular release of cytosolic ATP.  相似文献   

18.
We studied the effects of dehydroabietic acid (DHAA), a major toxic resin acid in wood industry effluents, on cellular energetics in rainbow trout (Oncorhynchus mykiss) hepatocytes. In addition, the role of DHAA-induced change in intracellular Ca(2+) in the energetic responses of the cells was evaluated. At sublytic concentrations, DHAA caused a reduction in cellular ATP content and a concomitant enhancement of glycolytic activity of the cells in a dose-dependent manner. No further decrease of cellular ATP content occurred after 60 min of DHAA-treatment indicating establishment of new energetic steady state in cells. DHAA also caused a rapid dose-dependent increase in oxygen consumption and in cellular heat production of the hepatocytes. The effect of DHAA on ATP content and glycolytic activity was independent from Ca(2+), whereas, changes in oxygen consumption and heat production were Ca(2+) -dependent. These results show that DHAA induces energetic imbalance in rainbow trout hepatocytes, which is apparently not due to direct interference of DHAA with ATP production nor does it seem to be caused by an indirect effect of elevated intracellular Ca(2+) concentration on mitochondrial energetics. Therefore, the ATP depletion is likely due to increased cellular ATP consumption caused by amphiphilic action of DHAA on the cell membrane.  相似文献   

19.
Peroxynitrite is a cytotoxic oxidant produced during shock, ischemia reperfusion, and inflammation. The cellular events mediating the cytotoxic effect of peroxynitrite include activation of poly(ADP-ribose) synthetase, inhibition of mitochondrial respiration, and activation of caspase-3. The aim of the present study was to investigate the role of intracellular calcium mobilization in the necrotic and apoptotic cell death induced by peroxynitrite. Peroxynitrite, in a low, pathophysiologically relevant concentration (20 microM), induces rapid (1 to 3 min) Ca(2+) mobilization in thymocytes. Inhibition of this early calcium signaling by cell-permeable Ca(2+) chelators [EGTA-acetoxymethyl ester (AM), 1, 2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-AM (BAPTA-AM), 8-amino-2-[(2-amino-5-methylphenoxy)methyl]-6-methoxyquinoline-N,N , N',N'-tetraacetic acid-tetra-AM] abolished cytotoxicity as measured by propidium iodide uptake. Intracellular Ca(2+) chelators also inhibited DNA single-strand breakage and activation of poly(ADP-ribose) synthase (PARS), which is a major mediator of cell necrosis in the current model. Intracellular Ca(2+) chelators also protected PARS-deficient thymocytes from peroxynitrite cytotoxicity, providing evidence for a PARS-independent, Ca(2+)-dependent cytotoxic pathway. Chelation of intracellular Ca(2+) blocked the peroxynitrite-induced decrease of mitochondrial membrane potential, secondary superoxide production, and mitochondrial membrane damage. Peroxynitrite-induced internucleosomal DNA cleavage was increased on BAPTA-AM pretreatment in the wild-type cells but decreased in the PARS-deficient cells. Two other apoptotic parameters (phosphatidylserine exposure and caspase 3 activation) were inhibited by BAPTA-AM in both the wild-type and the PARS-deficient thymocytes. Our findings provide evidence for the pivotal role of an early Ca(2+) signaling in peroxynitrite cytotoxicity.  相似文献   

20.
Microcystin-LR (MCLR), the most toxic microcystin up to date, could induce apoptosis in many kinds of fish and mammalian cells. For the fish immunotoxicity, it was found that MCLR could induce apoptosis in Carassius auratus lymphocytes in vitro. So this study focused on the role of intracellular Ca(2+), mitochondrial membrane potential, reactive oxygen species (ROS), and intracellular ATP in response to the mechanisms of MCLR-induced apoptosis in fish lymphocytes. MCLR (10 nM) administration resulted in a massive elevation in ROS, intracellular Ca(2+), decreased ATP, and rapid mitochondrial membrane potential (DeltaPsi(m)) disruption. When compared to controls, both a fourfold significant (P < 0.001) elevation in O(2) (-) in 1.5 h and an approximately twofold increase in Ca(2+) in 0.5 h were observed. After 6 h of treatment, an approximately 30% decrease for DeltaPsi(m) but about 75% decline for ATP were found. Together, the results demonstrated that MCLR-induced apoptosis was associated with a massive calcium influx, resulting in O(2) (-) elevation, DeltaPsi(m) disruption, and ATP depletion. This study provided a possible cytotoxic mechanism of fish lymphocytes caused by MCLR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号