首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
目的探讨基于增材制造和凝胶注模成型技术的多孔β-磷酸三钙(TCP)生物陶瓷支架的制备方法及其表征。方法利用计算机辅助设计(CAD)软件设计支架内部孔隙结构,通过光固化快速成型技术制造相应的树脂模具,在模具中填充生物材料,待其固化后通过热分解去除树脂模具,然后对所形成的多孔β-TCP支架的微观孔隙结构特征、力学性能以及体外细胞相容性进行检测。结果多孔β-TCP支架孔隙结构与设计结构一致,孔隙率为45.1%±1.2%,孔的尺寸为300~500μm;力学性能测试表明,支架的平均抗压强度为5.3±0.8 MPa;成骨细胞能够在支架上黏附生长,支架具有良好的生物相容性。结论基于增材制造技术和凝胶注模成型工艺的多孔生物陶瓷支架制备方法,可实现支架复杂外形与内部微结构的精确控制和一体化制造。  相似文献   

2.
【摘要】 目的:制备抗结核药物复合支架,并观察其载药性能、药物释放性能和组织相容性。方法:应用乳酸-羟基乙酸共聚物(PLGA)、磷酸三钙(β-TCP)、异烟肼(INH),通过结合相分离/粒子沥滤法制备成复合药物支架。采用扫描电镜观察支架的形貌;测定支架的孔隙率;在体外测定支架的生物力学强度、载药率、包封率以及药物释放特性;将复合支架(PLGA/β-TCP/INH)埋入大鼠肌肉中,4周后取材固定、染色行组织切片观察其组织相容性。结果:PLGA/β-TCP/INH复合支架表面及内部呈均匀多孔状,孔隙分布较均匀,在大孔的周围布满了相互贯通的微孔,外形多为近似圆形,大孔直径约150~300μm,平均222±23μm,小孔直径约10μm;孔隙率为(86±3)%;抗压强度为1.93±0.65MPa,药物包封率为(66.73±2.65)%;在体外药物释放过程较平稳,其释放曲线较平滑;组织学检查显示埋入大鼠肌肉中4周支架周围组织正常,细胞无变性坏死。结论:PLGA/β-TCP/INH复合支架具有良好的孔隙率、力学强度、释药特性和组织相容性,有望在脊柱结核病灶清除术后利用其修复骨缺损的同时发挥局部抗结核治疗作用。  相似文献   

3.
目的 制备壳聚糖-明胶网络/羟基磷灰石(CS-Gel/HA)复合材料多孔支架,并考察组分和制备条件对其微观形貌的影响。方法 采用相分离法制备CS-Gel/HA多孔支架;利用扫描电镜观察微观形貌;液体替代法测孔隙率。结果 采用相分离法,通过控制组分配比和预冷冻温度可制备不同密度和孔隙率的CS-Gel/HA多孔支架。结论 CS-Gel/HA复合材料三维支架有望成为培养自体成骨细胞的支架材料。  相似文献   

4.
细胞复合β-磷酸三钙生物陶瓷修复软骨缺损的实验研究   总被引:3,自引:0,他引:3  
[目的]通过将骨髓间充质干细胞(MCSc)诱导的具有软骨细胞、成骨细胞表型的细胞接种到三维多孔β-磷酸三钙(β-TCP)生物陶瓷支架材料上,体外构建骨软骨复合体,探讨以β-TCP为载体建造组织工程化软骨修复骨软骨缺损的可行性。[方法]将β-TCP多孔陶瓷加工成圆柱状,并将其作为构建人工软骨的细胞支架。在支架材料上分别接种从犬骨髓干细胞培养成的具有软骨细胞、成骨细胞表型的细胞,将细胞-支架复合体共同培养1周后,移植到犬关节软骨缺损处。植入后12、16周末取材,进行大体观察、组织学及组织化学等观察。[结果]复合体体内移植后,在犬关节软骨缺损处有新生软骨形成,形成的软骨基本保持了支架材料原有形态。[结论]β-TCP多孔陶瓷可作为支架材料,复合细胞后具有修复软骨缺损的作用。  相似文献   

5.
目的 研究骨形态发生蛋白-2(BMP-2)复合明胶羟基磷灰石(HA)涂层多孔钛对兔股骨远端骨缺损的修复作用。方法 以多孔钛粉末为原料,制备三维多孔结构钛载体,然后运用碱热处理+模拟体液等化学方法进行HA涂层,制备具有三维空间结构的HA涂层多孔钛复合材料。36只新西兰兔随机分为实验组及对照组,制备股骨远端圆柱状骨缺损模型,实验组植入复合BMP-2的HA涂层多孔钛材料,对照组单纯植入HA涂层多孔钛材料。分别于6、12、24周取材通过组织学和生物力学分析。结果组织学观察显示于各时间点实验组骨生成均不同程度优于对照组;生物力学测试显示在推出实验中所有样品的剪切应力都随时间增长而增大。其中在6周、12周实验组多孔钛在所有时间点均表现出了比对照组高得多的剪切力(P〈0.05),在24周实验组和对照组差异无统计学意义(P〉0.05)。结论 BMP-2复合明胶HA涂层多孔钛较单纯HA涂层多孔钛植入早期具有更良好的生物相容性、骨传导性及骨诱导性,可成功修复兔股骨远端骨缺损。  相似文献   

6.
目的 探讨透明质酸(hyaluronic acid,HA)/α-半水硫酸钙(α-calcium sulfate hemihydrate,α-CSH)/β-磷酸三钙(β-tricalcium phosphate,β-TCP)复合人工骨材料(以下简称复合材料)的制备及其性能。方法 采用水热法将二水硫酸钙脱水制备α-CSH,可溶性钙盐和磷酸盐反应法制备β-TCP。将α-CSH、β-TCP粉末按照不同比例(10∶0、9∶1、8∶2、7∶3、5∶5、3∶7)混合,分别与浓度为0.1%、0.25%、0.5%、1.0%、2.0%的HA溶液以及去离子水,以液固比0.30、0.35混合,制备HA/α-CSH/β-TCP、α-CSH/β-TCP复合材料。将制备样品进行扫描电镜观察、X射线衍射分析、初凝/终凝时间测定、降解测定、抗压强度测定、溃散情况观察、可注射性实验以及细胞毒性实验。结果 成功制备HA/α-CSH/β-TCP复合材料。该复合材料表面粗糙,不规则片块状颗粒、条状颗粒密集堆积,表面呈微孔结构,孔径主要在5~15μm之间。随β-TCP含量增加,复合材料初凝、终凝时间均增加,降解率降低,抗压强度呈...  相似文献   

7.
高孔隙连通性β-磷酸三钙细胞支架的制备   总被引:1,自引:0,他引:1  
目的 改进多孔β-TCP支架的制备方法,提高支架的孔隙连通性、孔隙结构的均匀性以及支架的抗压特性.方法 利用两阶段中和反应工艺,制备β-TCP粉末原料;将粘结剂均匀涂布在致孔剂表面后与β-TCP粉末混合,添加高温液相传质介质,再次混合形成致孔剂与β-TCP粉末的均匀混合体,加压成型、煅烧制备三维多孔细胞支架;X-衍射检测原料和支架的成分,扫描电镜观察支架的孔隙结构,力学实验仪测定支架的抗压性能.结果 原料和支架化学成分均为β-TCP;支架的孔隙呈球形、分布均匀、孔隙间几乎完全连通,大孔平均孔径781.38±70.47(n=12)μm,连通孔径297.88±66.86(n=13)μm;孔隙率、吸水率和抗压强度分别为52.27±0.11(n=6)Vol%、31.82±0.13(n=6)Wt%和11.40±0.07(n=6)MPa.结论 两阶段中和反应工艺能够制备出纯的β-TCP粉末,改进的支架制备技术,可以制备出孔隙率高、强度大、孔隙大小可控、孔隙分布均匀、孔隙间几乎完全连通的β-TCP支架,具备了组织工程要求的结构特征.  相似文献   

8.
骨组织工程快速成型支架改性的相关研究   总被引:3,自引:0,他引:3  
目的探讨胶原杂化及磷灰石表面沉积改性后的聚乳酸一羟基乙酸共聚物/β-磷酸三钙(PLGA/β—TCP)作为快速成型支架应用于骨组织工程的可行性。方法使用骨髓基质干细胞对胶原杂化及磷灰石表面沉积改性后的PLGA/β-TCP的生物相容性进行评估,通过扫描电镜观察改性后材料的表面特性及细胞与材料复合的形态学特征;细胞与材料复合后的繁殖与分化能力分别使用细胞计数及碱性磷酸酶定量方法进行评估。结果通过对亲水性、细胞增殖能力及碱性磷酸酶测定证实改性后的PLGA/β-TCP快速成型支架较单纯材料其亲水性及生物相容性有明显提高(P〈0.05)。结论胶原杂化及磷灰石表面沉积改性后的PLGA/β—TCP快速成型支架可作为三维支架应用于骨组织工程。  相似文献   

9.
复合细胞和人工骨的富血小板血浆成骨能力研究   总被引:3,自引:1,他引:2  
目的探讨复合细胞和人工骨的富血小板血浆(platelet—rich plasma,PRP)促进骨缺损修复的能力。方法取新西兰大白兔骨髓,分离培养骨髓基质干细胞(marrow stromal stem cells,MSCs);取兔全血体外诱导培养为类成骨样细胞,应用低密度两次离心法制备PRP。取48只1岁左右新西兰大白兔建立双侧桡骨1.2cm骨缺损模型,根据缺损中植入材料的不同随机分为4组,每组12只。A组:左侧PRP/Mscs/β-磷酸三钙(β-tricalcium phosphate,pTCP),右侧MSCs/β-TCP;B组:左侧自体骨,右侧PRP/Mscs/β-TCP;C组:左侧自体骨,右侧MSCs/β-TCP;D组:左侧PRP/β-TCP,右侧β-TCP。术后2、6及12周通过大体观察、X线片、组织学及生物力学观察桡骨缺损的愈合情况。结果制备的PRP血小板浓度稳定,约为全血的5.45±0.23倍。大体标本与X线片显示2、6周时PRP/MSCs/β-TCP在缺损处桥接及新生骨外形较自体骨差,与MSCs/β-TCP无明显区别;12周,PRP/MSCs/β-TCP在缺损处桥接及新生骨外形接近于自体骨,优于MSCs/β-TCP。组织学观察,在新生骨数量及成熟度方面,术后各时间点PRP/MSCs/β-TCP明显优于MSCs/β-TCP(P〈0.05),PRP/MSCs/β-TCP与自体骨无差异(P〉0.05);2、6周PRP/β-TCP与β-TCP无差异(P〉0.05);12周PRP/β-TCP优于β-TCP(P〈0.05)。新生骨生物力学强度检测,6、12周PRP/MSCs/阻TCP优于MSCs/β-TCP(P〈0.05);6周PRP/MSCs/β-TCP小于自体骨(P〈0.05),但12周与自体骨无差异(P〉0.05);12周PRP/β-TCP与β-TCP无差异(P〉0.05)。结论PRP复合MSCs和β-TCP显示出了良好的成骨能力,PRP可通过提高MSCs和成骨细胞的增殖与分化活性,促进骨缺损的修复。  相似文献   

10.
目的通过影像学探讨β-磷酸三钙/α-半水硫酸钙(β-TCP/α-CSH)复合人工骨的体内降解和成骨性能。方法制备兔股骨髁10mm×5mm包容性骨缺损模型,将自行研制的β-TCP/α-CSH复合人工骨颗粒制备成与缺损大小相同的圆柱状试件并植入缺损内,于术后4、8、12周采用X线、钼靶照相等方法观察骨缺损修复情况。结果β-TCP/α-CSH复合人工骨植入体内后逐渐降解,被自体骨爬行替代,12周时骨缺损部位大部分被新生骨取代,X线密度与周围正常骨组织接近。结论β-TCP/α-CSH复合人工骨修复包容性骨缺损具有优良的降解和成骨性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号