首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PURPOSE: To demonstrate an MRI method for directly visualizing amyloid-beta (Abeta) plaques in the APP/PS1 transgenic (tg) mouse brain in vivo, and show that T1rho relaxation rate increases progressively with Alzheimer's disease (AD)-related pathology in the tg mouse brain. MATERIALS AND METHODS: We obtained in vivo MR images of a mouse model of AD (APP/PS1) that overexpresses human amyloid precursor protein, and measured T1rho via quantitative relaxometric maps. RESULTS: A significant decrease in T1rho was observed in the cortex and hippocampus of 12- and 18-month-old animals compared to their age-matched controls. There was also a correlation between changes in T1rho and the age of the animals. CONCLUSION: T1rho relaxometry may be a sensitive method for noninvasively determining AD-related pathology in APP/PS1 mice.  相似文献   

2.
The presence of amyloid-beta (Abeta) plaques in the brain is a hallmark pathological feature of Alzheimer's disease (AD). Transgenic mice overexpressing mutant amyloid precursor protein (APP), or both mutant APP and presenilin-1 (APP/PS1), develop Abeta plaques similar to those in AD patients, and have been proposed as animal models in which to test experimental therapeutic approaches for the clearance of Abeta. However, at present there is no in vivo whole-brain imaging method to detect Abeta plaques in mice or men. A novel method is presented to detect Abeta plaques in the brains of transgenic mice by magnetic resonance microimaging (muMRI). This method uses Abeta1-40 peptide, known for its high binding affinity to Abeta, magnetically labeled with either gadolinium (Gd) or monocrystalline iron oxide nanoparticles (MION). Intraarterial injection of magnetically labeled Abeta1-40, with mannitol to transiently open the blood-brain barrier (BBB), enabled the detection of many Abeta plaques. Furthermore, the numerical density of Abeta plaques detected by muMRI and by immunohistochemistry showed excellent correlation. This approach provides an in vivo method to detect Abeta in AD transgenic mice, and suggests that diagnostic MRI methods to detect Abeta in AD patients may ultimately be feasible.  相似文献   

3.
Amyloid deposits are one of the hallmarks of Alzheimer's disease (AD), one of the most devastating neurodegenerative disorders. In transgenic mice modeling Alzheimer's pathology, the MR transverse relaxation time (T(2)) has been described to be modulated by amyloidosis. This modification has been attributed to the age-related iron deposition that occurs within the amyloid plaques of old animals. In the present study, young APP/PS1 transgenic mice without histochemically detectable iron in the brain were specifically studied. In vivo measurements of T(2) in the hippocampus, at the level of the subiculum, were shown to reflect the density of amyloid plaques. This suggests that T(2) variations can be induced solely by aggregated amyloid deposits in the absence of associated histologically-detectable iron. Thus T(2) from regions with high amyloid load, such as the subiculum, is particularly well suited for following plaque deposition in young animals, i.e., at the earliest stages of the pathological process.  相似文献   

4.
Amyloid plaques are one of the hallmarks of Alzheimer's disease (AD). This study evaluated a novel microMRI strategy based on "passive staining" of brain samples by gadoteric acid. The protocol was tested at 4.7 T on control animals and APP/PS1 mice modeling AD lesions. T(1) was strongly decreased in passively stained brains. On high-resolution 3D gradient echo images, the contrast between the cortex and subcortical structures was highly improved due to a T2* effect. The brains of APP/PS1 mice revealed plaques as hypo-intense spots. They appeared larger in long compared to short TE images. This suggests that, after passive staining, plaques caused a susceptibility effect. This easily performed protocol is a complementary method to classic histology to detect the 3D location of plaques. It may also be used for the validation of in vivo MRI protocols for plaque detection by facilitating registration with histology via post mortem MRI.  相似文献   

5.
The visualization of beta-amyloid plaque deposition in brain, a key feature of Alzheimer's disease (AD), is important for the evaluation of disease progression and the efficacy of therapeutic interventions. In this study, beta-amyloid plaques in the PS/APP transgenic mouse brain, a model of human AD pathology, were detected using MR microscopy without contrast reagents. beta-Amyloid plaques were clearly visible in the cortex, thalamus, and hippocampus of fixed brains of PS/APP mice. The distribution of plaques identified by MRI was in excellent agreement with those found in the immunohistological analysis of the same brain sections. It was also demonstrated that image contrast for beta-amyloid plaques was present in freshly excised nonfixed brains. Furthermore, the detection of beta-amyloid plaques was achieved with a scan time as short as 2 hr, approaching the scan time considered reasonable for in vivo imaging.  相似文献   

6.
INTRODUCTION: Alzheimer's disease (AD) is the most prevalent neurological condition affecting industrialized nations and will rapidly become a healthcare crisis as the population ages. Currently, the post-mortem histological observation of amyloid plaques and neurofibrillary tangles is the only definitive diagnosis available for AD. A pre-mortem biological or physiological marker specific for AD used in conjunction with current neurological and memory testing could add a great deal of confidence to the diagnosis of AD and potentially allow therapeutic intervention much earlier in the disease process. DISCUSSION AND CONCLUSION: Our group has developed MRI techniques to detect individual amyloid plaques in AD transgenic mouse brain in vivo. We are also developing contrast-enhancing agents to increase the specificity of detection of amyloid plaques. Such in vivo imaging of amyloid plaques will also allow the evaluation of anti-amyloid therapies being developed by the pharmaceutical industry in pre-clinical trials of AD transgenic mice. This short review briefly discusses our progress in these areas.  相似文献   

7.
Deposition of the β-amyloid peptide (Aβ) is an important pathological hallmark of Alzheimer's disease (AD). However, reliable quantification of amyloid plaques in both human and animal brains remains a challenge. We present here a novel automatic plaque segmentation algorithm based on the intrinsic MR signal characteristics of plaques. This algorithm identifies plaque candidates in MR data by using watershed transform, which extracts regions with low intensities completely surrounded by higher intensity neighbors. These candidates are classified as plaque or nonplaque by an unsupervised learning method using features derived from the MR data intensity. The algorithm performance is validated by comparison with histology. We also demonstrate the algorithm's ability to detect age-related changes in plaque load ex vivo in amyloid precursor protein (APP) transgenic mice that coexpress five familial AD mutations (5xFAD mice). To our knowledge, this study represents the first quantitative method for characterizing amyloid plaques in MRI data. The proposed method can be used to describe the spatiotemporal progression of amyloid deposition, which is necessary for understanding the evolution of plaque pathology in mouse models of Alzheimer's disease and to evaluate the efficacy of emergent amyloid-targeting therapies in preclinical trials.  相似文献   

8.
Five iodinated 2-phenyl-1H-benzo[d]imidazole derivatives were synthesized and evaluated as potential probes for β-amyloid (Aβ) plaques. One of the compounds, 4-(6-iodo-1H-benzo[d]imidazol-2-yl)-N,N-dimethylaniline (12), showed excellent affinity for Aβ(1-42) aggregates (K(i) = 9.8 nM). Autoradiography with sections of postmortem Alzheimer's disease (AD) brain revealed that a radioiodinated probe [(125)I]12, labeled Aβ plaques selectively with low nonspecific binding. Biodistribution experiments with normal mice injected intravenously with [(125)I]12 showed high uptake [4.14 percent injected dose per gram (% ID/g) at 2 min] into and rapid clearance (0.15% ID/g at 60 min) from the brain, which may bring about a good signal-to-noise ratio and therefore achieve highly sensitive detection of Aβ plaques. In addition, [(125)I]12 labeled amyloid plaques in vivo in an AD transgenic model. The preliminary results strongly suggest that [(125)I]12 bears characteristics suitable for detecting amyloid plaques in vivo. When labeled with (123)I, it may be a useful SPECT imaging agent for Aβ plaques in the brain of living AD patients.  相似文献   

9.
One of the cardinal pathologic features of Alzheimer's disease (AD) is the formation of senile, or amyloid, plaques. Transgenic mice have been developed that express one or more of the genes responsible for familial AD in humans. Doubly transgenic mice develop "human-like" plaques, providing a mechanism to study amyloid plaque biology in a controlled manner. Imaging of labeled plaques has been accomplished with other modalities, but only MRI has sufficient spatial and contrast resolution to visualize individual plaques noninvasively. Methods to optimize visualization of plaques in vivo in transgenic mice at 9.4 T using a spin echo sequence based on adiabatic pulses are described. Preliminary results indicate that a spin echo acquisition more accurately reflects plaque size, while a T2* weighted gradient echo sequence reflects plaque iron content, not plaque size. In vivo MRI-ex vivo MRI-in vitro histologic correlations are provided. Histologically verified plaques as small as 50 microm in diameter were visualized in living animals. To our knowledge this work represents the first demonstration of noninvasive in vivo visualization of individual AD plaques without the use of a contrast agent.  相似文献   

10.
Different strategies to visualize amyloid plaques with MRI at 17.6 Tesla were investigated in a novel mouse model of Alzheimer's disease (AD). Large iron-containing plaques were observed in the thalamus, but cortical plaques did not show iron deposits. Plaques in the thalamus were visualized in vivo with the use of low-resolution, 3D gradient-echo (GRE) imaging in 82 s, and with 94-microm resolution in 34 min. The feasibility of obtaining bright contrast from plaques using the COSY revamped with asymmetric z-GRE detection (CRAZED) technique was investigated in experiments on fixed brains. The original CRAZED approach provided reduced signal near the plaques (similarly to GRE imaging) and additionally emphasized small structures in the brain. In CRAZED images acquired with mismatched gradients, elevated signal near the plaques was obtained, while background signal was suppressed almost to the noise level. Bright-contrast images were acquired in 2.6 min with the use of a 2D GRE sequence with slightly mismatched slice refocusing gradients. For future detection of plaques in patients, such bright-contrast visualization protocols may be of particular value when contrast agents that allow labeling of early plaques with iron oxide nanoparticles become available.  相似文献   

11.
The cerebral deposition of amyloid beta-peptide, a central event in Alzheimer's disease (AD) pathogenesis, begins several years before the onset of clinical symptoms. Noninvasive detection of AD pathology at this initial stage would facilitate intervention and enhance treatment success. In this study, high-field MRI was used to detect changes in regional brain MR relaxation times in three types of mice: 1). transgenic mice (PS/APP) carrying both mutant genes for amyloid precursor protein (APP) and presenilin (PS), which have high levels and clear accumulation of beta-amyloid in several brain regions, starting from 10 weeks of age; 2). transgenic mice (PS) carrying only a mutant gene for presenilin (PS), which show subtly elevated levels of Abeta-peptide without beta-amyloid deposition; and 3). nontransgenic (NTg) littermates as controls. The transverse relaxation time T(2), an intrinsic MR parameter thought to reflect impaired cell physiology, was significantly reduced in the hippocampus, cingulate, and retrosplenial cortex, but not the corpus callosum, of PS-APP mice compared to NTg. No differences in T(1) values or proton density were detected between any groups of mice. These results indicate that T(2) may be a sensitive marker of abnormalities in this transgenic mouse model of AD.  相似文献   

12.
There is currently no method for noninvasive imaging of amyloid beta (Abeta) deposition in Alzheimer's disease (AD). Because Abeta plaques are characteristic of AD and Abeta deposits contain abundant heparan sulfate proteoglycans that can bind basic fibroblast growth factor (bFGF) and serum amyloid P component (SAP), we investigated a novel route of ligand delivery to the brain to assess Abeta deposition in a transgenic (Tg) mouse model overexpressing Abeta-protein precursor. METHODS: The biodistribution of bFGF injected intranasally was studied using (125)I-bFGF in Tg and wild-type control mice and by unlabeled bFGF and SAP immunocytochemistry with light and electron microscopy. RESULTS: Three- to 5-fold higher amounts of (125)I-bFGF were found in the brain of Tg mice than that of wild-type mice (P < 0.05). bFGF or SAP given intranasally labeled cerebral Abeta plaques in the cortex and microvessels of Tg mice but not in wild-type mice. Weak bFGF staining and no SAP staining were detected in Tg mice without intranasal injection of the ligands. bFGF and SAP stained neurons around the rim of Abeta deposits and throughout the cortex in Tg mice. There was only weak staining of neurons in Tg mice without intranasal injection of bFGF and no staining of SAP in Tg mice without intranasal injection of SAP. No bFGF or SAP staining was evident in wild-type control mice. CONCLUSION: We report a novel noninvasive method for labeling Abeta plaques. This method may be modified for human studies using intranasal injection of radiolabeled ligands and imaging with SPECT or PET.  相似文献   

13.
目的 探讨7.0 T MRI和近红外荧光成像(NIRF)检测动脉粥样硬化(AS)斑块的可行性.方法 对14周龄ApoE-/-小鼠按高脂饮食喂养20周,建立AS模型,以正常C57BL/6小鼠作为对照.MRI实验中,5只ApoE-/-小鼠及5只C57小鼠经尾静脉注入超微超顺磁性氧化铁颗粒(USPIO)前及36 h后分别行7.0 T MRI.NIRF实验中,10只ApoE-/-小鼠和4只C57小鼠经尾静脉注入抗氧化修饰的低密度脂蛋白(oxLDL)抗体-NIR 797(抗-oxLDL-抗体-NIR 797)近红外探针,4只ApoE-/-小鼠经尾静脉注入非特异性IgG-NIR 797,另4只ApoE-/-小鼠注入PBS,24h后分别行NIRF.用SPSS17.0软件对计量数据行独立样本t检验和单因素方差分析.结果 ApoE-/-小鼠注入USPIO 36 h后,在T2WI上腹主动脉斑块信号较注射前减低,相对信号强度分别为0.70±0.04和1.28±0.06,差异有统计学意义(t =3.376,P<O.05),信号改变率达(-56.58±4.25)%;普鲁士蓝染色证实斑块内有铁沉积.注入抗-oxLDL-抗体-NIR 797 24 h后,ApoE-/-小鼠主动脉离体NIRF示强荧光信号(SNR为42.51 ±5.24)聚集于主动脉根、主动脉弓及降主动脉起始段,而非特异性IgG-NIR 797组(19.58±3.06)、PBS组(4.19±0.82)及对照C57小鼠(2.29±1.11)仅见较弱荧光信号,与靶向探针组比较差异有统计学意义(F =25.104,P<0.05).斑块油红O染色与NIRF阳性面积分别为(41.69 ±5.29)%和(39.45±5.35)%,两者呈线性相关(r=0.738,P<0.05,n=8),免疫荧光证实斑块内oxLDL的表达与巨噬细胞共区域.结论 应用新型分子影像探针在7.0 T MRI和NIRF上可有效检测AS斑块,有助于鉴别高危斑块,可为AS多模式成像提供依据.  相似文献   

14.
Extensive deposition of dense amyloid fibrils is a characteristic neuropathologic hallmark in Alzheimer's disease (AD). Noninvasive detection of these molecules is potentially useful for early and precise detection of patients with AD. This study reports a novel compound, 2-(2-[2-dimethylaminothiazol-5-yl]ethenyl)-6-(2-[fluoro]ethoxy)benzoxazole (BF-227), for in vivo detection of dense amyloid deposits using PET. METHODS: The binding affinity of BF-227 to amyloid-beta (Abeta) fibrils was calculated. The binding property of BF-227 to amyloid plaques was evaluated by neuropathologic staining of AD brain sections. Brain uptake and in vivo binding of BF-227 to Abeta deposits were also evaluated using mice. For clinical evaluation of (11)C-BF-227 as a PET probe, 11 normal (healthy) subjects and 10 patients with AD participated in this study. Dynamic PET images were obtained for 60 min after administration of (11)C-BF-227. The regional standardized uptake value (SUV) and the ratio of regional to cerebellar SUV were calculated as an index of (11)C-BF-227 retention. The regional tracer distribution in AD patients was statistically compared with that of aged normal subjects on a voxel-by-voxel basis. RESULTS: BF-227 displayed high binding affinity to synthetic Abeta1-42 fibrils (K(i) [inhibition constant], 4.3 +/- 1.5 nM). Neuropathologic staining has demonstrated preferential binding of this agent to dense amyloid deposits in AD brain. Moreover, a biodistribution study of this agent revealed excellent brain uptake and specific labeling of amyloid deposits in transgenic mice. The present clinical PET study using (11)C-BF-227 demonstrated the retention of this tracer in cerebral cortices of AD patients but not in those of normal subjects. All AD patients were clearly distinguishable from normal individuals using the temporal SUV ratio. Voxel-by-voxel analysis of PET images revealed that cortical BF-227 retention in AD patients is distributed primarily to the posterior association area of the brain and corresponded well with the preferred site for neuritic plaque depositions containing dense Abeta fibrils. CONCLUSION: These findings suggest that BF-227 is a promising PET probe for in vivo detection of dense amyloid deposits in AD patients.  相似文献   

15.
INTRODUCTION: A potential single-photon emission computed tomography imaging agent for labeling of A beta plaques of Alzheimer's disease, IMPY (2-(4'-dimethylaminophenyl)-6-iodo-imidazo[1,2-a]pyridine), would be effective in detection of prion amyloid deposits in transmissible spongiform encephalopathies (TSEs). METHODS: In vitro autoradiographic studies were carried out with [125 I]IMPY on brain sections from scrapie-infected mice and age-matched controls. Competition study was performed to evaluate the prion deposit binding specificity with nonradioactive IMPY. RESULTS: Binding of [125 I]IMPY was observed in infected brain sections, while on age-matched control brain sections, there was no or very low labeling. Prion deposit binding was confirmed by histoblots with prion protein-specific monoclonal antibody 2D6. In the presence of nonradioactive IMPY, the binding of [125 I]IMPY was significantly inhibited in all regions studied. CONCLUSIONS: These findings indicate that IMPY can detect the prion deposits in vitro in scrapie-infected mice. Labeled with 123 I, this ligand may be useful to quantitate prion deposit burdens in TSEs by in vivo imaging.  相似文献   

16.
PURPOSE: To assess the development of beta-amyloid (Abeta) plaques in the brain with age in the transgenic mouse model of Alzheimer's disease (AD) pathology by in vivo magnetic resonance microimaging (microMRI). MATERIALS AND METHODS: Live transgenic mice (Tg2576) and nontransgenic littermates (control) were studied at regular intervals between the ages of 12 and 18 months. Plaques were visualized using a T(2)-weighted rapid acquisition with relaxation enhancement (RARE) sequence. Changes in T(2) relaxation times were followed using a multislice multiecho (MSME) sequence. Plaque load and numerical density in MR images were calculated using SCIL image software. RESULTS: Abeta plaques were clearly detected with the T(2)-weighted RARE sequence in the hippocampal and cortical regions of the brain of Tg2576 mice but not in control mice. Following the plaque development in the same animals with age showed that plaque area, number, and size increased markedly, while T(2) relaxation time showed a decreasing trend with age. CONCLUSION: These results demonstrate that microMRI is a viable method for following the development of Abeta plaques in vivo, and suggest that this method may be feasible for assessing the effect of therapeutic interventions over time in the same animals.  相似文献   

17.

Purpose

To investigate the relationship between MR image contrast associated with beta‐amyloid (Aβ) plaques and their histology and compare the histopathological basis of image contrast and the relaxation mechanism associated with Aβ plaques in human Alzheimer's disease (AD) and transgenic APP/PS1 mouse tissues.

Materials and Methods

With the aid of the previously developed histological coil, T‐weighted images and R parametric maps were directly compared with histology stains acquired from the same set of Alzheimer's and APP/PS1 tissue slices.

Results

The electron microscopy and histology images revealed significant differences in plaque morphology and associated iron concentration between AD and transgenic APP/PS1 mice tissue samples. For AD tissues, T contrast of Aβ‐plaques was directly associated with the gradation of iron concentration. Plaques with significantly less iron load in the APP/PS1 animal tissues are equally conspicuous as the human plaques in the MR images.

Conclusion

These data suggest a duality in the relaxation mechanism where both high focal iron concentration and highly compact fibrillar beta‐amyloid masses cause rapid proton transverse magnetization decay. For human tissues, the former mechanism is likely the dominant source of R relaxation; for APP/PS1 animals, the latter is likely the major cause of increased transverse proton relaxation rate in Aβ plaques. The data presented are essential for understanding the histopathological underpinning of MRI measurement associated with Aβ plaques in humans and animals. J. Magn. Reson. Imaging 2009;29:997–1007. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
Noninvasive imaging procedures will be important for stem cell therapy for muscular dystrophy (MD). Mesoangioblasts regenerate muscle in animal models of muscular dystrophy. In this study, superparamagnetic iron oxide nanoparticles were used to visualize mesoangioblasts in vivo with MRI. Mesoangioblasts incorporated superparamagnetic iron oxide without transfection reagents, and cell differentiation was not negatively impacted. A custom-built radiofrequency coil with an adjustable field of view and 14.1 T magnet were used for whole-body MRI of mice. High-resolution images of mesoangioblasts in skeletal and cardiac muscle of Mdx mice were obtained following local delivery. Labeled cells were verified by Prussian blue staining and dystrophin expression, indicating that the wild-type mesoangioblasts survived and differentiated in muscle. Iron-labeled cells were detected with MRI in vivo 6 months following intracardiac injection but were determined to be activated macrophages. Iron-labeled cells were not detected by MRI following systemic delivery but were present in skeletal and cardiac muscle, visualized by Prussian blue staining. Systemically delivered mesoangioblasts were detected in lungs by Prussian blue staining and DiI but not by MRI in our study. MRI may be useful for short-term tracking of mesoangioblasts delivered locally but not for long-term monitoring or detection after systemic delivery.  相似文献   

19.
We performed three-dimensional, high-resolution magnetic resonance imaging (MRI) of fixed mouse brains to determine whether MRI can detect amyloid plaques in transgenic mouse models of Alzheimer's disease. Plaque-like structures in the cortex and hippocampus could be clearly identified in T2-weighted images with an image resolution of 46 microm x 72 microm x 72 microm. The locations of plaques were confirmed in coregistration studies comparing MR images with Congo red-stained histological results. This technique is quantitative, less labor-intensive compared to histology, and is free from artifacts related to sectioning process (deformation and missing tissues). It enabled us to study the distribution of plaques in the entire brain in 3D. The results of this study suggest that this method may be useful for assessing treatment efficacy in mouse models of Alzheimer's disease (AD).  相似文献   

20.
Deposition of -amyloid (A) plaques in the brain is likely linked to the pathogenesis of Alzheimers disease (AD). Developing specific A aggregate-binding ligands as in vivo imaging agents may be useful for diagnosis and monitoring the progression of AD. We have prepared a thioflavin derivative, 6-iodo-2-(4-dimethylamino-)phenyl-imidazo[1,2-a]pyridine, IMPY, which is readily radiolabeled with 125I/123I for binding or single-photon emission computerized tomography (SPECT) imaging studies. Characterization of [125I]IMPY binding to plaque-like structures was evaluated in double transgenic PSAPP mice. [125I]IMPY labeled A plaques in transgenic mouse brain sections, and the labeling was consistent with fluorescent staining and A-specific antibody labeling. Significant amounts of A plaques present in the cortical, hippocampal, and entorhinal regions of the transgenic mouse brain were clearly detected with [125I]IMPY via ex vivo autoradiography. In contrast, [125I]IMPY showed little labeling in the age-matched control mouse brain. Tissue homogenate binding further corroborated the A plaque-specific distribution in various brain regions of transgenic mouse, and correlated well with the known density of A deposition. Using a tissue dissection technique, [125I]IMPY showed a moderate increase in the cortical region of transgenic mice as compared to the age-matched controls. In vitro blocking of [125I]IMPY by carrier observed via autoradiography in mouse brain sections was not replicated by an in vivo blocking experiment in living TT mouse brain. The failure was most likely due to a significant carrier effect, which slows down the tracer in vivo metabolism, leading to an increased brain uptake. Taken together, these data indicate that [123I]IMPY is a potentially useful SPECT imaging agent for in vivo labeling of A plaques in the living brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号