首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Anhidrotic ectodermal dysplasia (EDA) is a disorder of ectodermal differentiation characterized by sparse hair, abnormal or missing teeth, and inability to sweat. X-linked EDA is the most common form, caused by mutations in the EDA gene, which encodes ectodysplasin, a member of the tumor necrosis factor (TNF) family. Autosomal dominant and recessive forms of EDA have been also described and are accounted for by two genes. Mutations in EDAR, encoding a TNF receptor (EDAR) cause both dominant and recessive forms. In addition, mutations in a recently identified gene, EDARADD, encoding EDAR-associated death domain (EDARADD) have been shown to cause autosomal recessive EDA. Here, we report a large Moroccan family with an autosomal dominant EDA. We mapped the disease gene to chromosome 1q42.2-q43, and identified a novel missense mutation in the EDARADD gene (c.335T>G, p.Leu112Arg). Thus, the EDARADD gene accounts for both recessive and dominant EDA. EDAR is activated by its ligand, ectodysplasin, and uses EDARADD to build an intracellular complex and activate nuclear factor kappa B (NF-kB). We compared the functional consequences of the dominant (p.Leu112Arg) and recessive mutation (p.Glu142Lys), which both occurred in the death domain (DD) of EDARADD. We demonstrated that the p.Leu112Arg mutation completely abrogated NF-kB activation, whereas the p.Glu142Lys retained the ability to significantly activate the NF-kB pathway. The p.Leu112Arg mutation is probably a dominant negative form as its cotransfection impaired the wild-type EDARADD's ability to activate NF-kB. Our results confirm that NF-kB activation is impaired in EDA and support the role of EDARADD DD as a downstream effector of EDAR signaling.  相似文献   

3.
4.
Hypohidrotic and anhidrotic ectodermal dysplasia (HED/EDA) is a rare genodermatosis characterized by abnormal development of sweat glands, teeth, and hair. Three disease-causing genes have been hitherto identified, namely, (1) EDA1 accounting for X-linked forms, (2) EDAR, and (3) EDARADD, causing both autosomal dominant and recessive forms. Recently, WNT10A gene was identified as responsible for various autosomal recessive forms of ectodermal dysplasias, including onycho-odonto-dermal dysplasia (OODD) and Sch?pf-Schulz-Passarge syndrome. We systematically studied EDA1, EDAR, EDARADD, and WNT10A genes in a large cohort of 65 unrelated patients, of which 61 presented with HED/EDA. A total of 50 mutations (including 32 novel mutations) accounted for 60/65 cases in our series. These four genes accounted for 92% (56/61 patients) of HED/EDA cases: (1) the EDA1 gene was the most common disease-causing gene (58% of cases), (2)WNT10A and EDAR were each responsible for 16% of cases. Moreover, a novel disease locus for dominant HED/EDA mapped to chromosome 14q12-q13.1. Although no clinical differences between patients carrying EDA1, EDAR, or EDARADD mutations could be identified, patients harboring WNT10A mutations displayed distinctive clinical features (marked dental phenotype, no facial dysmorphism), helping to decide which gene should be first investigated in HED/EDA.  相似文献   

5.
Hypohidrotic ectodermal dysplasia (HED) can be caused by mutations in the X-linked ectodysplasin A (ED1) gene or the autosomal ectodysplasin A-receptor (EDAR) and EDAR-associated death domain (EDARADD) genes. X-linked and autosomal forms are sometimes clinically indistinguishable. For genetic counseling in families, it is therefore important to know the gene involved. In 24 of 42 unrelated patients with features of HED, we found a mutation in ED1. ED1-negative patients were screened for mutations in EDAR and EDARADD. We found mutations in EDAR in 5 of these 18 patients. One mutation, p.Glu354X, is novel. In EDARADD, a novel variant p.Ser93Phe, probably a neutral polymorphism, was also found. Clinically, there was a difference between autosomal dominant and autosomal recessive HED patients. The phenotype in patients with mutations in both EDAR alleles was comparable to males with X-linked HED. Patients with autosomal dominant HED had features comparable to those of female carriers of X-linked HED. The teeth of these patients were quite severely affected. Hypohidrosis and sparse hair were also evident, but less severe. This study confirms Chassaing et al's earlier finding that mutations in EDAR account for approximately 25% of non-ED1-related HED. Mutations leading to a premature stop codon have a recessive effect except when the stop codon is in the last exon. Heterozygous missense mutations in the functional domains of the gene may have a dominant-negative effect with much variation in expression. Patients with homozygous or compound heterozygous mutations in the EDAR gene have a more severe phenotype than those with a heterozygous missense, nonsense or frame-shift mutation.  相似文献   

6.
Anhidrotic ectodermal dysplasia (EDA) is an X-linked disorder characterized by abnormal development of ectoderm and its appendices. The EDA gene encodes different isoforms of ectodysplasin, a transmembrane protein. The two longest isoforms, ectodysplasin-A1 and -A2, which differ by an insertion of two amino acids, are trimeric type II membrane proteins with an extracellular portion containing a short collagenous domain and a TNF ligand motif in the C-terminal region. We show that ectodysplasin is released from cells to the culture medium. Deletion constructs were used to localize the cleavage site and show that the putative recognition sequence of a furin-like enzyme is needed for the cleavage. Some EDA patients have missense mutations affecting this recognition sequence, suggesting that cleavage has biological significance in vivo. EDAR, a recently cloned member of the TNFR family and the product of the downless gene, is able to co-precipitate ectodysplasin, confirming that they form a ligand-receptor pair. In situ hybridization and immunostaining studies show that ectodysplasin and EDAR are expressed in adjacent or partially overlapping layers in the developing human skin. We conclude that as a soluble ligand, ectodysplasin is able to interact with EDAR and mediate signals needed for the development of ectodermal appendages.  相似文献   

7.

Background  

Hypohidrotic ectodermal dysplasia (HED) is a genetic disorder characterized by defective development of teeth, hair, nails and eccrine sweat glands. Both autosomal dominant and autosomal recessive forms of HED have previously been linked to mutations in the ectodysplasin 1 anhidrotic receptor (EDAR) protein that plays an important role during embryogenesis.  相似文献   

8.
Sjögren's syndrome (SS) is an autoimmune disease and the second most common chronic systemic rheumatic disorder. Prevalence of primary SS in the general population has been estimated to be approximately 1–3%, whereas secondary SS has been observed in 10–20% of patients with rheumatoid arthritis, systemic lupus erythematosus (SLE) and scleroderma. Despite this, its exact aetiology and pathogenesis are largely unexplored. Nuclear factor‐kappa B (NF‐κB) signalling mechanisms provide central controls in SS, but how these pathways intersect the pathological features of this disease is unclear. The ubiquitin‐editing enzyme A20 (tumour necrosis factor‐α‐induced protein 3, TNFAIP3) serves as a critical inhibitor on NF‐κB signalling. In humans, polymorphisms in the A20 gene or a deregulated expression of A20 are often associated with several inflammatory disorders, including SS. Because A20 controls the ectodysplasin‐A1 (EDA‐A1)/ectodysplasin receptor (EDAR) signalling negatively, and the deletion of A20 results in excessive EDA1‐induced NF‐κB signalling, this work investigates the expression levels of EDA‐A1 and EDAR in SS human salivary glands epithelial cells (SGEC) and evaluates the hypothesis that SS SGEC‐specific deregulation of A20 results in excessive EDA1‐induced NF‐κB signalling in SS. Our approach, which combines the use of siRNA‐mediated gene silencing and quantitative pathway analysis, was used to elucidate the role of the A20 target gene in intracellular EDA‐A1/EDAR/NF‐κB pathway in SS SGEC, holding significant promise for compound selection in drug discovery.  相似文献   

9.
10.
Hypohidrotic ectodermal dysplasia (HED) is a rare genetic condition resulting from defective development of ectodermal derivatives, such as hair, teeth, and sweat glands. Autosomal recessive (AR) forms of HED may be caused by pathogenic variants of the ectodysplasin A1 receptor (EDAR) gene that encodes a receptor involved in the NF-κB signaling pathway. Here, we describe three cases of AR-HED in families of Turkish, Austrian, and German-American origin (with or without known consanguinity). In these cases, two out-of-frame deletions and a pathogenic missense variant of EDAR were found to be disease-causing due to reduced availability of the respective messenger RNA or impaired interaction of the encoded protein with its binding partner leading to diminished signal transduction. The same missense variant, c.1258C>T (p.Arg420Trp), has actually been reported to be restricted to the Icelandic population and to be associated with non-syndromic tooth agenesis but not HED. As our patient has no known relationship to Icelandic individuals and displays a rather severe HED phenotype, we suggest that EDAR-Arg420Trp is a more widespread variant, possibly with variable clinical expressivity.  相似文献   

11.
Hypohidrotic ectodermal dysplasia (HED) is characterized by abnormal development of the eccrine sweat glands, hair, and teeth. The X-linked form of the disease, caused by mutations in the ED1 gene, represents the majority of HED cases. Autosomal-dominant and -recessive forms occur occasionally and result from mutations in at least two genes: EDAR and EDARADD. These different forms are phenotypically indistinguishable. To better assess the implication of the EDAR gene in HED, we screened for mutations in 37 unrelated HED families or sporadic cases with no detected mutations in the ED1 gene. We identified 11 different mutations, nine of which are novel variants, in two familial and seven sporadic cases. Seven of the 11 are recessive mutations (c.140G>A (p.Cys47Tyr), c.266G>A (p.Arg89His), c.329A>C (p.Asp110Ala), c.442T>C (p.Cys148Arg), c.1208C>T (p.Thr403Met), c.1302G>T (p.Trp434Cys) and c.528+1G>A), and the other four are probably dominant (c.1129C>T (p.Leu377Phe), c.1237A>C (p.Thr413Pro), c.1253T>C (p.Ile418Thr), and c.1259G>A (p.Arg420Gln)). Our study demonstrates that EDAR is implicated in about 25% of non-ED1 HED, and may account for both autosomal-dominant and -recessive forms. The correlation between the nature and location of EDAR mutations and their mode of inheritance is discussed. A genotype-phenotype relationship was evaluated, since such data could be helpful for genetic counseling.  相似文献   

12.
Ectodysplasin A1 receptor (EDAR) is a TNF receptor family member with roles in the development and growth of hair, teeth and glands. A derived allele of EDAR, single-nucleotide variant rs3827760, encodes EDAR:p.(Val370Ala), a receptor with more potent signalling effects than the ancestral EDAR370Val. This allele of rs3827760 is at very high frequency in modern East Asian and Native American populations as a result of ancient positive selection and has been associated with straighter, thicker hair fibres, alteration of tooth and ear shape, reduced chin protrusion and increased fingertip sweat gland density. Here we report the characterisation of another SNV in EDAR, rs146567337, encoding EDAR:p.(Ser380Arg). The derived allele of this SNV is at its highest global frequency, of up to 5%, in populations of southern China, Vietnam, the Philippines, Malaysia and Indonesia. Using haplotype analyses, we find that the rs3827760 and rs146567337 SNVs arose on distinct haplotypes and that rs146567337 does not show the same signs of positive selection as rs3827760. From functional studies in cultured cells, we find that EDAR:p.(Ser380Arg) displays increased EDAR signalling output, at a similar level to that of EDAR:p.(Val370Ala). The existence of a second SNV with partly overlapping geographic distribution, the same in vitro functional effect and similar evolutionary age as the derived allele of rs3827760, but of independent origin and not exhibiting the same signs of strong selection, suggests a northern focus of positive selection on EDAR function in East Asia.Subject terms: Genetic variation, Genotyping and haplotyping, Molecular biology  相似文献   

13.
Clauss F, Chassaing N, Smahi A, Vincent MC, Calvas P, Molla M, Lesot H, Alembik Y, Hadj‐Rabia S, Bodemer C, Manière MC, Schmittbuhl M. X‐linked and autosomal recessive Hypohidrotic Ectodermal Dysplasia: genotypic‐dental phenotypic findings. Hypohidrotic ectodermal dysplasia (HED) is characterized by abnormal development of ectodermal structures and its molecular etiology corresponds to mutations of EDA‐EDAR genes. The aim of this study was first to investigate the genotype and dental phenotype associated with HED and second, to explore possible correlations between dental features and molecular defects. A total of 27 patients from 24 unrelated families exhibiting clinical signs of HED (22 XLHED males, 5 autosomal recessive forms) were retrospectively included. In the sample, 25 different mutations on EDA and EDAR genes were detected; 10 were not previously described. EDA and EDAR mutations corresponded respectively to 80.0% and 20.0% of the mutations. The dental phenotype analysis revealed a mean number of primary and permanent missing teeth ranging respectively from 14.5 (4–20) to 22.5 (10–28); the majority of the patients exhibited dysmorphic teeth. Overall, no differential expression in the degree of oligodontia according to either the mutated gene, the mutated functional sub‐domains, or the mutation type, could be observed. Nevertheless, the furin group exhibited severe phenotypes unobserved in the TNF group. Significant differences in the number of some primary missing teeth (incisor and canine) related to EDA‐EDAR genes defects were detected for the first time between XLHED and autosomal recessive HED, suggesting differential local effects of EDA‐EDAR genes during odontogenesis. The present genotypic‐phenotypic findings may add to the knowledge of the consequences of the molecular dysfunction of EDA‐NF‐k B in odontogenesis, and could be helpful in genetic counseling to distinguish autosomal forms from other HED syndromes.  相似文献   

14.
Oligodontia is defined as the congenital lack of six or more permanent teeth, excluding third molars. Oligodontia as well as hypodontia (lack of one or more permanent teeth) are highly heritable conditions associated with mutations in the AXIN2, MSX1, PAX9, EDA, and EDAR genes. Here we define the prevalence of mutations in the AXIN2, MSX1, PAX9, EDA, and EDAR genes, and the novel candidate gene EDARADD in a cohort of 93 Swedish probands with non-syndromic, isolated oligodontia. Mutation screening was performed using denaturing gradient gel electrophoresis and DNA sequence analysis. Analyses of the coding sequences of the six genes showed sequence alterations predicted to be damaging or potentially damaging in ten of 93 probands (10.8%). Mutations were identified in the EDARADD (n = 1), AXIN2 (n = 3), MSX1 (n = 2), and PAX9 (n = 4) genes, respectively. None of the 10 probands with mutations had other self-reported symptoms from ectodermal tissues. The oral parameters were similar when comparing individuals with and without mutations but a family history of oligodontia was three times more frequent for probands with mutations. EDARADD mutations have previously been reported in a few families segregating hypohidrotic ectodermal dysplasia and this is, to our knowledge, the first report of an EDARADD mutation associated with isolated oligodontia.  相似文献   

15.
Dental morphology is highly diverse among individuals and between human populations. Although it is thought that genetic factors mainly determine common dental variations, only a few such genetic factors have been identified. One study demonstrated that a nonsynonymous single-nucleotide polymorphism (370V/A, rs3827760) in the ectodysplasin A receptor gene (EDAR) is associated with shoveling and double-shoveling grades of upper first incisors and tooth crown size. Here, we examined the association of EDAR 370V/A with several dental characters in Korean and Japanese subjects. A meta-analysis that combined analyses of Korean and Japanese subjects revealed that the Asian-specific 370A allele is associated with an increase in the grades of shoveling and double shoveling, as previously found. We also showed a highly significant association between EDAR 370V/A genotype and crown size, especially mesiodistal diameters of anterior teeth. Moreover, we found that the 370A allele was associated with the presence of hypoconulids of lower second molars. These results indicated that the EDAR polymorphism is responsible, in part, for the Sinodonty and Sundadonty dichotomy in Asian populations, and clearly demonstrated that the EDAR polymorphism has pleiotropic effects on tooth morphology. As the 370A allele is known to be a most likely target of positive selection in Asian populations, some phenotypes associated with the variant may be 'hitchhiking phenotypes', while others may be actual targets of selection.  相似文献   

16.
Anhidrotic ectodermal dysplasia (EDA) is caused by mutations in the EDA gene encoding ectodysplasin A, a member of the TNF ligand superfamily involved in the communication between the cells. The structure of the EDA gene was investigated in three patients exhibiting clinical symptoms of EDA in an attempt to correlate the molecular findings with the phenotype of the patients. Genomic DNA was analyzed by single stranded conformation polymorphism (SSCP) followed by direct sequencing. In one of the patients, as well as in his heterozygous mother and sister, a single T insertion was evidenced in exon 3 between nucleotides 713 and 714 that changed Lys codon (AAA) into a termination codon TAA (Lys158Ter). In the other patient, A1321T transversion was demonstrated. The same mutation was found in his heterozygous mother and resulted in a change of Ileu360Asn that might generate an additional glycosylation site. In the third patient an A1285G transition was revealed. This mutation that originated de novo was localized in a region that is highly conserved in TNF ligand family and caused substitution of Ala349Thr. Localization of the mutations in the extracellular domain of ectodysplasin A suggested that the primary cause of EDA is a defect in communication between the cells responsible for the development of skin appendages. Despite a different character and localization of the mutations, no apparent correlation between phenotype and genotype of the patients was evidenced. Some differences in the patients' phenotype were observed.  相似文献   

17.
Anhidrotic ectodermal dysplasia (EDA) is a human genetic disorder of impaired ectodermal appendage development. The EDA gene encodes isoforms of a novel transmembrane protein, ectodysplasin. The sequence of the longest isoform includes an interrupted collagenous domain of 19 Gly-X-Y repeats and a motif conserved in the tumor necrosis factor (TNF)-related ligand family. In order to understand better the function of the ectodysplasin protein molecule and its domains, we have studied the processing and localization of wild-type and mutated isoforms in transfected human fetal kidney 293 and monkey kidney COS-1 cells. Similar to other members of collagenous membrane proteins and members of TNF-related ligands, ectodysplasin is a type II membrane protein and it forms trimers. The membrane localization of ectodysplasin is asymmetrical: it is found on the apical and lateral surfaces of the cells where it co-localizes with cytoskeletal structures. The TNF-like motif and cysteines found near the C-terminus are necessary for correct transport to the cell membrane, but the intracellular and collagenous domains are not required for the localization pattern. Our results suggest that ectodysplasin is a new member in the TNF-related ligand family involved in the early epithelial-mesenchymal interaction that regulates ectodermal appendage formation.  相似文献   

18.
Hypohidrotic (anhidrotic) ectodermal dysplasia (HED), the most common of the approximately 150 described ectodermal dysplasias, is a disorder characterized by abnormal hair, teeth, sweat glands, and salivary glands. Mutations in the EDA (ectodysplasin-A) and EDAR (ectodysplasin-A receptor) genes are responsible for X-linked and autosomal HED, respectively. Abnormal phenotypes similar to HED are seen in Tabby (Eda(Ta)) and downless (Edar(dl)) mutant mice. Although recent studies have focused on the role of Eda/Edar signaling during hair and tooth development, very little is known about its role during embryonic submandibular salivary gland (SMG) development. To this end, we analyzed the SMG phenotypes in Tabby (Ta) and downless (dl) mutant mice and determined that Ta SMGs are hypoplastic, whereas dl SMGs are severely dysplastic. The absence of SMG ducts and acini in dl SMGs suggests that Eda/Edar signaling is essential for lumina formation and glandular histodifferentiation. Our localization of Eda and Edar proteins at sites of lumen and acini formation supports this conclusion. Moreover, the presence of SMGs in both Ta and dl mutant mice, as well as the absence of immunodetectable Eda and Edar protein in Initial Bud and Early Pseudoglandular stage SMGs, indicate that Eda/Edar-mediated signaling is important for branching morphogenesis and histodifferentiation, but not for initial gland formation. To initially delineate the morphoregulatory role of Eda/Edar-mediated signaling during embryonic SMG development, we cultured embryonic day 14 SMGs with enhanced or abrogated Eda/Edar signaling. Eda supplementation induced a significant increase in SMG branching, and enhanced activation of NF-kappaB. Abrogating Eda/Edar signaling by adding the soluble form of Edar to bind endogenous ligand in embryonic SMGs results in a significant dose-dependent decrease in branching morphogenesis. Taken together, our results suggest that the Eda/Edar/NF-kappaB pathway exerts its effect on SMG epithelial cell proliferation, lumina formation, and histodifferentiation.  相似文献   

19.
Anhidrotic ectodermal dysplasia (EDA) is caused by mutations in the EDA gene encoding ectodysplasin A, a member of the TNF ligand superfamily involved in the communication between the cells. The structure of the EDA gene was investigated in three patients exhibiting clinical symptoms of EDA in an attempt to correlate the molecular findings with the phenotype of the patients. Genomic DNA was analyzed by single stranded conformation polymorphism (SSCP) followed by direct sequencing. In one of the patients, as well as in his heterozygous mother and sister, a single T insertion was evidenced in exon 3 between nucleotides 713 and 714 that changed Lys codon (AAA) into a termination codon TAA (Lys158Ter). In the other patient, A1321T transversion was demonstrated. The same mutation was found in his heterozygous mother and resulted in a change of Ileu360Asn that might generate an additional glycosylation site. In the third patient an A1285G transition was revealed. This mutation that originated de novo was localized in a region that is highly conserved in TNF ligand family and caused substitution of Ala349Thr. Localization of the mutations in the extracellular domain of ectodysplasin A suggested that the primary cause of EDA is a defect in communication between the cells responsible for the development of skin appendages. Despite a different character and localization of the mutations, no apparent correlation between phenotype and genotype of the patients was evidenced. Some differences in the patients' phenotype were observed. © 2001 Wiley‐Liss, Inc.  相似文献   

20.
Mutations of the Ectodysplasin-A (EDA) gene are generally associated with the syndrome hypohidrotic ectodermal dysplasia (MIM 305100), but they can also manifest as selective, non-syndromic tooth agenesis (MIM300606). We have performed an in vitro functional analysis of six selective tooth agenesis-causing EDA mutations (one novel and five known) that are located in the C-terminal tumor necrosis factor homology domain of the protein. Our study reveals that expression, receptor binding or signaling capability of the mutant EDA1 proteins is only impaired in contrast to syndrome-causing mutations, which we have previously shown to abolish EDA1 expression, receptor binding or signaling. Our results support a model in which the development of the human dentition, especially of anterior teeth, requires the highest level of EDA-receptor signaling, whereas other ectodermal appendages, including posterior teeth, have less stringent requirements and form normally in response to EDA mutations with reduced activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号