首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Latent inhibition (LI) is a measure of retarded conditioning to a previously-presented nonreinforced stimulus, that is impaired in schizophrenic patients and in rats treated with amphetamine. Neuroleptic drugs are known to produce two effects in this test paradigm: to antagonise amphetamine-induced disruption of LI, and to enhance LI when administered on their own. The present experiments tested the effects on LI of a potential antipsychotic, sigma ligand BMY-14802. The experiments used a conditioned emotional response (CER) procedure in rats licking for water, consisting of three stages: preexposure, in which the to-be-conditioned stimulus (a tone) was repeatedly presented without being followed by reinforcement; conditioning, in which the preexposed stimulus was paired with reinforcement (a foot shock); and test, in which LI was indexed by animals' degree of suppression of licking during tone presentation. In Experiment 1, 20 tone preexposures and two conditioning trials were given and the effects of 5, 15, and 30mg/kg BMY-14802 were assessed. Experiment 2 tested the effects of 15 and 30mg/kg on LI using ten preexposures and two conditioning trials. Experiment 3 investigated the effects of 15 and 30mg/kg on LI using 40 preexposures and extended conditioning consisting of five tone-shock pairings. Experiments 4 and 5 investigated antagonism of amphetamine-induced disruption of LI by 15 and 30mg/kg BMY-14802, respectively. BMY-14802 was found to antagonise amphetamine-induced disruption of LI and enhance LI when low numbers of preexposures and two conditioning trials were given, but not following extended conditioning. These results provide partial support for the suggestion that BMY-14802 may possess antipsychotic properties.  相似文献   

2.
In the latent inhibition (LI) paradigm, nonreinforced preexposure to a stimulus retards subsequent conditioning to that stimulus. The administration of haloperidol in both the preexposure and the conditioning stages was found to enhance LI in the conditioned emotional response (CER) procedure (Weiner and Feldon, 1986). The present experiments investigated the effects of 0.1 mg/kg haloperidol administration on LI in a two-way avoidance procedure, consisting of two stages: preexposure, in which the to-be-conditioned stimulus, tone, was repeatedly presented without reinforcement; and conditioning, in which the animals acquired a two-way avoidance response with the tone serving as the warning signal. Experiments 1 and 2 tested whether the administration of haloperidol confirmed to the preexposure stage, where learning to ignore the nonreinforced stimulus takes place, would suffice to enhance the LI effect. In Experiment 1, preexposure and conditioning were conducted 24 hr apart. LI was obtained in both the placebo and haloperidol conditions, but the effect was not more pronounced under the drug. In addition, haloperidol-treated animals exhibited impaired avoidance performance. In Experiment 2, preexposure and conditioning were given 72 hr apart. With this interval, haloperidol did not affect avoidance performance. However, also under these conditions, the magnitude of the LI effect was not larger in the haloperidol-treated groups, indicating that the administration of the drug in the preexposure stage alone did not suffice to enhance LI.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Latent inhibition (LI) is a measure of retarded conditioning to a previously presented non-reinforced stimulus, that is impaired in schizophrenic patients and in rats treated with amphetamine. Neuroleptic drugs are known to produce two effects in this paradigm: to antagonize amphetamine-induced disruption of LI, and to facilitate the development of LI when administered on their own. The present experiments tested the effects on LI of the new neuroleptic, sertindole. The experiments used a conditioned emotional response procedure in rats licking for water, consisting of three stages: pre-exposure, in which the to-be-conditioned stimulus (a tone) was repeatedly presented without being followed by reinforcement; conditioning, in which the pre-exposed stimulus was paired with reinforcement (a foot shock); and test, in which LI was indexed by degree of suppression of licking during tone presentation. In Experiment 1 the effects of 0.31, 1.3 and 5.0mg/kg sertindole were assessed following pre-exposure to 40 non-reinforced tones. Experiment 2 tested the effects of 5mg/kg on LI following pre-exposure to 10 non-reinforced tones. Experiment 3 investigated antagonism of amphetamine-induced disruption of LI by 5.0mg/kg sertindole. The results demonstrated that sertindole (5.0mg/kg) possesses a neuroleptic-like profile in the LI model: it facilitates the development of LI and antagonizes amphetamine-induced disruption of LI.  相似文献   

4.
In the latent inhibition (LI) paradigm, prior nonreinforced exposure to a stimulus retards subsequent conditioning to that stimulus when it is paired with reinforcement. The development of LI reflects learning not to attend to, or ignore, stimuli which predict no significant consequences. The present experiment tested the effects of chlordiazepoxide (CDP) on LI using a conditioned emotional response (CER) procedure consisting of three stages given 24 hr apart: preexposure, in which the to-be-conditioned stimulus, tone, was presented without reinforcement; conditioning, in which the preexposed stimulus was paired with shock; and test, where LI was indexed by animals' suppression of licking during tone presentation. Preexposure and conditioning were given off-baseline. CDP (5 mg/kg) was administered only in preexposure, only in conditioning, in both stages or in neither. The administration of the drug during tone-shock conditioning conducted off-baseline markedly reduced animals' suppression to the tone in a subsequent licking test which was conducted without the drug. The administration of CDP during nonreinforced preexposure to the tone abolished the development of LI, i.e., drug-treated preexposed animals did not show reduced suppression as compared to drug-treated nonpreexposed animals. These results demonstrate that CDP: a) blocks the acquisition of classically conditioned fear and b) disrupts animals' ability to learn that stimuli predict no significant outcomes.  相似文献   

5.
In the latent inhibition (LI) paradigm, nonreinforced preexposure to a stimulus retards subsequent conditioning to that stimulus. Three experiments investigated the effects of acute amphetamine administration on LI in rats. Experiments 1 and 3 used a conditioned emotional response (CER) procedure and Experiment 2 used two-way active avoidance procedure. Experiments 1 and 2 showed that, in both the CER and avoidance procedures, 1.5 mg/kg dl-amphetamine administered either in the preexposure or the conditioning stage alone did not disrupt LI. In contrast, amphetamine administered in both of the stages abolished LI. Experiment 3 showed that the abolition of LI was obtained when the preexposure and conditioning were given 24 hr apart but not when the two stages were given in one session.  相似文献   

6.
Latent inhibition (LI) is a behavioral paradigm in which animals learn to ignore a repeatedly presented stimulus not followed by meaningful consequences. We previously reported that LI was disrupted following the administration of 1.5 mg/kg dl-amphetamine. The present experiments investigated the effects of 6 mg/kg dl-amphetamine administration on LI in a conditioned emotional response (CER) procedure consisting of three stages: pre-exposure, in which the to-be-conditioned stimulus, tone, was repeatedly presented without reinforcement; conditioning, in which the pre-exposed stimulus was paired with shock; and test, where LI was indexed by animals' suppression of licking during tone presentation. The three stages were conducted 24 h apart. In Experiment 1, the drug was administered in a 2×2 design, i.e. drug-no drug in pre-exposure and drug-no drug in conditioning. LI was obtained in all conditions. In Experiment 2, animals were given either 5 days of 6 mg/kg amphetamine pretreatment and amphetamine in pre-exposure and conditioning or 7 days of saline. LI was not obtained under amphetamine, but this outcome reflected a state-dependency effect. In Experiment 3, animals received either 5 days of amphetamine pretreatment and amphetamine in pre-exposure, conditioning and test or 8 days of saline. LI was obtained in both the placebo and amphetamine conditions. Experiments 4a and 4b compared the effects of two drug doses, 1.5 (4a) and 6 mg/kg (4b), administered in pre-exposure and conditioning. LI was abolished with the 1.5 mg/kg dose but not with the 6 mg/kg dose.  相似文献   

7.
Latent inhibition (LI) is a behavioral paradigm in which prior exposure to a stimulus not followed by reinforcement retards subsequent conditioning to that stimulus when it is paired with reinforcement. Two experiments investigated the effects of 0.1 mg/kg haloperidol administration on LI as a function of number of CS pre-exposures. The investigation was carried out using a conditioned emotional response (CER) procedure consisting of three stages: pre-exposure, in which the to-be-conditioned stimulus, tone, was repeatedly presented without reinforcement; conditioning, in which the pre-exposed stimulus was paired with shock; and test, where LI was indexed by animals' suppression of licking during tone presentation. The three stages were conducted 24 h apart. In Experiment 1, 40 CS pre-exposures were given. LI was obtained in both the placebo and haloperidol conditions, but the effect was much more pronounced under the drug. Experiment 2 used ten CS pre-exposures. LI was not obtained in the placebo animals but was clearly evident in animals injected with haloperidol. The implications of these findings for the effects of neuroleptics on learning are discussed.  相似文献   

8.
The present study aimed at characterising the effects of the new antipsychotic olanzapine in a Latent Inhibition (LI) paradigm. A conditioned emotional response (CER) procedure was used, consisting of three stages: pre-exposure, in which the to-be-conditioned stimulus (a tone) was presented six times without being followed by reinforcement; conditioning, in which the pre-exposed stimulus was paired twice with reinforcement (a foot shock); and test, in which LI was assessed by the suppression of licking during the tone presentation. In Experiment I, it was found that pre-treatment with an intermediate dose (0.312mg/kg) of olanzapine, but not with lower (0.003; 0.031mg/kg) or higher doses (0.625; 1.25mg/kg), restored LI in amphetamine-treated (1.5mg/kg) animals. This effect could not be attributed to a disruptive effect of olanzapine on CER learning, as olanzapine per se had no effect on this conditioning (Experiment 2). In Experiment 3, olanzapine did not antagonise the amphetamine-induced locomotor hyperactivity. As olanzapine has not only dopaminergic, but also serotonergic, adrenergic, histaminergic and cholinergic activities, the differential effects of olanzapine on amphetamine-induced disruption of LI and hyperactivity may reflect an action on several pharmacological targets, possibly interacting with one another.  相似文献   

9.
N-methyl-d-aspartate (NMDA) receptors seem to play a central role in learning and memory processes involved in Latent Inhibition (LI). In fact, MK-801, a non-competitive NMDA receptor antagonist, has proved its effectiveness as a drug for attenuating LI when administered before or after stimulus preexposure and conditioning stages. This paper presents three experiments designed to analyze the effect of MK-801 on LI when the drug is administered before (Experiment 1A) or after (Experiment 1B) preexposure and conditioning stages with a conditioned emotional response procedure. Additionally, we analyze the effect of the drug when it was administered before preexposure, before conditioning or before both phases (Experiment 2). The results show that the effect of the drug varied as a function of the dose (with only the highest dose being effective), the moment of administration (with only the drug administered before the experimental treatments being effective), and the phase of procedure (reducing LI when the drug was administered only at preexposure, and disrupting fear conditioning when administered at conditioning). These differences may be due to several factors ranging from the role played by NMDA receptors in the processing of stimuli of different sensorial modalities to the molecular processes triggered by drug administration.  相似文献   

10.
The animal amphetamine model of schizophrenia has been based primarily on stereotyped behavior. The present study sought to demonstrate an amphetamine-induced deficit in attentional processes. To this end, the effects of acute and chronic (14 days) 1.5 mg/kg dl-amphetamine administration on the ability of rats to ignore irrelevant stimuli were examined using the paradigm of latent inhibition (LI) in a conditioned emotional response (CER) procedure. The procedure consisted of three stages: pre-exposure, in which the to-be-conditoned stimulus, tone, was presented without being followed by reinforcement; acquisition, in which the pre-exposed tone was paired with shock; and test, in which LI was indexed by animals' suppression of licking during tone presentation. Experiment 1 showed that chronic but not acute treatment abolished LI. Experiment 2 showed that animals receiving chronic amphetamine pretreatment but pre-exposed and conditioned without the drug, exhibited normal LI. In Experiment 3, animals which received chronic amphetamine pretreatment and were pre-exposed under the drug but conditioned without it, also showed normal LI. The implications of these results for the animal amphetamine model of schizophrenia are discussed.  相似文献   

11.
Rationale Latent inhibition (LI) refers to retarded conditioning to a stimulus as a consequence of its inconsequential preexposure. Amphetamine-induced disruption of LI and its potentiation by antipsychotic drugs (APDs) in the adult rat are well-established models of schizophrenia and antipsychotic drug action, respectively. It is not clear whether LI can be similarly modulated at prepubertal age.Objectives In view of the notion that schizophrenia is a neurodevelopmental disorder whose overt expression depends on postpubertal brain maturational processes, we investigated whether several manipulations known to modulate LI in adult rats, including systemic administration of amphetamine and the atypical APD clozapine, are capable of producing the same effects in prepubertal (35-day-old) rats.Methods LI was measured in a thirst motivated conditioned emotional response (CER) procedure in which rats received 10 or 40 tone preexposures followed by 2 or 5 tone-footshock pairings.Results Like in adults, LI was present with 40 preexposures and 2 conditioning trials. In contrast to findings in adults, LI was resistant to disruption by amphetamine at a dose (1 mg/kg) that significantly increased locomotor activity, as well as by reducing the number of preexposures to ten, increasing the number of conditioning trials to five, or changing the context between preexposure and conditioning. Clozapine (5 mg/kg) and the selective 5HT2A antagonist M100907 (0.3 mg/kg) administered in conditioning were without an effect on "persistent" LI with extended conditioning, but were capable of disrupting LI when administered in the preexposure stage, as found in adults.Conclusion The results point to functionality within brain systems regulating LI acquisition but not those regulating LI expression in periadolescent rats, further suggesting that postpubertal maturation of the latter systems may underlie schizophrenia-mimicking LI disruption reported in adult rats following perinatal manipulations and possibly disrupted LI observed in schizophrenia.  相似文献   

12.
Latent inhibition (LI) refers to the finding that nonreinforced preexposure to a stimulus retards subsequent conditioning to that stimulus when it is paired with reinforcement. The development of LI reflects a process of learning not to attend, or ignore, irrelevant stimuli. Previous experiments showed that LI was disrupted by low but not high doses of amphetamine, and facilitated by neuroleptic drugs. The present experiments sought to investigate the role of dopamine D1 and D2 receptors in LI disruption. Experiments 1 and 2 showed that the selective D1 agonist, SKF-38393 (1, 5, 10 mg/kg) and the selective D2 agonist, quinpirole (0.1, 0.3, 1.0 mg/kg), did not affect LI. Experiment 3 showed that both low (0.3 mg/kg) and high (1.5 mg/kg) doses of the mixed D1-D2 agonist, apomorphine, failed to affect L1. These results show that L1 is not disrupted by direct stimulation of DA receptors and suggest that the differential effect exerted on this phenomenon by apomorphine (and possibly SKF-38393 and quinpirole) and amphetamine is related to the direct versus the indirect agonist action of these drugs. In addition, apomorphine at the dose of 0.03 mg/kg, which is believed to activate preferentially DA autoreceptors, did not produce neuroleptic-like facilitation of LI. The implications of the results of the involvement of DA mechanisms in L1 are discussed.  相似文献   

13.
Latent inhibition (LI), i.e., retarded conditioning to a stimulus following its nonreinforced preexposure, is impaired in some subsets of schizophrenia patients and in amphetamine-treated rats. Typical and atypical antipsychotic drugs (APD's) potentiate LI, but to date the model has not dissociated between them. This study demonstrates such a dissociation using haloperidol (0.1 mg/kg), clozapine (5 mg/kg), and ritanserin (0.6 mg/kg) administered in preexposure and/or conditioning. Under conditions which did not yield LI in vehicle controls (40 preexposures and five conditioning trials), both haloperidol and clozapine, but not ritanserin, led to LI when administered in conditioning. Under conditions which led to LI in vehicle controls (40 preexposures and two conditioning trials), clozapine and ritanserin, but not haloperidol, abolished LI when administered in preexposure. It is suggested that LI potentiation via conditioning detects the "typical" action of APD's whereas LI disruption via preexposure detects the "atypical" action of APD's.  相似文献   

14.
Latent inhibition (LI), that is, retarded conditioning to a stimulus following its nonreinforced pre-exposure, is impaired in some subsets of schizophrenia patients and in amphetamine-treated rats. Potentiation of LI by antipsychotic drugs (APDs) given in conditioning, under conditions that do not lead to LI in controls, is a well-established index of antipsychotic activity. Recently, we have shown that the atypical APD, clozapine, in addition disrupts LI if administered in pre-exposure, under conditions that lead to LI in controls. This study demonstrates the same behavioral profile for the atypical APD risperidone. LI was measured in a thirst-motivated conditioned emotional response procedure by comparing suppression of drinking in response to a tone previously paired with a foot shock in rats that received nonreinforced exposure to the tone prior to conditioning (pre-exposed (PE)) and rats for whom the tone was novel (non-pre-exposed (NPE)). We show that under conditions that did not yield LI in vehicle controls (40 pre-exposures and five conditioning trials), risperidone (0.25, 0.5, and 1.2 mg/kg) led to LI when administered in conditioning. Under conditions that led to LI in vehicle controls (40 pre-exposures and two conditioning trials), risperidone (0.25, 0.5, and 2.5 mg/kg) abolished LI when administered in pre-exposure; the latter effect was not evident with haloperidol. In addition, the effects of risperidone administered in both the pre-exposure and conditioning stages were dose-dependent so that the pre-exposure-based action was manifested at lower but not at higher doses. It is concluded that atypical APDs exert in the LI model a dual pattern of effects, which enables detection of their 'typical' action (conditioning-based LI potentiation) as well as a dissociation from typical APDs by their 'atypical' action (pre-exposure-based LI disruption). It is suggested that the former and latter effects are subserved by D2 and 5HT2A antagonism, respectively.  相似文献   

15.
Results from a variety of independently run experiments suggest that latent inhibition (LI) and the partial reinforcement extinction effect (PREE) share underlying mechanisms. Experiment 1 tested this LI=PREE hypothesis by training the same set of rats in situations involving both nonreinforced preexposure to the conditioned stimulus (LI stage) and partial reinforcement training (PREE stage). Control groups were also included to assess both LI and the PREE. The results demonstrated a significant, but negative correlation between the size of the LI effect and that of the PREE. Experiment 2 extended this analysis to the effects on LI and the PREE of the anxiolytic benzodiazepine chlordiazepoxide (5 mg/kg, i.p.). Whereas chlordiazepoxide had no effect on LI, it delayed the onset of the PREE. No evidence in support of the LI=PREE hypothesis was obtained when these two learning phenomena were compared within the same experiment and under the same general conditions of training.  相似文献   

16.
Facilitation of latent inhibition by the atypical antipsychotic risperidone   总被引:1,自引:0,他引:1  
The action of the atypical antipsychotic risperidone on latent inhibition (LI), an animal model of schizophrenia, was investigated. The parameters of the procedure were set at values insufficient to generate LI in control rats. On the first day, rats administered 0.5, 1.0, or 2.0 mg/kg ip risperidone or vehicle were preexposed (PE) to 10 tone presentations. On the second day, they were again injected with drug or vehicle and then submitted to two conditioned stimulus (CS; tone)-unconditioned stimulus (US; shock) pairings. On the third day, suppression of their drinking response under the CS was measured. Nonpreexposed (NPE) animals were submitted to the same procedure except for the tone preexposure. On the suppression test, LI was not observed in control rats as well as in animals given 0.5 mg/kg risperidone. Animals given 1.0 and 2.0 mg risperidone, however, displayed an LI effect. The facilitation of LI by risperidone gives additional support to the LI paradigm as an animal model of schizophrenia.  相似文献   

17.
Abstract Rationale. Latent inhibition (LI) refers to retarded conditioning to a stimulus as a consequence of its inconsequential pre-exposure, and disrupted LI in the rat is considered to model an attentional deficit in schizophrenia. Blockade of NMDA receptor transmission, which produces behavioral effects potentially relevant to schizophrenic symptomatology in several animal models, has been reported to spare LI. Objectives. To show that systemic administration of the non-competitive NMDA antagonist MK-801 will lead to an abnormally persistent LI which will emerge under conditions that disrupt LI in controls, and that this will be reversed by the atypical neuroleptic clozapine but not by the typical neuroleptic haloperidol, as found for other NMDA antagonist-induced models. Methods. LI was measured in a thirst-motivated conditioned emotional response (CER) procedure by comparing suppression of drinking in response to a tone in rats which previously received 0 (non-pre-exposed) or 40 tone exposures (pre-exposed) followed by two (experiment 1) or five (experiments 2–5) tone – foot shock pairings. Results. MK-801 at doses of 0.1 and 0.2 mg/kg reduced conditioned suppression while no effect on suppression was seen at the 0.05 mg/kg dose. At the latter dose, intact LI was seen with parameters that produced LI in controls (40 pre-exposures and two conditioning trials). Raising the number of conditioning trials to five disrupted LI in control rats, but MK-801-treated rats continued to show LI, and this abnormally persistent LI was due to the action of MK-801 in the conditioning stage. MK-801-induced LI perseveration was unaffected by both haloperidol (0.1 mg/kg) and clozapine (5 mg/kg) administered in conditioning, and was reversed by clozapine but not by haloperidol administered in pre-exposure. Conclusion. MK-801-induced perseveration of LI is consistent with other reports of perseverative behaviors, suggested to be particularly relevant to negative symptoms of schizophrenia, following NMDA receptor blockade. We suggest that LI perseveration may model impaired attentional set shifting associated with negative symptoms of schizophrenia. Moreover, the finding that the action of MK-801 on LI and the action of clozapine are exerted in different stages of the LI procedure suggests that the MK-801-based LI model may provide a unique screening tool for the identification of novel antipsychotic compounds, whereby the schizophrenia-mimicking LI abnormality is drug-induced, but the detection of the antipsychotic action is not dependent on the mechanism of action of the pro-psychotic drug. Electronic Publication  相似文献   

18.
Rationale Latent inhibition (LI) is the poorer conditioning to a stimulus resulting from its nonreinforced preexposure. LI indexes the ability to ignore irrelevant stimuli and is used extensively to model attentional impairments in schizophrenia (SZ). We showed that rats and mice treated with the N-methyl-d-aspartic acid (NMDA) receptor antagonist MK801 expressed LI under conditions preventing LI expression in controls. This abnormally persistent LI was reversed by the atypical antipsychotic drug (APD) clozapine and by compounds enhancing NMDA transmission via the glycineB site, but not by the typical APD haloperidol, lending the MK801 LI model predictive validity for negative/cognitive symptoms. Objective To test additional representatives from the two classes of drugs and show that the model can dissociate between atypical APDs and glycinergic drugs are the objectives of the study. Materials and methods LI was measured in a conditional emotional response procedure. Atypical APD risperidone, selective 5HT2A antagonist M100907, and three glycinergic drugs were administered in preexposure or conditioning. Results Rats treated with MK801 (0.05 mg/kg) exhibited LI under conditions that disrupted LI in controls. This abnormality was reversed by risperidone (0.25 and 0.067 mg/kg) and M100907 (1 mg/kg) given in preexposure. Glycine (0.8 g/kg), d-cycloserine (DCS;15 and 30 mg/kg), and glycyldodecylamide (GDA; 0.05 and 0.1 g/kg.) counteracted MK801-induced LI persistence when given in conditioning. Conclusions These results support the validity of MK801-induced persistent LI as a model of negative/cognitive symptoms in SZ and indicate that this model may have a unique capacity to discriminate between typical APDs, atypical APDs, and glycinergic compounds, and thus, foster the identification of novel treatments for SZ.  相似文献   

19.
Latent inhibition (LI) is a behavioral phenomenon whereby repeated exposure to a non-reinforced stimulus retards subsequent conditioning to that stimulus. Deficits in LI may reflect an inability to ignore irrelevant stimuli and are studied as a model of the cognitive/attentional abnormalities found in schizophrenia. We recently determined that pretreatment with escalating doses of the indirect dopamine agonist amphetamine (AMPH; 3 daily injections ip, 1-5 mg/kg, over 6 days) disrupts LI in rats tested in a 2-way active avoidance paradigm during withdrawal. In the present study, we evaluated the effects of the atypical neuroleptic clozapine and the typical neuroleptic haloperidol on the expression of LI on day 4 of AMPH withdrawal. Neuroleptic injections were given either 45 min prior to each of two tone preexposure sessions and a subsequent tone-shock avoidance test session, or only prior to the test session. As expected, saline-injected control groups showed LI during the test session, as reflected by significantly reduced avoidance in tone preexposed vs. non-preexposed rats. In contrast, animals pretreated with escalating doses of AMPH did not show LI, due to the improved avoidance of the preexposed animals. Both haloperidol (0.03 mg/kg) and clozapine (5 mg/kg) largely reversed the disruptive influence of AMPH on LI regardless of whether these drugs were administered prior to both preexposure and test sessions or only prior to the test session. These results provide pharmacological validation for an AMPH withdrawal model of schizophrenic symptoms.  相似文献   

20.
RATIONALE: Latent inhibition (LI) refers to the decrease in conditioned response induced by the repeated non-reinforced pre-exposure to the conditioned stimulus before its pairing with the unconditioned stimulus during the conditioning stage. LI has been considered as a relevant animal model for the study of the biological bases of schizophrenia. LI has recently been demonstrated to depend on the integrity of the entorhinal cortex, as lesioning of this area disrupted LI. OBJECTIVES: The present study aimed to verify whether the classical neuroleptic haloperidol and/or the atypical antipsychotic olanzapine would prevent the effect of entorhinal cortex lesioning. METHODS: LI was studied in an off-baseline conditioned emotional response (CER) paradigm in which a tone is paired with a footshock. Entorhinal cortex lesions were produced by the electrolytic method. After a recovery period, both lesioned and control rats received either haloperidol (0.3 mg/kg), olanzapine (0.3 mg/kg) or vehicle before both the pre-exposure and conditioning stages of the experiment. RESULTS: In control rats, pre-exposure to the tone induced LI, which was affected by neither haloperidol nor olanzapine. Lesioning of the entorhinal cortex produced a deficit of LI, which was restored by olanzapine but not by haloperidol. CONCLUSIONS: This result suggests a dissociation of the anatomical and pharmacological targets of the two drugs. The possible involvement of dopamine D3 receptors in the effects of olanzapine is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号