首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Introduction: The glucose‐6‐phosphate dehydrogenase (G6PD) fluorescent spot test (FST) is a useful screening test for G6PD deficiency, but is unable to detect heterozygote G6PD‐deficient females. We sought to identify whether reporting intermediate fluorescence in addition to absent and bright fluorescence on FST would improve identification of mildly deficient female heterozygotes. Methods: A total of 1266 cord blood samples (705 male, 561 female) were screened for G6PD deficiency using FST (in‐house method) and a quantitative enzyme assay. Fluorescence intensity of the FST was graded as either absent, intermediate or normal. Samples identified as showing absent or intermediate fluorescence on FST were analysed for the presence of G6PD mutations using TaqMan@SNP genotyping assays and direct nucleotide sequencing. Results: Of the 1266 samples, 87 samples were found to be intermediate or deficient by FST (49 deficient, 38 intermediate). Of the 49 deficient samples, 48 had G6PD enzyme activity of ≤ 9.5 U/g Hb and one sample had normal enzyme activity. All 38 intermediate samples were from females. Of these, 21 had G6PD activity of between 20% and 60%, and 17 samples showed normal G6PD activity. Twenty‐seven of the 38 samples were available for mutation analysis of which 13 had normal G6PD activity. Eleven of the 13 samples with normal G6PD activity had identifiable G6PD mutations. Conclusion: Glucose‐6‐phosphate dehydrogenase heterozygote females cannot be identified by FST if fluorescence is reported as absent or present. Distinguishing samples with intermediate fluorescence from absent and bright fluorescence improves detection of heterozygote females with mild G6PD deficiency. Mutational studies confirmed that 85% of intermediate samples with normal enzyme activity had identifiable G6PD mutations.  相似文献   

2.
Reliable and accurate epidemiological data is a prerequisite for a cost effective screening program for inherited disorders, which however, is lacking in a number of developing countries. Here we report the first detailed population study in the Republic of Guinea, a sub-Saharan West African country, designed to assess the frequency of glucose-6-phosphate dehydrogenase (G6PD) deficiency and hemoglobinopathies, including screening for thalassemia. Peripheral blood samples from 187 Guinean adults were screened for hemoglobin (Hb) variants by standard hematological methods. One hundred and ten samples from males were screened for G6PD deficiency by the fluorescent spot test. Molecular analysis was performed for the most common α-thalassemia (α-thal) deletions, β-globin gene mutations, G6PD variants B (376A), A (376G), A- (376G/202A) and Betica (376G/968C), using polymerase chain reaction (PCR), restriction fragment length polymorphism (RFLP) or sequencing. Of the 187 subjects screened, 36 were heterozygous for Hb S [β6(A3)Glu→Val, GAG>GTG] (allele frequency 9.62%). Sixty-four subjects were heterozygous and seven were homozygous for the -α(3.7) kb deletion (allele frequency 20.85%). β-Thalassemia alleles were detected in five subjects, four with the -29 (A>G) mutation (allele frequency 1.07%) and one with codon 15 (TGG>TAG) (allele frequency 0.96%). The G6PD A- and G6PD Betica deficient variants were highly prevalent with a frequency of 5.7 and 3.3%, respectively. While we did not test for ferritin levels or α(0)-thal, four females (5.2%) had red cell indices strongly suggestive of iron deficient anemia: Hb <9.7 g/dL; MCH <19.3 pg; MCV <68.2; MCHC <31.6 g/dl; RDW >19.8%. Our results are consistent with high frequency of alleles such as Hb S, α-thal and G6PD deficient alleles associated with malaria resistance. Finding a 9.6% Hb S allele frequency supports the notion for a proficient neonatal screening to identify the sickle cell patients, who might benefit from early prophylactic treatment for infections. The incidence of significant iron deficient anemia in women is lower than expected in an under developed country.  相似文献   

3.
Glucose-6-phosphate dehydrogenase (G6PD) deficiency in erythrocytes causes acute haemolytic anaemia upon exposure to fava beans, drugs, or infection; and it predisposes to neonatal jaundice. The polymorphism of the X-linked G6PD gene has been studied extensively: allele frequencies of up to 25% of different G6PD deficient variants are known in many populations; variants that cause chronic non-spherocytic haemolytic anaemia (CNSHA) are instead all rare. WHO recommends G6PD testing to guide 8-aminoquinolines administration to prevent relapse of Plasmodium vivax infection. From a literature review focused on polymorphic G6PD variants we have retrieved G6PD activity values of 2291 males, and for the mean residual red cell G6PD activity of 16 common variants we have obtained reliable estimates, that range from 1.9% to 33%. There is variation in different datasets: for most variants most G6PD deficient males have a G6PD activity below 30% of normal. There is a direct relationship between residual G6PD activity and substrate affinity (KmG6P), suggesting a mechanism whereby polymorphic G6PD deficient variants do not entail CNSHA. Extensive overlap in G6PD activity values of individuals with different variants, and no clustering of mean values above or below 10% support the merger of class II and class III variants.  相似文献   

4.
Molecular basis of G6PD deficiency in India   总被引:5,自引:0,他引:5  
G6PD deficiency has been reported from India more than 30 years ago and about 13 variants have been characterized biochemically. Here, we report the results of an epidemiological study investigating G6PD deficiency and the mutations among 14 heterogenous populations of India. Of the 3166 males tested, 332 (10.5%) were found to be G6PD-deficient and the prevalence rate varied from 5.7% to 27.9% in the different population groups. Molecular characterization revealed that G6PD Mediterranean (563 C-->T) was the commonest (60.4%) deficient variant followed by G6PD Kerala-Kalyan (949 G-->A; 24.5%) and G6PD Orissa (131 C-->G; 13.3%). G6PD Mediterranean had a more widespread distribution as compared to G6PD Kerala-Kalyan and G6PD Orissa and was associated with both 1311 C and 1311 T polymorhism. G6PD Mediterranean was found to have significantly lower red cell enzyme activity and more severe clinical manifestations than the other two. G6PD Chatham (1003 G-->A) with undetected red cell enzyme activity and G6PD Insuli (989 G-->A) with normal G6PD activity were very rare in the Indian population. The absence of a large number of mutations causing G6PD deficiency points to the fact that the genetic diversity of these populations is considerably lowered than expected.  相似文献   

5.
Screening of 1,080 Kuwaiti male blood donors for glucose-6-phosphate dehydrogenase (G6PD) deficiency revealed this condition in 70 (6.5%) individuals. Mutation analysis of all 70 G6PD deficient samples performed by PCR/RFLP and direct sequencing identified the 563C-->T (Mediterranean) in 72.9%, 202G-->A (A(-)) in 14.3%, 1003G-->A (Chatham) in 7.1%, and 143T-->C (Aures) in 1.4%. In 3 cases (4.3%) mutations remain unknown. Genotyping of all G6PD deficient samples for UDP-glucuronosyltransferase 1 (UDPGT1) gene promoter polymorphism revealed (ta)6/(ta)6 in 38.6%, (ta)7/(ta)7 in 15.7%, (ta)6/(ta)7 in 44.3%, and (ta)7/(ta)8 allele in 1.4% of cases. Thus, 4% of males in the Kuwaiti population have G6PD deficiency coexisting with low activity of the UDPGT1 promoter.  相似文献   

6.
Glucose-6-phosphate dehydrogenase (G6PD) is one of the enzymes needed by the erythrocyte to generate ATP from ADP. Deficiency of this enzyme can lead to hemolysis of red blood cells. Being a malaria endemic area, Indonesia possibly has a high incidence of G6PD deficiency. It is estimated that 2-6% of the population are carriers. In 1996, we detected 145 neonates with G6PD deficiency using the formazan ring method. Among the males, 6.2% had moderate and 1.4% had low enzyme activity; females had enzyme activity in the normal range. Using the Sigma kit, Tashimi et al in 1995 examined 111 neonates in Yogyakarta, none of which was identified as "deficient". There was no correlation between erythrocyte hemolysis and G6PD enzyme content. Interestingly, using the same Sigma kit. Soro et al in 1994 found that among 134 individuals of Batak descent, 10 males (43.48%) and 9 females (8.11%) were G6PD deficient. These were similar to the results reported by Pramuji et al in 1995 for the people around Palembang. Since the G6PD gene is located on the X chromosome, this is a peculiar result thus further studies need to be done. In cooperation with Harvard University, Sumantri et al in 1995 described 14% as carriers. Molecular analysis among these 16 Javanese males showed the following mutations--nt563 (C->T) in 5 cases, nt1376 (G->T) in 3 cases, nt487 (G->A) in 2 cases, nt1311 (C->T) in 1 case with the remaining variants unknown.  相似文献   

7.
It has recently been found that growth of P. falciparum in human G6PD deficient red cells is impaired in vitro; however, the inhibition is overcome after two or three growth cycles. There is evidence to suggest that the parasite can produce its own G6PD enzyme which may compensate for the lack of host enzyme and could account for the resumption of normal growth in G6PD deficient host cells. It is unclear whether the parasite enzyme can enable the host cell to resist oxidative stress as normal cells do. To answer this question, P. falciparum was grown in vitro in: (a) normal red cells, (b) G6PD deficient red cells for one growth cycle only, (c) G6PD deficient cells for a minimum of five cycles. All groups were then challenged with acetylphenylhydrazine (APH) which served as an oxidative stress. Both G6PD (A-) and Mediterranean deficient types were studied. The results show a two-fold increase in resistance to oxidative stress by parasites adapted to G6PD-Mediterranean deficient host cells as compared to unadapted ones, but the parasite-red cell system remains 4 times more sensitive to APH than normal infected cells. In parasitized G6PD (A-) red cells, evidence of adaptation could be seen in the growth curves, but no detectable increase in resistance to APH was found in adapted parasites. It is concluded that the role of the parasite G6PD is not likely to be mainly related to oxidative stress resistance and therefore other functions of this enzyme should be investigated.  相似文献   

8.
Chronic transfusion therapy (CTT) for sickle cell disease (SCD) reduces disease morbidity by suppressing the amount of circulating hemoglobin S (HbS)‐containing red blood cells (RBC). The effectiveness of CTT depends on the rate of RBC clearance. Glucose‐6‐phosphate dehydrogenase (G6PD) deficient donor RBC may exhibit increased hemolysis, but it is unknown if transfusion of these units results in less effective transfusion outcomes in SCD. Children with SCD on CTT were followed prospectively for multiple transfusions. G6PD activity of transfused units was measured prior to expiration date. HbA clearance (ΔHbA) was calculated as the difference of estimated posttransfusion HbA to the pretransfusion HbA of the subsequent transfusion episode. Sixty‐two patients received 388 transfusions. Of 755 RBC units, 687 (91%) had normal G6PD (>60% activity), 38 (5%) had moderately low G6PD (10‐60% activity), and 30 (4%) had severely low G6PD (<10% activity). Of 358 evaluable transfusions, 54 (15%) included ≥1 G6PD deficient units, and 22 (6%) had ≥1 severely deficient units. The proportion of the transfusion episode consisting of G6PD deficient units was associated with increased ΔHbA for all G6PD deficient units (P = .05) and for severely G6PD deficient units (P = .0070). In multivariate mixed effects modeling, ΔHbA was positively associated with severely G6PD deficient units (P = .0074) and RBC alloimmunization (P = .03) and negatively associated with recipient splenectomy (P = .015). Higher ΔHbA was associated with higher HbS and reticulocyte counts at the subsequent transfusion episode. In conclusion, G6PD deficient RBC transfusions may have shorter in vivo survival and adversely affect the suppression of sickle erythropoiesis.  相似文献   

9.
B Lim  N Jamal  D Tritchler  H A Messner 《Blood》1984,63(6):1481-1487
Some multilineage hemopoietic colonies contain, in addition to myeloid cells, T lymphocytes. These proliferate extensively in liquid suspension culture under the influence of a T cell growth factor provided by phytohemagglutinin-T cell-conditioned medium (PHA-TCM). The clonal origin of these myeloid and lymphoid components was investigated by determining the glucose-6-phosphate dehydrogenase (G6PD) isoenzyme types of multilineage colonies grown from peripheral blood of 4 G6PD heterozygous normal volunteers. The G6PD assay is sufficiently sensitive to detect enzyme concentrations contributed by as few as 30 granulocytes and erythroblasts, 4-6 megakaryocytes, 2-3 macrophages, and 50-100 T cells. T cell components can be detected even if myeloid cells are present in 10-20-fold excess. A small number of multilineage colonies with T cells produced a single G6PD isoenzyme on direct analysis and after expansion in liquid culture. This observation supports the view of a common progenitor for myeloid and lymphoid cells in the peripheral blood of normal adults.  相似文献   

10.
Glucose-6-phosphate dehydrogenase (G6PD) deficiency, one of the most common red cell abnormalities, is characterized by a wide clinical, biochemical, and molecular heterogeneity. In this study we have determined the molecular basis of G6PD deficiency in a sample of 70 male subjects, originating from different parts of Italy, who all shared a clinical and biochemical phenotype identical or very similar to that of G6PD Mediterranean, the most common variant in Italy. In 59 cases (84%) we found the mutation 563 C --> T, previously known to be underlying the G6PD Mediterranean and the two polymorphic variants G6PD Cagliari and G6PD Sassari. From the remaining 11 we amplified the entire coding region of G6PD in 8 different fragments and subjected them to nonradioactive single-strand conformation analysis. Direct sequencing was then performed on abnormal fragments. By this approach we found six cases (8.5%) with 1360 G --> A mutation (G6PD Union) and two cases (2.8%) with 1376 G --> C (G6PD Cosenza). In the remaining three samples we found two other mutations: 1342 A --> G (two cases, 2.8%) and 1052 G --> T (one case, 1.4%). These two molecular defects have never been described before and were designated by us as G6PD S. Antioco and G6PD Partenope, respectively. Haplotype analysis suggested that all the non-Mediterranean mutations occurred independently on a normal G6PD allele. This study shows that the G6PD Union mutation has a high polymorphic frequency in the Italian population and that the genetic heterogeneity of G6PD Mediterranean-like variants is higher at the molecular level than expected from biochemical characterization.  相似文献   

11.
Minerals are important for normal hematopoiesis and may play a role in acute hemolytic anemia induced by G6PD deficiency. To compare serum magnesium, copper, zinc and calcium levels between G6PD deficiency and normal control adults, we investigated 69 G6PD deficient (28 male, 41 female) and 61 age- matched G6PD normal adults (26 male, 35 female). Serum magnesium, copper, zinc and calcium levels were determined by atomic absorbance spectrometry. Our results revealed that male adults with G6PD deficiency had significantly higher serum copper and magnesium levels than those of the control group (P < 0.01, < 0.05, respectively). In G6PD normal adults, serum copper levels were significantly lower in males than in females (P < 0.01). In the group of G6PD deficiency adults, serum copper levels in males (103.0 +/- 10.4 ug/dL) were significantly lower than those in females (139.0 +/- 34.3 ug/dL) (P < 0.01). Serum magnesium values and zinc values in males (2.42 +/- 0.38 mEq/L and 102.2 +/- 26.5 ug/dL) were significantly higher than those in females (2.07 +/- 0.20 mEq/L and 87.0 +/- 14.9 ug/dL) (P all < 0.01). Female adults with G6PD deficiency had significantly higher serum calcium levels and lower magnesium levels than those of the control group (P all < 0.01). The significantly higher levels of serum copper and magnesium in G6PD deficient male adults may play some role concerning red blood cells in resistance to plasmodium falciparum.  相似文献   

12.
The glucose-6-phosphate dehydrogenase (G6PD) enzyme activity was determined in 299 Northern Sardinian patients with cholelithiasis. Sixteen (12.80%) of the 125 male patients studied were G6PD deficient; 33 (18.96%) of the 174 females were heterozygous and 1 (0.57%) homozygous. Thus, the prevalence of G6PD deficiency in male subjects with cholelithiasis is about 35% higher (p less than 0.02) than that of a normal male control group (7.29%). As regards female patients, the incidence of the GdMed allele was also significantly different (p less than 0.05). Thus, G6PD-deficient subjects may have a predisposition to develop gallstones, even in the absence of clinical signs of chronic hemolysis.  相似文献   

13.
The hallmark of glucose‐6‐phosphate dehydrogenase (G6PD) deficiency is red blood cell (RBC) destruction in response to oxidative stress. Patients requiring RBC transfusions may simultaneously receive oxidative medications or have concurrent infections, both of which can induce haemolysis in G6PD‐deficient RBCs. Although it is not routine practice to screen healthy blood donors for G6PD deficiency, case reports identified transfusion of G6PD‐deficient RBCs as causing haemolysis and other adverse events. In addition, some patient populations may be more at risk for complications associated with transfusions of G6PD‐deficient RBCs because they receive RBCs from donors who are more likely to have G6PD deficiency. This review discusses G6PD deficiency, its importance in transfusion medicine, changes in the RBC antioxidant system (of which G6PD is essential) during refrigerated storage and mechanisms of haemolysis. In addition, as yet unanswered questions that could be addressed by translational and clinical studies are identified and discussed.  相似文献   

14.
Malaria remains a significant public health issue in Haiti, with chloroquine (CQ) used almost exclusively for the treatment of uncomplicated infections. Recently, single dose primaquine (PQ) was added to the Haitian national malaria treatment policy, despite a lack of information on the prevalence of glucose-6-phosphate dehydrogenase (G6PD) deficiency within the population. G6PD deficient individuals who take PQ are at risk of developing drug induced hemolysis (DIH). In this first study to examine G6PD deficiency rates in Haiti, 22.8% (range 14.9%–24.7%) of participants were found to be G6PD deficient (class I, II, or III) with 2.0% (16/800) of participants having severe deficiency (class I and II). Differences in deficiency were observed by gender, with males having a much higher prevalence of severe deficiency (4.3% vs. 0.4%) compared to females. Male participants were 1.6 times more likely to be classified as deficient and 10.6 times more likely to be classified as severely deficient compared to females, as expected. Finally, 10.6% (85/800) of the participants were considered to be at risk for DIH. Males also had much higher rates than females (19.3% vs. 4.6%) with 4.9 times greater likelihood (p value 0.000) of having an activity level that could lead to DIH. These findings provide useful information to policymakers and clinicians who are responsible for the implementation of PQ to control and manage malaria in Haiti.  相似文献   

15.
This study aims to define the prevalence and the molecular basis of G6PD deficiency in the Negrito tribe of the Malaysian Orang Asli. Four hundred and eighty seven consenting Negrito volunteers were screened for G6PD deficiency through the use of a fluorescent spot test. DNA from deficient individuals underwent PCR‐RFLP analysis using thirteen recognized G6PD mutations. In the instances when the mutation could not be identified by PCR‐RFLP, the entire coding region of the G6PD gene was subjected to DNA sequencing. In total, 9% (44/486) of the sample were found to be G6PD‐deficient. However, only 25 samples were subjected to PCR‐RFLP and DNA sequencing. Of these, three were found to carry Viangchan, one Coimbra and 16, a combination of C1311T in exon 11 and IVS11 T93C. Mutation(s) for the five remaining samples are unknown. The mean G6PD enzyme activity ranged 5.7 IU/gHb in deficient individuals. Our results demonstrate that the frequency of G6PD deficiency is higher among the Negrito Orang Asli than other Malaysian races. The dual presence of C1311T and IVS11 T93C in 64% of the deficient individuals (16/44) could well be a result of genetic drift within this isolated group.  相似文献   

16.
To determine whether during hematopoietic stem cell transplantation (HSCT), X-chromosome inactivation (lyonization) of donor HSC might change after engraftment in recipients, the glucose-6-phosphate dehydrogenase (G6PD) gene of 180 female donors was genotyped by PCR/allele-specific primer extension, and MALDI-TOF mass spectrometry/Sequenom MassARRAY analysis. X-inactivation was determined by semiquantitative PCR for the HUMARA gene before/after HpaII digestion. X-inactivation was preserved in most cases post-HSCT, although altered skewing of lyonization might occur to either of the X-chromosomes. Among pre-HSCT clinicopathologic parameters analyzed, only recipient gender significantly affected skewing. Seven donors with normal G6PD biochemically but heterozygous for G6PD mutants were identified. Owing to lyonization changes, some donor-recipient pairs showed significantly different G6PD levels. In one donor-recipient pair, extreme lyonization affecting the wild-type G6PD allele occurred, causing biochemical G6PD deficiency in the recipient. In HSCT from asymptomatic female donors heterozygous for X-linked recessive disorders, altered lyonization might cause clinical diseases in the recipients.  相似文献   

17.
Neonatal screening for G6PD deficiency has long been established in many countries. The aim of the study was to determine whether the routine semiquantitative fluorescent spot test could detect all cases of G6PD deficiency, including those cases with partial deficiency (residual red cell G6PD activity between 20-60% of normal). We compared the results of G6PD screening by the semiquantitative fluorescent spot test and quantitative G6PD activity assay on a group of 976 neonates and 67 known female heterozygotes. The values for mean G6PD activity of G6PD-normal neonates and 293 healthy adult females were determined. There was no significant difference in the mean normal G6PD activity between the two racial groups in the neonates (669 Malays, 307 Chinese) and in the 293 healthy adult females (150 Malays, 143 Chinese) group. The values for the upper limits of total deficiency (20% of normal residual activity) for neonates and adult females were 2.92 U/gHb and 1.54 U/gHb, respectively. The upper limits of partial deficiency (60% of normal residual activity) were 8.7 U/gHb and 4.6 U/gHb respectively. The prevalence of G6PD deficiency among the male neonates was 5.1% (26) by both the fluorescent spot test and the enzyme assay method. The G6PD activity levels of all 26 cases of G6PD-deficient male neonates were < 20% normal (severe enzyme deficiency). In the female neonate group, the frequency of G6PD deficiency was 1.3% (6 of 472) by the fluorescent spot test and 9.35% (44 of 472) by enzyme assay. The 6 cases diagnosed as deficient by the fluorescent spot test showed severe enzyme deficiency (< 2.92 U/gHb). The remaining 38 female neonates had partial enzyme deficiency and all were misdiagnosed as normal by the fluorescent spot test. In the female heterozygote group, G6PD deficiency was diagnosed in 53% (35 of 67) by enzyme assay and in 7.5% (4 of 67) of cases by the fluorescent spot test. The 4 cases detected by fluorescent spot test had severe enzyme deficiency (<1.6 U/gHb). The remaining 31 (46.3%) cases, diagnosed as normal by fluorescent spot test, showed partial G6PD deficiency. In conclusion, we found that the semiquantitative fluorescent spot test could only diagnose cases of total G6PD deficiency and misclassified the partially-deficient cases as normal. In this study, the overall prevalence of G6PD deficiency was 3.28% by the semiquantitative fluorescent spot test and 7.17% by enzyme assay. This means that 3.9% of G6PD-deficient neonates were missed by the routine fluorescent spot test and they were found to be exclusively females. This study demonstrates a need to use a method that can correctly classify female heterozygotes with partial G6PD deficiency. The clinical implication is that these individuals may be at risk of the hemolytic complication of G6PD deficiency.  相似文献   

18.
The use of primaquine and other 8-aminoquinolines for malaria elimination is hampered by, among other factors, the limited availability of point-of-care tests for the diagnosis of glucose-6-phosphate dehydrogenase (G6PD) deficiency. Historically, the most used source of blood for G6PD analyses is venous blood, whereas diagnostic devices used in the field require the use of capillary blood; data have shown that the two sources of blood often differ with respect to hemoglobin concentration and number of red blood cells. Therefore, we have analyzed, in both capillary and venous blood drawn from the same healthy donors, the correlation of G6PD activity assessed by two qualitative tests (the Fluorescent Spot test and the CareStart test) with the gold standard quantitative spectrophotometric assay. Results obtained on 150 subjects with normal, intermediate, and deficient G6PD phenotypes show that, although differences exist between the aforementioned characteristics in capillary and venous blood, these do not impact on the quantitative assessment of G6PD activity after corrected for hemoglobin concentration or red blood cell count. Furthermore, we have assessed the sensitivity and specificity of the two qualitative tests against the gold standard spectrophotometric assay at different activity thresholds of residual enzymatic activity in both blood sources.  相似文献   

19.
Two glucose-6-phosphate dehydrogenase (G6PD) variants were investigated. G6PD Amman-1 was partially purified from the red cells of a patient suffering from recurrent jaundice and spontaneous episodic attacks of severe hemolysis in the absence of oxidant drugs, infection, or fava beans. The enzymatic characteristics of G6PD Amman-1 were markedly reduced activity, fast eletrophoretic mobility, slightly increased km for NADP, normal km for G-6-P, normal heat stability, normal utilization of substrate analogues 2-deoxy G-6-P and deamino-NADP, and a monophasic pH curve with a peak at 8.5 to 9.3. The second variant, G6PD Amman-2, was partially purified from the red cells of a patient suffering from recurrent jaundice with episodic mild hemolysis caused by infection or unknown factors. G6PD Amman-2 characteristics were severely reduced activity, slow electrophoretic mobility, normal km for NADP, decreased km for G-6-P, decreased heat stability, increased utilization of substrate analogues, and a monophasic pH curve with a narrow peak at pH 9.5. The red cell level of reduced glutathione was markedly decreased with twofold increase in the activity of glutathione reductase in the patient with G6PD Amman-2.  相似文献   

20.
Glucose-6-phosphate dehydrogenase (G6PD) activity, red blood cell (RBC) lipid peroxidation and deformability were investigated in hemizygous and heterozygous G6PD deficient subjects and compared with normal individuals. None of the subjects were in acute hemolytic crises. G6PD activity was assessed based on the spectrophotometric determination of generated NADPH. Lipid peroxidation was measured as thiobarbutiric acid reactive substances (TBARS). RBC deformability was analyzed by ektacytometry. RBC lipid peroxidation was found to be significantly higher in hemizygous subjects compared to control and heterozygous subjects, while RBC deformability was found to be significantly impaired. However, although lipid peroxidation was higher than control, RBC deformability was not significantly different from control in heterozygous individuals, characterized by significantly lower RBC G6PD activity. There were no significant correlations between these three parameters when the three groups were analyzed separately, but a significant negative correlation was found to exist between G6PD activity and TBARS when the pooled data from the three groups were used for the analysis. This was also true for the relationship between RBC deformability and G6PD activity. It has been concluded that G6PD activity is not a good predictor of oxidative damage resulting in mechanical impairment in heterozygous individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号