首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of chronic administration of exogenous neuropeptide Y (NPY) and specific NPY receptor agonists and antagonists on reproductive function was examined in lactating rats. As previously demonstrated in our laboratory, chronic (7-day) intracerebroventricular (i.c.v.) NPY infusion (6 microg/day) from days 8-15 postpartum (pp) caused a significant decrease in milk production and an early termination of lactational diestrus. Similar application of the mixed Y1/Y4/Y5 receptor agonist (Leu31, Pro34) NPY (at 3, 6 and 9 microg/day) reproduced the effect of chronic NPY infusion on milk production in a dose-independent manner. Consistent with this effect, the potent Y1 antagonist/Y4 agonist, 1229U91, given concomitantly with NPY eliminated the decline in milk production. The Y2 receptor agonist, NPY13-36, had no effect on milk production at any of the doses used. Length of lactational diestrus was reduced following administration of the Y2 agonist at 18 microg/day but not at 9 microg or 27 microg/day whereas (Leu31, Pro34) NPY infusion had no effect on this parameter at any of the doses used. However, the group that was treated with NPY plus 1229U91 exhibited the usual length of lactational diestrus, indicating that there is at least some Y1 involvement in the effects of NPY on lactational infertility. To test the possibility that the effects of NPY infusion are mediated through changes in circulating prolactin and progesterone, plasma concentrations of these hormones were measured on day 15 pp in NPY-, (Leu31, Pro34) NPY- and vehicle-treated females. NPY-infused females had lower plasma prolactin concentrations than vehicle-infused dams but progesterone concentrations were similar across groups. Overall, these data indicate that chronic exogenous NPY-infusion in lactating females disrupts milk production and shortens lactational diestrus, most likely through reducing prolactin secretion, and that this effect is mediated via Y1 receptor activity.  相似文献   

2.
The effects of serotonin (5-HT), GABA and neuropeptide Y (NPY) on in vitro release of seabream (sb) gonadotropin releasing hormone (GnRH) from slices of the preoptic-anterior hypothalamus (P-AH) and pituitary of red seabream were studied. 5-HT, GABA and NPY all stimulated the release of sbGnRH from the P-AH but not from the pituitary of immature red seabream. They also stimulated sbGnRH release from the P-AH with a similar potency during the course of gonadal development. Specific agonists and/or antagonists of 5-HT, GABA and NPY showed that 5-HT and GABA utilize 5-HT(2) and GABAA receptor subtypes, respectively, to mediate their action, and that NPY employs at least NPY(Y1) and NPY(Y2) receptor subtypes to stimulate sbGnRH release. Combinations of different antagonists for 5-HT, GABA and noradrenaline/adrenaline did not block the stimulatory influence of NPY on release of sbGnRH, indicating that the action of NPY on the sbGnRH neuronal system is probably direct.  相似文献   

3.
4.
In rodents and rabbits, neuropeptide Y (NPY) has a bimodal effect on gonadotropin-releasing hormone (GnRH) secretion. lntracerebroventricular (icv) administration or direct infusion of NPY into the median eminence (ime) suppresses GnRH release in ovariectomized (OVX) animals, but stimulates GnRH release in intact or OVX animals treated with ovarian steroids. Specific ovarian steroiddependent NPY effects are, however, not obvious in non-human primates. In OVX rhesus monkeys, icv administration of NPY has been shown to suppress luteinizing hormone (LH) secretion whereas ime infusion of NPY stimulates GnRH pulses. In such animals, estrogen replacement does not reverse the inhibitory NPY effect on LH release, although estrogen enhances the stimulatory NPY effect on GnRH secretion. These observations led us to speculate that the bimodal NPY effects in non-human primates may depend on either the site of NPY action or the nature of the steroid milieu. This study utilized the push-pull perfusion (PPP) technique to examine the effects of either ime or icv infusion of NPY on GnRH release in OVX monkeys treated with or without both ovarian steroids. Without exception, irne infusion of NPY increased GnRH concentrations in push-pull perfusates regardless of the steroid status of the animals. In contrast, GnRH levels were reduced during icv infusion of NPY in both untreated and estrogen/progesterone-treated, OVX monkeys. These results indicate that, unlike other mammalian species, in the rhesus monkey the stimulatory and inhibitory effects of NPY on GnRH release depend on the site of NPY infusion within the brain rather than the ovarian steroidal environment.  相似文献   

5.
Stratford TR  Wirtshafter D 《Neuroreport》2004,15(17):2673-2676
Injections of muscimol into the nucleus accumbens shell (AcbSh) induce large increases in food intake in satiated rats and also activate neurons in a number of feeding-related brain regions, including NPY-containing neurons in the arcuate hypothalamic nucleus and cells in the paraventricular hypothalamic nucleus. This suggests that the NPY system may participate in the expression of AcbSh-mediated feeding behavior. Therefore, we examined the effects of intraventricular administration of the Y1 receptor antagonist 1229U91 or the Y5 receptor antagonist L-152,804 on AcbSh-mediated food intake. Intra-AcbSh muscimol elicited a large increase in food intake which was potently suppressed by blocking either central Y1 or Y5 receptors. Our results suggest that the AcbSh influences food intake, in part, through the release of NPY.  相似文献   

6.
We aimed at characterizing the receptor subtype and the signaling pathway involved in the inhibitory effect of neuropeptide Y on the release of endogenous noradrenaline from rat hypothalamus. Slices of hypothalamus were stimulated with two trains of electrical pulses, and the release of noradrenaline and nitric oxide was measured. The electrical stimulation of hypothalamic slices induced a consistent release of both endogenous noradrenaline and NO. Neuropeptide Y inhibited concentration dependently the stimulated noradrenaline release. Similarly, agonists for neuropeptide Y Y1, Y2 and Y5 receptors inhibited noradrenaline release, albeit with a potency lower than neuropeptide Y. GW1229, a selective neuropeptide Y Y1 receptor antagonist counteracted the effect of neuropeptide Y, but not that of PYY-(3-36), an agonist active at neuropeptide Y Y5 and Y2 receptors. These results indicate that the inhibitory effect of neuropeptide Y is likely mediated by several receptor subtypes, including neuropeptide Y Y1, Y5 and possibly Y2 receptors. One microM NPY significantly enhanced NO release induced by the electrical stimulation. NG-monomethyl-L-arginine, an inhibitor of nitric oxide synthase, abolished NO release and blocked the inhibitory effect of neuropeptide Y on noradrenaline release. We conclude that nitric oxide participates in the signaling pathway of neuropeptide Y in the rat hypothalamus.  相似文献   

7.
8.
Ault DT  Werling LL 《Brain research》2000,877(2):2180-360
Previous studies in our laboratory using rat brain tissue have shown that neuropeptide Y (NPY) can enhance NMDA- and potassium-stimulated dopamine release from various brain regions and that this enhancement is reversed by sigma (sigma) receptor antagonists. In the current study, we sought to determine whether SH-SY5Y cells are suitable for investigating sigma receptor effects and whether any sigma receptors present are of the subtype responsive to NPY. We compare mechanisms by which the prototypical sigma receptor agonist (+)-pentazocine, and the proposed endogenous sigma receptor ligand NPY regulate potassium-stimulated [(3)H]dopamine release from SH-SY5Y cells. Both (+)-pentazocine and NPY inhibit potassium-stimulated [(3)H]dopamine release. Unlike our studies in rat brain tissue, the effect of NPY on [(3)H]dopamine release is not reversed by sigma receptor antagonists. SH-SY5Y cells appear to be an appropriate model to study the regulation of dopamine release by sigma receptors or by NPY receptors, but this population is not identical to that population identified in brain slices.  相似文献   

9.
The role of nitric oxide (NO) from vascular endothelium in the control of GnRH release at the median eminence (ME) level is well established. Interactions between NPY receptor/endothelium/nitric oxide are clearly demonstrated. While several studies implicate NPY Y1 receptor in the control of GnRH/LH at the time of the preovulatory LH surge, our results also demonstrate the importance of NPY Y2 receptor in the control of GnRH release via endothelial NO. We conclude that NPY may be one of the elements implicated in the generation of the spontaneous NO/GnRH via Y2 receptor located on endothelium.  相似文献   

10.
Neuropeptide Y (NPY) Y1 and Y5 receptor subtypes mediate many of NPY's diverse actions in the central nervous system. The present studies use polyclonal antibodies directed against the Y1 and Y5 receptors to map and compare the relative distribution of these NPY receptor subtypes within the rat brain. Antibody specificity was assessed by using Western analysis, preadsorption of the antibody with peptide, and preimmune serum controls. Immunostaining for the Y1 and Y5 receptor subtypes was present throughout the rostral-caudal aspect of the brain with many regions expressing both subtypes: cerebral cortex, hippocampus, hypothalamus, thalamus, amygdala, and brainstem. Further studies using double-label immunocytochemistry indicate that Y1R immunoreactivity (-ir) and Y5R-ir are colocalized in the cerebral cortex and caudate putamen. Y1 receptor ir was evident in the central amygdala, whereas both Y1- and Y5-immunoreactive cells and fibers were present in the basolateral amygdala. Corresponding with the physiology of NPY in the hypothalamus, both Y1R- and Y5R-ir was present within the paraventricular (PVN), supraoptic, arcuate nuclei, and lateral hypothalamus. In the PVN, Y5R-ir and Y1R-ir were detected in cells and fibers of the parvo- and magnocellular divisions. Intense immunostaining for these receptors was observed within the locus coeruleus, A1-5 and C1-3 nuclei, subnuclei of the trigeminal nerve and nucleus tractus solitarius. These data provide a detailed and comparative mapping of Y1 and Y5 receptor subtypes within cell bodies and nerve fibers in the brain which, together with physiological and electrophysiological studies, provide a better understanding of NPY neural circuitries.  相似文献   

11.
The onset of puberty is the result of an increase in secretion of hypothalamic gonadotrophin‐releasing hormone (GnRH). This action is a result of not only the development of stimulatory inputs to its release, but also the gradual decrease in inhibitory inputs that restrain release of the peptide prior to pubertal onset. Dynorphin (DYN) is one of the inhibitory inputs produced in the medial basal hypothalamus (MBH); however, little is known about what substance(s) control its prepubertal synthesis and release. Because neurokinin B (NKB) increases in the hypothalamus as puberty approaches, we considered it a candidate for such a role. An initial study investigated the acute effects of an NKB agonist, senktide, on the secretion of DYN from MBH tissues incubated in vitro. In other experiments, central injections of senktide were administered to animals for 4 days then MBHs were collected for assessment of DYN synthesis or for the in vitro secretion of both DYN and GnRH. Because insulin‐like growth factor (IGF)‐1 has been shown to play an important role at puberty, additional animals received central injections of this peptide for 4 days to assess NKB and DYN synthesis or the in vitro secretion of NKB. The results obtained show that senktide administration up‐regulates the NKB receptor protein, at the same time as suppressing the DYN and its receptor. Senktide consistently suppressed DYN and elevated GnRH secretion in the same tissue incubates from both the acute and chronic studies. IGF‐1 administration caused an increase in NKB protein, at the same time as decreasing DYN protein. Furthermore, the central administration of IGF‐1 caused an increase in NKB release, an action blocked by the IGF‐1 receptor blocker, JB‐1. These results indicate that the IGF‐1/NKB pathway contributes to suppressing the DYN inhibitory tone on prepubertal GnRH secretion and thus facilitates the puberty‐related increase in the release of GnRH to accelerate the onset of puberty.  相似文献   

12.
The neuroprotective effect of neuropeptide Y (NPY) receptor activation was investigated in organotypic mouse hippocampal slice cultures exposed to the glutamate receptor agonist alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA). Exposure of 2-week-old slice cultures, derived from 7-day-old C57BL/6 mice, to 8 microm AMPA, for 24 h, induced degeneration of CA1 and CA3 pyramidal cells, as measured by cellular uptake of propidium iodide (PI). A significant neuroprotection, with a reduction of PI uptake in CA1 and CA3 pyramidal cell layers, was observed after incubation with a Y(2) receptor agonist [NPY(13-36), 300 nm]. This effect was sensitive to the presence of the selective Y(2) receptor antagonist (BIIE0246, 1 microm), but was not affected by addition of TrkB-Fc or by a neutralizing antibody against brain-derived neurotrophic factor (BDNF). Moreover, addition of a Y(1) receptor antagonist (BIBP3226, 1 microm) or a NPY-neutralizing antibody helped to disclose a neuroprotective role of endogenous NPY in CA1 region. Cultures exposed to 8 microm AMPA for 24 h, displayed, as measured by an enzyme-linked immunosorbent assay, a significant increase in BDNF. In such cultures there was an up-regulation of neuronal TrkB immunoreactivity, as well as the presence of BDNF-immunoreactive microglial cells at sites of injury. Thus, an increase of AMPA-receptor mediated neurodegeneration, in the mouse hippocampus, was prevented by neuroprotective pathways activated by NPY receptors (Y(1) and Y(2)), which can be affected by BDNF released by microglia and neurons.  相似文献   

13.
Neuropeptide Y (NPY), corticotropin releasing factor (CRF) and noradrenaline play important roles in the regulation of a number of endocrine and autonomic functions. NPY is co-localised with noradrenaline in the central nervous system and has been observed to modulate noradrenaline release. Recent morphological and physiological studies also support co-modulatory interactions between NPY and CRF. Earlier in vivo studies in our laboratory showed a potentiation of K(+)-stimulated noradrenaline release following NPY administration, possibly due to an NPY Y1 receptor mechanism. In this study, in vitro superfusion techniques were established to simultaneously monitor the release of endogenous noradrenaline and CRF from the hypothalamus of adult rats and to examine the direct neuromodulatory action of NPY on the overflow of CRF and noradrenaline. Administration of 0.10 microM NPY significantly increased CRF overflow to 395% basal levels and reduced hypothalamic noradrenaline overflow to 61% of basal levels. These effects were blocked by prior administration of the NPY Y1 receptor antagonist GR231118. Thus, this study suggests that NPY, working through a Y1 receptor, has dual and opposing effects on CRF and noradrenaline overflow in vitro.  相似文献   

14.
Central administration of neuropeptide Y (NPY) causes both anxiolysis and sedation. Previous studies suggest that both effects are mediated via NPY Y1 receptors. However, most of these studies were carried out before the advent of specific NPY receptor ligands. Therefore, a potential role for other NPY receptors in anxiety and sedation remains a possibility. In the present study, we addressed this issue by testing the effects of intracerebroventricular (i.c.v.) injection of NPY as well as specific receptor agonists for the Y1 receptor ([D-His(26)]NPY), Y2 receptor (C2-NPY), and Y5 receptor ([cPP(1-7),NPY(19-23),Ala(31),Aib(32),Gln(34)]hPP) in the elevated plus maze and open field tests. As with NPY, the Y1 agonist had a dose-dependent anxiolytic-like effect in both behavioral tests. In contrast to NPY, which caused significant sedation in the open field test, the Y1 agonist was without sedative effect. The Y2 agonist showed neither anxiolytic-like nor sedative effects. The Y5 agonist showed anxiolytic-like activity in both behavioral tests and caused sedation in the same dose range as NPY in the open field test. These results indicate that anxiolytic-like effects of i.c.v.-administered NPY in rats are mediated via both Y1 and Y5 receptors, whereas sedation is mediated via Y5 receptors.  相似文献   

15.
The arcuate nucleus of the hypothalamus contains various types of peptidergic neurons. In particular, two distinct populations of neurosecretory neurons containing neuropeptide Y (NPY)- and alpha-melanocyte-stimulating hormone (alpha-MSH)-like immunoreactivity have been identified in the arcuate nucleus. Double-labeling immunocytochemical data have recently shown that NPY-containing fibers make synaptic contacts with proopiomelanocortin (POMC) immunoreactive neurons. We have thus investigated the possible effect of NPY on the release of alpha-MSH from rat hypothalamic slices in vitro, using the perifusion technique. NPY significantly inhibited KCl-stimulated alpha-MSH release in a dose-dependent manner. The inhibitory effect of NPY was mimicked by the Y2 agonist, NPY-(13-36), while the Y1 agonist, [Leu31,Pro34]NPY, was devoid of effect. Pretreatment of hypothalamic slices with pertussis toxin (PTX) blocked the inhibitory effect of NPY, suggesting that the action of NPY on POMC neurons is mediated through a PTX-sensitive G protein. These results support the notion that NPY may play a physiological role in the regulation of alpha-MSH release from hypothalamic neurons.  相似文献   

16.
There is evidence suggesting that neuropeptide Y (NPY) as well as corticotropin-releasing factor (CRF) in the paraventricular nucleus of the hypothalamus (PVN) are involved in the CNS regulation of gastrointestinal (GI) function. We studied the effects of NPY or Y1-and Y2-receptor agonists microinjected into the PVN on colonic transit. Microinjection of NPY into the PVN at doses of 0.15-1.5 microg decreased the colonic transit time of conscious rats up to 49%. Pretreatment with the peripherally acting cholinergic antagonist atropine methyl nitrate (0.1 mg kg-1 i.p.) blocked the NPY into PVN-induced effect on colonic motor function.The agonist of the Y1-receptor, NPY(Leu31, Pro34), as well as the Y2-receptor agonist, NPY(13-36), dose-dependently decreased colonic transit time when microinjected into the PVN (0.05, 0.15 and 0.5 microg). However, the Y1-receptor agonist was more effective. Intracerebroventricular (ICV) application of the CRF-receptor antagonist, alpha-helical-CRF9-41 (50 microg/rat), blocked the NPY effect in the PVN on colonic motor function. In conclusion, stimulation of colonic transit by NPY acting in the PVN was observed. The PVN is more sensitive to agonists acting on the Y1- than on the Y2-receptor to mediate stimulation of propulsive colonic motility. The effect of NPY in the PVN on colonic motor function depends on central CRF and peripheral cholinergic pathways.  相似文献   

17.
Fasting up-regulates central orexigenic systems including orexin A and neuropeptide Y (NPY) and it also inhibits the secretion of prolactin. We hypothesized that fasting may act through orexin A and NPY to influence tuberoinfundibular dopaminergic (TIDA) neurones, the major regulator of prolactin secretion. The effects of orexin A and NPY on TIDA neuronal activity and prolactin secretion were determined in oestrogen-primed ovariectomized rats, and the effects of fasting and the involvement of orexin A and NPY were tested. Orexin A, NPY and its analogs were administered through preimplanted intracerebroventricular (i.c.v.) cannulae. TIDA neuronal activity was determined by measuring concentrations of 3,4-dihydroxyphenylacetic acid (DOPAC) or 3,4-dihydroxyphenylalanine in the median eminence. i.c.v. injection of NPY (10 microg) or orexin A (1 microg) concomitantly increased median eminence DOPAC and decreased serum prolactin concentrations. The effect of NPY was mimicked by a Y1 receptor agonist at lower doses (0.1 and 1 microg) and no additive effect was observed when orexin A and the Y1 agaonist were coadministered. Moreover, a Y1 receptor antagonist, BIBP, not only blocked the effect of Y1 agaonist, but also that of orexin A. Treatment with BIBP alone decreased median eminence DOPAC and increased serum prolactin concentrations, indicating that endogenous NPY may play a role. Moreover, fasting for 48 h significantly increased TIDA neuronal activity, both in the morning and afternoon, and the effect was reversed by treatment with either BIBP or an antibody against orexin A. The findings support our hypothesis that fasting stimulates TIDA neuronal activity and inhibits prolactin secretion through up-regulated central orexin A and NPY systems.  相似文献   

18.
19.
Li C  Chen P  Smith MS 《Brain research》2000,854(1-2):122-129
In the present study, anterograde tracing combined with triple label immunofluorescent staining was conducted to examine the possible anatomical interactions between Neuropeptide Y (NPY) neurons in the arcuate nucleus of the hypothalamus (ARH) and the corticotropin releasing hormone (CRH) system in the paraventricular nucleus of the hypothalamus (PVH). The anterograde tracer, Phaseolus vulgaris leucoagglutinin (PHA-L), was iontophresed into the ARH of female rats and triple label immunofluorescence staining with three different fluorophores was performed to visualize PHA-L, NPY and CRH, with the aid of confocal microscopy. In PVH, NPY and PHA-L double-labeled fibers were found mainly in the parvocellular part of the PVH (PVHp). Confocal analysis demonstrated that NPY/PHA-L double-labeled fibers came in close apposition to CRH perikarya. In the median eminence, NPY/PHA-L double-labeled fibers were found both in the inner and the outer zones of the median eminence. However, very few double-labeled fibers were found in the proximity of CRH neuronal fibers in the median eminence. Double label staining was also performed to determine if NPY Y1 receptors were expressed in CRH neurons. Two different fluorophores were used to visualize CRH neurons and Y1 receptor. No convincing Y1-positive staining was found in CRH cell bodies in the PVH, even though Y1-positive staining in numerous fibers and cell bodies was observed throughout the region. However, Y1-positive fibers were shown to make close contact with CRH cell bodies in the PVH. In the ME, the majority of the Y1-positive fibers were located in the lateral portion of the ME, whereas the CRH fibers were found mainly in the medial portion of the external zone of the ME. The results of the present study suggest that ARH NPY neurons provide direct input into CRH cell bodies in the PVH region. However, the direct effects of NPY must be mediated by some receptor subtype other than Y1. Y1 receptor involvement in NPY modulation of CRH neuronal function in the PVH appears to be indirect through modulation of neuronal afferents making contact with CRH neurons.  相似文献   

20.
Leptin regulates food intake and body weight by acting primarily in the hypothalamus. In humans and rodents, obesity is associated with hyperleptinaemia, suggesting a possible state of leptin resistance. Thus, to begin to examine the mechanisms of leptin resistance, we developed a rat model in which chronic central leptin infusion results in the development of resistance to leptin's satiety action. Adult male rats were infused chronically into the lateral cerebroventricle with leptin (160 ng/h) or phosphate-buffered saline via Alzet pumps for 28 days, followed by artificial cerebrospinal fluid infusion for 3 weeks. After the initial decrease in food intake, rats developed resistance to the satiety action of leptin, and withdrawal of the chronic leptin infusion resulted in hyperphagia. During leptin infusion, body weight was gradually decreased to reach a nadir on day 12, and thereafter, body weight was sustained at a reduced level throughout the entire 28-day infusion, despite normalization in food intake. Body weight was mostly normalized by day 22 postleptin. Since neuropeptide Y (NPY) neurones are one of the targets of leptin signalling in the hypothalamus, we next examined whether the development of resistance to the satiety action of leptin was due to altered NPY gene expression. On day 3-4 of infusion, hypothalamic NPY mRNA levels, as determined by RNAse protection assay (RPA), were significantly decreased in leptin treated rats compared to controls. By contrast, on day 16 of infusion, NPY mRNA levels in the leptin treated group had returned to control levels. In situ hybridization study confirmed the results obtained with RPA and showed further that the effect of chronic leptin infusion on NPY mRNA levels was restricted to the rostral and middle parts of the arcuate nucleus. Overall, the finding that the action of continuous leptin exposure on NPY neurones was not sustained suggests that NPY neurones may be involved in the development of leptin resistance to the satiety action of leptin in the hypothalamus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号