首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Synaptogenesis in the superficial layers of the rostral pole of the chick optic tectum has been studied using freeze-fracture techniques. The developmental sequence of intramembrane organization at synaptic junctions involves the accumulation and assembly of intramembrane particles into aggregates characteristic of the mature junctions.By embryonic day seven, areas of loosely-arranged clusters of medium-sized particles are observed on the cytoplasmic membrane leaflets (P-faces) of developing neurites. These clusters are characteristic of the intramembrane organization at presynaptic active zones. At later stages, small pits, characteristic of vesicle fusion sites, are observed interspersed among such P-face particle clusters. Complementary intramembrane specializations are also present on the external leaflets (E-faces) of presynaptic membranes at the active zones.Small solitary aggregates of large-sized particles on the E-faces of neurite plasma membranes are also seen at early embryonic stages. As development progresses, these aggregates increase in size and packing density and occupy large oval domains in postsynaptic membranes. These intramembrane specializations may represent the postsynaptic active zones of asymmetric synapses. Another type of intramembrane specialization, observed during the third week of incubation, is characterized by aggregates of small- and medium-sized particles on the P-face of postsynaptic membranes and is often seen directly apposed to the E-face of a presynaptic terminal. This type of intramembrane specialization may represent the postsynaptic active zone region at symmetrical synaptic contacts.  相似文献   

2.
Deep and superficial flexor muscles in the crayfish abdomen are innervated respectively by small populations of physiologically distinct phasic and tonic motoneurons. Phasic motoneurons typically produce large EPSP's, releasing 100 to 1000 times more transmitter per synapse than their tonic counterparts, and exhibiting more rapid synaptic depression with maintained stimulation. Freeze-fracturing the abdominal flexor muscles yielded images of phasic and tonic synapse-bearing terminals. The two types of synapse are qualitatively similar in ultrastructure, displaying on the presynaptic membrane's P-face synaptic contacts recognized by relatively particle-free oval plaques which are often framed by the muscle fiber's E-face leaflet with its associated receptor particles. Situated within these presynaptic plaques are discrete clusters of large intramembrane particles, forming active zone (AZ) sites specialized for transmitter release. AZs of phasic and tonic synapses are similar: 80% had a range of 15–40 large particles distributed in either paired spherical clusters or in linear form, with a few depressions denoting sites of synaptic vesicle fusion or retrieval around their perimeters. The packing density of particles is similar for phasic and tonic AZs. The E-face of the muscle membrane displays oval-shaped receptor-containing sites made up of tightly packed intramembranous particles. Phasic and tonic receptor particles are packed at similar densities and the measured values resemble those of several other crustacean and insect neuromuscular junctions. Overall, the similarity between phasic and tonic synapses in the packing density of particles at their presynaptic AZs and postsynaptic receptor surfaces suggests similar regulatory mechanisms for channel insertion and spacing. Furthermore, the findings suggest that morphological differences in active zones or receptor surfaces cannot account for large differences in transmitter release per synapse.  相似文献   

3.
Summary The fine structure of identified neuromuscular synapses of the single excitatory axon to the distal accessory flexor muscle in lobster limbs was examined with freeze-fracture and serial thin-section electron microscopy. The latter technique reveals presynaptic dense bars with synaptic vesicles aligned on either side of these bars and often fused to the membrane, suggesting exocytosis and confirming our previous contention that these bars are active zones of transmitter release. The intramembranous organization of these active zones, as revealed in freeze-etched tissue, is a ridge-like elevation of the P-face of the axolemma with a matching trough on the complementary E-face. The ridge on the P-face has rows of large scattered intramembranous particles along the apex and is often bordered by a series of small, circular depressions which are presumed to represent exocytotic vesicles attached to the presynaptic membrane. Complementing these depressions are a few volcano-like protuberances seen occasionally on the E-face membrane. Because such evidence for transmitter release occurred in both stimulated and non-stimulated preparations, it demonstrates that chemical fixatives employing aldehydes induce transmitter release. The postsynaptic receptor sites of these excitatory synapses are characterized by oval-shaped patches of densely packed particles on the E-face, arranged in a random pattern on the sarcolemma. The complementary P-face view exhibits a regular square array of particle imprints or pits.  相似文献   

4.
Summary Structural components in the synaptic cleft were examined in cerebellar excitatory synapses by conventional electron microscopy and by rapid freezing followed by freeze-substitution or deep etching. Two transverse components and one parallel element were identified in the clefts of rapidly frozen and freeze-substituted synapses: (i) bridging fibrils, 4–6 nm in diameter, that span the cleft; (ii) columnar pegs, 4–6 nm wide and 8–15 nm high, projecting from the postsynaptic surface; and (iii) intervening fine fibrils running parallel to the apposed synaptic membranes. These were more clearly visible in deep-etched synapses, although the postsynaptic pegs were difficult to distinguish from intramembrane particles in the cross-fractured postsynaptic membranes. Deep etching also revealed other fibrils on the cytoplasmic surface of the postsynaptic membrane. These appear to contact the membrane surface or the intramembrane particles. Freeze-substituted materials also displayed the fibrillar components in the postsynaptic dense fuzz, but failed to display the presynaptic dense projections typically observed in thin sections or deep-etched replicas of the conventionally fixed materials. The bridging fibrils are likely to play a mechanical role in holding the synapse together, while the short pegs may be integral parts of the receptor molecules.  相似文献   

5.
The ultrastructure of the ‘giant synapse’ of the stellate ganglion of the squid was studied with freeze-fracture and thin-sectioning techniques. A sheath of glial cells separates the pre- and post-synaptic axons. At intervals, round-topped processes of the postsynaptic axon pierce the sheath to contact the presynaptic axon. This area of synaptic contact is marked by a widened intercellular cleft containing electron-dense material and by a cluster of synaptic vesicles within the presynaptic cytoplasm. The number of synaptic vesicles in such clusters was greatly reduced by electrical stimulation of the synapse during fixation. Freeze-fracture reveals a roughly circular patch (0.3 μm diameter) of 10 nm particles on the cytoplasmic leaflet of the presynaptic membrane. A similar patch of particles lies on the external leaflet of the apposed postsynaptic membrane.The squid giant synapse thus consists of multiple small pre- and postsynaptic active zones where neurotransmitter is released from the presynaptic terminal and sensed by postsynaptic receptors. Comparison of the structure of these postsynaptic active zones with those at synapses where the transmitter or transmitter action is known suggests that the excitatory transmitter at this synapse is an amino acid.Presumptive gap junctions, marked by particles in the cytoplasmic leaflet, are found between small-diameter axons in the stellate ganglion but not at the giant synapse. Glial-cell membranes contain aggregates of particles and pits suggestive of gap junctions. The aggregates of pits are embedded within linear arrays of particles which somewhat resemble tight junctions.  相似文献   

6.
Synaptic glomeruli in lamina II of the chicken dorsal horn were studied using the freeze fracture technique, and the results were compared with those obtained using the ultrathin section technique. Our findings using the freeze fracture technique were as follows. (1) On the presynaptic P-face of the central terminal, intramembrane particles (IMPs) were arranged circularly around a small dimple which was reported to be a synaptic vesicle attachment site. A distinct area with aggregated large IMPs was found on the postsynaptic E-face of some peripheral neuronal elements. (2) The area with small IMPs intermingled with several dimples and the area with aggregated large IMPs were present juxtaposed on the same central terminal P-face. The area with aggregated large IMPs indicates that the central terminal functions as a postsynaptic element; accordingly, the two areas represent a reciprocal synapse. (3) Distinct IMP aggregates were observed on the P-face of vesicle-containing dendrites which did not face the central terminal. (4) A fractured septate junction was revealed as numerous parallel-lined furrows on the E-face of the central terminal. The distribution of IMPs in the synaptic glomerulus supports the hypothesis that the synaptic glomerulus is the site of the local inhibitory feedback circuit for pain transmission.  相似文献   

7.
Summary Parallel-fibre synaptic membranes were examined by freeze-fracture and ethanolic-phosphotungstic acid methods in the cerebellum of homozygous (j/j) Gunn rats with hereditary jaundice. Parallel-fibre synapses with dendritic spines of Purkinje cell were severely affected since many Purkinje cells degenerated during the early postnatal period. Some parallel-fibre synaptic terminals lacked their postsynaptic partners and faced astrocytic processes from 18 days of age to the adult stage. These parallel-fibre terminals contained clusters of synaptic vesicles adjacent to synaptic membranes, and synaptic membranes and synaptic cleft materials were identical to those of parallel fibres with postsynaptic partners, as visualized by conventional electron microscopy with osmium tetroxide postfixation and staining of sections with uranyl acetate and lead citrate. In freeze-fractured specimens, the presynaptic membrane of parallel fibres had diffusely distributed large particles and tiny pits on the P-face and protuberances on the E-face, together representing synaptic vesicle attachment sites. Such vesicle attachment sites were present on the presynaptic membranes of parallel fibres without postsynaptic partners from day 18 to the adult stage. After ethanolic-phosphotungstic acid staining, parallel-fibre terminals displayed presynaptic dense projections, intercleft materials and postsynaptic thickening, but some parallel fibres lacked postsynaptic thickening. These observations suggest that the presynaptic membrane structure of the parallel fibre is preserved, even in the absence of a postsynaptic partner, in j/j cerebella. A mechanism for persistence of presynaptic membrane structures without postsynaptic partners in j/j cerebella is discussed.  相似文献   

8.
用透射电镜对猫的孤束核胶状质亚核(SNG)的突触型式进行了观察,除看到已报导的轴—树突触、轴—体突触、树—树突触外,还发现该核内含有轴—轴突触及突触球等结构。SNG内轴—树突触最常见,而轴—体突触、轴—轴突触和树—树突触则较少。各类突触中的突触囊泡多为圆形清亮囊泡,而扁平清亮囊泡和大颗粒囊泡较少。扁平清亮囊泡多与圆形清亮囊泡共存于同一轴—轴突触终末内。轴—轴突触均为对称型突触,有时与树突或胞体相连形成轴—轴—树突触或轴—轴—体突触。突触球多为以树突和棘为中心的中心树突型突触球。此外在SNG内还观察到嵴突触,并联突触等连接形式。SNG内突触的复杂性表明传入冲动在该核中可能经过扩散、汇聚和突触前抑制等多种复杂的整合过程调节内脏活动。  相似文献   

9.
Synaptic events in a chloride-deficient condition were studied to elucidate functional aspects of presynaptic inhibitory synapses. The extracellular junctional potentials and nerve terminal potentials were concurrently recorded from a synaptic region. Inhibitory stimulation produced repetitive spikes on the inhibitory nerve terminal and then the excitatory nerve terminal, which resulted in the extracellular excitatory junctional potentials. Excitatory stimulation did not produce repetitive spikes on the inhibitory nerve terminal, indicating one-way signal transmission in this axo-axonal synapse from inhibitory to excitatory axon. The interval required for an inhibitory stimulation to produce the first response in the postsynaptic muscle membrane ranged widely from 10 to 800 msec. When gamma-aminobutyric acid (GABA, 1 times 10-minus 4 M) was added in these experimental conditions, the muscle membrane was transiently depolarized by about 10 mV. The action of GABA mimics that of the neurotransmitter at presynaptic inhibitory synapses. The experimental observations may be well explained by the concept of synapses on synapses, i.e., presynaptic inhibition, where the neurotransmitter may be GABA and chloride ions may be playing essential roles as in the case of postsynaptic inhibition.  相似文献   

10.
The spinal cord of the reptile Anolis carolinensis was examined by electron microscopy. Motor neurons appear as multipolar cells 30-60 micrometer in diameter. Two types of synaptic endings are endings are present on motor neurons. The first type is characterized by distinct synaptic clefts measuring 15-20 nm between pre- and postsynaptic membranes, and by clear presynaptic vesicles. The second type of synapse, which is less common, is characterized by gap junctions between pre- and postsynaptic membranes. At these synapses, there are also clusters of clear vesicles close to the presynaptic membrane adjacent to the gap junction. These findings indicate that both chemical and electrical synaptic transmission are present in the spinal cord of Anolis.  相似文献   

11.
G Székely  I Nagy  E Wolf  P Nagy 《Neuroscience》1989,29(1):175-188
Axon terminals which could be interpreted as dorsal root boutons, were photographed from a series of 98 ultrathin sections with a Jeol 100B electron microscope. A total of 13 boutons were recovered for computer reconstruction. Two of them were terminal boutons, eight en passant boutons and three boutons were only partially recovered. All boutons contained multiple synaptic sites (maximum 33 and minimum seven) at which axodendritic and axoaxonic synapses were established. Axodendritic synapses were of the asymmetric type and they were directed toward adjacent dendrites. In axoaxonic synapses, which were of the symmetric type, the boutons were invariably on the postsynaptic side. Among the presynaptic profiles axons with spherical and pleomorphic vesicles and dendrites with flattened vesicles could be discerned. On average, each 2.67-microns2 bouton surface area contained one presynaptic site at which an axodendritic synapse was established, and each 7-microns2 surface area contained one postsynaptic site for an axoaxonic (or dendroaxonic) contact. A tendency of grouping of synaptic sites was observed. Distance measurements between the closest neighbours of all synaptic sites were made in four combinations in boutons with the original and with a random distribution of synaptic sites. The arithmetic mean of distances measured between the presynaptic and the closest postsynaptic sites was almost twice as big as that measured in the reverse direction. The difference between these values became greatly reduced in the case of random distribution. The arithmetic mean of distances between the closest neighbours of presynaptic sites was about the same as that between the closest neighbours of postsynaptic sites. This latter value was considerably increased with randomly distributed synaptic sites. The results suggest a non-random distribution of synaptic sites on the surface of boutons. The analysis of cluster formation of synaptic sites performed with a numerical taxonomy technique revealed that the majority of the 153 synaptic sites were comprised in 27 clusters containing both pre- and postsynaptic sites within the 1-micron similarity level. All postsynaptic sites were within 1 micron of one or more presynaptic sites. On the basis of the assumption that the postsynaptic sites are occupied by inhibitory axoaxonic synapses, it is suggested that the transmitter release from the presynaptic sites can be individually controlled in this structural arrangement. A probable mechanism of this function may be the passive invasion of the bouton by the impulse propagating actively along the dorsal root fibre.  相似文献   

12.
Summary The sensory endings, neuromuscular junctions and interneuronal synapses in the crayfish muscle receptor organ have been studied by electron microscopy. The dendrites of the receptor neuron terminate as endings which are either free in the connective tissue matrix of the central region of the receptor strands, or abut on the muscle membrane forming a specialized junction with a narrow cleft of about 18 nm. Efferent nerve endings are classified into three types on the basis of their fine structural features. Type 1 endings contain mainly spherical vesicles with a diameter of about 55 nm and a few large granular vesicles with a diameter of about 100 nm, and synapse exclusively on muscle fibres. Type 2 endings have a high proportion of elongated vesicles measuring about 30 × 80 nm and a few large granular vesicles, and synapse on both sensory neurons and muscle. Type 3 endings are characterized by the high electron density of the axoplasm and numerous large granular vesicles with a diameter of about 100 nm; they synapse only on the sensory neuron of the slow receptor unit.It is suggested that Type 1 endings are excitatory, and Type 2 and 3 endings are inhibitory. Several differences in postsynaptic structure were observed between the putative excitatory and inhibitory neuromuscular junctions. Axo-axonal synapses between endings of Type 1 and Type 2, the latter being presynaptic to the former, are also found. Functional implications and possible roles of these structures are discussed.  相似文献   

13.
Summary The outer plexiform layer (OPL) of the developing chick retina from 11 embryonic days to 11/2 weeks posthatching has been studied by freeze-fracture to characterize changes in the membrane structure of photoreceptor terminals during synaptogenesis. At early stages, the undifferentiated photoreceptor synaptic base is characterized by a sparse distribution of intramembrane particles on the inner leaflet (P-face). Later, as the synaptic base begins to differentiate by extending filopodia into the OPL, numerous small aggregates of large particles appear between and on filopodial surfaces. Many of the aggregates occupy crater-like depressions, which are seen in cross-fractures through the underlying cytoplasm to be associated with vesicular invaginations of the presynaptic membrane. Corresponding thin sections through these regions at this time reveal immature arciform densities and coated vesicles fusing with the presynaptic membrane adjacent to these densities. At later stages, many of the particle aggregates on the photoreceptor membrane appear to have coalesced into longer arrays overlying ridges surrounded by numerous vesicle fusion sites. These intramembrane changes correlate with the formation of the mature arciform density-synaptic ribbon specialization in the photoreceptor presynaptic terminal and with physiological maturation of the chick retina.  相似文献   

14.
Neurons dissociated from the superior cervical ganglia of newborn rats can be grown under conditions which support either adrenergic or cholinergic differentiation. In both cases, the neurons form numerous morphologically specialized synaptic terminals or synapses as well as relatively unspecialized varicosities. The ultrastructure of both types of terminal was compared in mature neuronal cultures and the effects of growth conditions on terminal morphology examined. After aldehyde-osmium fixation, synapses in cultures grown under adrenergic or cholinergic conditions were characterized by asymmetrical membrane specializations comparable to type I or asymmetric synapses; bismuth iodide and ethanolic phosphotungstic acid impregnation of neuronal cultures revealed the presence of characteristic synaptic membrane specializations: a presynaptic grid of dense projections and a wide postsynaptic dense band of uniform thickness. No membrane specializations were apparent in varicosities after aldehyde-osmium fixations or with these stains. Intramembranous particle distributions were examined in freeze-fracture replicas of neurons. Aggregates of large, 10-12 nm particles were found on P-face membrane leaflets of cell bodies and large diameter processes; this distribution is the same as that of synapses in thin-sectioned preparations. These particle aggregates may represent postsynaptic membrane specializations or acetylcholine receptors. The cytoplasmic leaflet of boutons contained large, 12-14 nm particles, which appeared to be concentrated at the region of synaptic contact at putative synapses, but were diffusely distributed in varicosity membranes. Similar large particles were also seen at a much lower density in the membrane E-face. None of these ultrastructural characteristics appeared to vary with transmitter identity or growth conditions. Synaptic vesicle shape, however, did vary in glutaraldehyde-fixed cultures. At all ages examined, neurons grown on monolayers of heart cells contained predominantly round vesicles, whereas neurons grown in the virtual absence of non-neuronal cells possessed pleiomorphic synaptic vesicles. This difference in vesicle shape appeared to be correlated more closely with growth in the presence of non-neuronal cells than with the transmitter present at the time of fixation.  相似文献   

15.
Synaptic plastic changes are fundamental events which occur spontaneously during development, maturity and aging processes or can be induced by injury or trauma. To examine lesion-induced synaptic plasticity, cortical biopsies were taken from the frontal, parietal, temporal and occipital cortex of living patients during neurosurgical treatment of brain trauma, brain tumours and vascular malformations, and processed for transmission electron microscopy. Enlargement of both pre- and postsynaptic endings, irregularly shaped, lobulated, stellate and bifurcated presynaptic endings and conformational changes of dendritic spines were observed. Numerous flat, curved and invaginated axodendritic and axospinous asymmetric synapses were distinguished and a smaller proportion of axodendritic and axosomatic symmetric synapses. Activated or sensitized synapses showed numerous frontline spheroid synaptic vesicles, prominent dense presynaptic dense projections and increased length of synaptic membrane complex. Perforated synapses, multiple synapses and serial synapses were also found evincing synaptic splitting and formation of new synaptic connections. The overall images suggest increased number of excitatory circuits, which were correlated with the tonico-clonic convulsion or post-traumatic seizures observed in some patients. Numerous coated vesicles were observed in pre- and postsynaptic structures. Increased number of polyribosomes were found in the dendritic shafts. The dilated spine apparatus, the coated vesicles and the increased number of polyribosomes seem to represent a system for synthesis, transport and storage of synaptic proteins for the formation of new synapses. Coexisting synaptic plasticity and synaptic degeneration were observed in the patients under study. Dendritic and astrocyte synapse-like junctions were also characterized.  相似文献   

16.
Summary The intramembrane specializations at vestibular hair cell-primary afferent synapses have been identified and characterized in complementary freeze-fracrure replicas from prehatch and hatchling chick cristae and maculae. Hair cell protoplasmic (P) faces at sites where presynaptic bodies are present exhibit small, tightly packed arrays of 9 nm particles. Hair cell external (E) faces have corresponding arrays of pits. Multiple arrays are often observed in contiguity. Opposite the presynaptic bodies, postsynaptic afferent boutons and calyces exhibit a more extensive array of scattered, irregular E-face particles. Corresponding P-fracture faces of afferent boutons and calyces display little topographical specialization opposite these E-face arrays, which are presumed to be the intramembrane correlate of the postsynaptic density. Examination of complementary replicas has allowed identification of the intramembrane synaptic specializations for all membrane faces at the synaptic apposition.  相似文献   

17.
Synaptic cell adhesion molecules (CAMs) regulate synapse formation through their trans-synaptic and heterophilic adhesion. Here we show that postsynaptic netrin-G ligand (NGL) CAMs associate with netrin-G CAMs in an isoform-specific manner and, through their cytosolic tail, with the abundant postsynaptic scaffold postsynaptic density-95 (PSD-95). Overexpression of NGL-2 in cultured rat neurons increased the number of PSD-95-positive dendritic protrusions. NGL-2 located on heterologous cells or beads induced functional presynaptic differentiation in contacting neurites. Direct aggregation of NGL-2 on the surface membrane of dendrites induced the clustering of excitatory postsynaptic proteins. Competitive inhibition by soluble NGL-2 reduced the number of excitatory synapses. NGL-2 knockdown reduced excitatory, but not inhibitory, synapse numbers and currents. These results suggest that NGL regulates the formation of excitatory synapses.  相似文献   

18.
Summary Nerve terminals of the common inhibitor motoneuron in a crab (Eriphia spinifrons) limb closer muscle and in a crayfish (Procambarus clarkii) limb accessory flexor muscle make neuromuscular synapses with the muscle membrane (postsynaptic inhibition) as well as axo-axonal synapses with the terminals of the excitatory axon (presynaptic inhibition). That transmission is from the inhibitor to the excitor terminals at these axo-axonal synapses is indicated by the occurrence on the inhibitor membrane of presynaptic dense bars denoting sites of transmitter release. Axo-axonal synapses with the opposite polarity, in which transmission is from an excitatory onto an inhibitory terminal, were occasionally seen either adjacent to or separate from the inhibitory axo-axonal synapse. Nerve terminals of the specific inhibitor in the crayfish opener muscle were seen to make numerous axo-axonal output synapses upon excitatory nerve terminals but excitor nerve terminals were not seen to make output synapses onto inhibitor terminals. Thus reciprocal axo-axonal synapses appear to be a feature of the common inhibitor but not of the specific inhibitor. The excitor-to-inhibitor component of these reciprocal synapses may serve to limit transmitter output in the common inhibitor axon by activating glutamateB receptors which facilitate efflux of K+ and hyperpolarization of the membrane.  相似文献   

19.
Balanced development of excitatory and inhibitory synapses is required for normal brain function, and an imbalance in this development may underlie the pathogenesis of many neuropsychiatric disorders. Compared with the many identified trans-synaptic adhesion complexes that organize excitatory synapses, little is known about the organizers that are specific for inhibitory synapses. We found that Slit and NTRK-like family member 3 (Slitrk3) actS as a postsynaptic adhesion molecule that selectively regulates inhibitory synapse development via trans-interaction with axonal tyrosine phosphatase receptor PTPδ. When expressed in fibroblasts, Slitrk3 triggered only inhibitory presynaptic differentiation in contacting axons of co-cultured rat hippocampal neurons. Recombinant Slitrk3 preferentially localized to inhibitory postsynaptic sites. Slitrk3-deficient mice exhibited decreases in inhibitory, but not excitatory, synapse number and function in hippocampal CA1 neurons and exhibited increased seizure susceptibility and spontaneous epileptiform activity. Slitrk3 required trans-interaction with axonal PTPδ to induce inhibitory presynaptic differentiation. These results identify Slitrk3-PTPδ as an inhibitory-specific trans-synaptic organizing complex that is required for normal functional GABAergic synapse development.  相似文献   

20.
本文报告大白鼠下丘脑腹内侧核内突触的类型和突触亚显微结构的形态特征。共观察了1005个突触,其中轴-树突触占96.6%;轴-体突触占2.8%;轴-轴突触占0.5%。在下丘脑腹内侧核中还观察到1例嵴突触,以往未见报道。嵴突触的突触后成分来自树突,呈杵指状突起。突触后膜明显增厚,具有突触下致密小体。两个内含圆形清亮小泡的轴突并列于嵴的两侧壁上,构成嵴突触。在轴-体、轴-树突触中尚观察到并联突触(包括突触复合体)、切线突触及串联突触等复杂的联接形式。本文对某些复合突触的机能也作了讨论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号