首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The histochemical characteristics, cross-sectional area and capillary of the skeletal muscle fibers of the anterior and posterior regions of the superficial masseter and the temporalis muscles are described for juvenile and adult rhesus monkeys of both sexes. Slow twitch fatigue resistant (S), fast twitch fatigue resistant (FR) and fast twitch fatigable (FF) fibers were found in varying proportions throughout the muscles; however some fibers with an intermediate myofibrillar ATPase activity were observed in the anterior masseter. No significant differences for any of the variables were found between male and female juveniles for a specific muscle sample site. However, considerable variation was found between juvenile and adult and between adult male and female monkeys in the percentages of different fiber types and the cross-sectional area of fibers in specific regions of the superficial masseter and temporalis muscles. We conclude from these observations that significant differences in function exist both within and between the different masticatory muscles of rhesus monkeys. Functional differences may result from the pronounced sexual dimorphism evident in the dentofacial complex of the rhesus monkey.  相似文献   

3.
The histochemical characteristics, cross-sectional area and capillary of the skeletal muscle fibers of the anterior and posterior regions of the superficial masseter and the temporalis muscles are described for juvnile and adult rhesus monkeys of both sexes. Slow twitch fatigue resistant (S), fast twitch fatigue resistant (FR) and fast twitch fatigable (FF) fibers were found in varying proportions throughout the muscles; however some fibers with an intermediate myofibrillar ATPase activity were observed in the anterior masseter. No significant differences for any of the variables were found between male and female juveniles for a specific muscle sample site. However, consideable variation was found between juvenile and adult and between adult male and female monkeys in the percentages of different fiber types and the cross-sectional area of fibers in specific regions of the superficial masseter and temporalis muscles. We conclude from these observations that significant differences in funtion exist both within and between the different masticatory muscles of rhesus monkeys. Functional differences may result from the pronounced sexual dimorphism evident in the dentofacial complex of rhesusmonkey.  相似文献   

4.
The aim of this research was to examine the influence of β-hydroxy-β-methylbutyrate (HMB) on changes in the profile of muscle fibers, whether these alterations were similar between the elevator and depressor muscles of the jaw, and whether the effects would be similar in male and female animals. Fifty-eight rats aged 60 days (29 animals of each gender) were divided into four groups: the initial control group (ICG) was sacrificed at the beginning of the experiment; the placebo control group (PCG) received saline and was fed ad libitum; the experimental group (EG) received 0.3 g kg−1 of HMB daily for 4 weeks by gavage as well as the same amount of food consumed by the PCG in the previous day; and the experimental ad libitum group (EAG) received the same dose of the supplement along with food ad libitum. Samples included the digastric and masseter muscles for the histoenzymological analysis. Data were subjected to statistical analysis with a significance level of P < 0.05. Use of HMB caused a decrease in the percentage of fast twitch glycolytic (FG) fibers and an increase in fast twitch oxidative glycolytic (FOG) fibers in males in both experimental groups (EG and EAG). However, it produced no increase in the muscle fiber area, in either gender, in the masseter muscle. In the digastric muscle, the HMB did not change the frequency or the area of any muscle fiber types in either gender. Our data suggest that the use of HMB caused small changes in the enzymological profile of fibers of the mastication muscles; the changes were different in the elevator and depressor muscles of the jaw and the results were different depending on gender.  相似文献   

5.
The development of the craniofacial system occurs, among other reasons, as a response to functional needs. In particular, the deficiency of the proper masticatory stimulus affects the growth. The purpose of this study was to relate alterations of muscle activity during postnatal development to adaptational changes in the muscle fibers. Fourteen 21-day-old Wistar strain male rats were randomly divided into two groups and fed on either a solid (hard-diet group) or a powder (soft-diet group) diet for 63 days. A radio-telemetric device was implanted to record muscle activity continuously from the superficial masseter, anterior belly of digastric and anterior temporalis muscles. The degree of daily muscle use was quantified by the total duration of muscle activity per day (duty time), the total burst number and their average length exceeding specified levels of the peak activity (5, 20 and 50%). The fiber type composition of the muscles was examined by the myosin heavy chain content of fibers by means of immunohistochemical staining and their cross-sectional area was measured. All muscle fibers were identified as slow type I and fast type IIA, IIX or IIB (respectively, with increasing twitch contraction speed and fatigability). At lower activity levels (exceeding 5% of the peak activity), the duty time of the anterior belly of the digastric muscle was significantly higher in the soft-diet group than in the hard-diet group (P < 0.05). At higher activity levels (exceeding 20 and 50% of the peak activity), the duty time of the superficial masseter muscle in the soft-diet group was significantly lower than that in the hard-diet group (P < 0.05). There was no difference in the duty time of the anterior temporalis muscle at any muscle activity level. The percentage of type IIA fibers of the superficial masseter muscle in the soft-diet group was significantly lower than that in the hard-diet group (P< 0.01) and the opposite was true with regard to type IIB fibers (P< 0.05). The cross-sectional area of type IIX and type IIB fibers of the superficial masseter muscle was significantly smaller in the soft-diet group than in the hard-diet group (P < 0.05). There was no difference in the muscle fiber composition and the cross-sectional area of the anterior belly of the digastric and anterior temporalis muscles. In conclusion, for the jaw muscles of male rats reared on a soft diet, the slow-to-fast transition of muscle fiber was shown in only the superficial masseter muscle. Therefore, the reduction in the amount of powerful muscle contractions could be important for the slow-to-fast transition of the myosin heavy chain isoform in muscle fibers.  相似文献   

6.
Five muscle fibre types (I, IIc, IIa, IIx and IIb) were found in the suprahyoid muscles (mylohyoid, geniohyoid, and the anterior and posterior bellies of the digastric) of the rat using immuno and enzyme histochemical techniques. More than 90% of fibres in the muscles examined were fast contracting fibres (types IIa, IIx and IIb). The geniohyoid and the anterior belly of the digastric had the greatest number of IIb fibres, whilst the mylohyoid was almost exclusively formed by aerobic fibres. The posterior belly of the digastric contained a greater percentage of aerobic fibres (83.4%) than the anterior belly (67.8%). With the exception of the geniohyoid, the percentage of type I and IIc fibres, which have slow myosin heavy chain (MHCβ), was relatively high and greater than has been previously reported in the jaw‐closing muscles of the rat, such as the superficial masseter. The geniohyoid and mylohyoid exhibited a mosaic fibre type distribution, without any apparent regionalisation, although in the later MHCβ‐containing fibres (types I and IIc) were primarily located in the rostral 2/3 region. In contrast, the anterior and posterior bellies of the digastric revealed a clear regionalisation. In the anterior belly of the digastric 2 regions were observed: both a central region, which was almost exclusively formed by aerobic fibres and where all of the type I and IIc fibres were located, and a peripheral region, where type IIb fibres predominated. The posterior belly of the digastric showed a deep aerobic region which was greater in size and where type I and IIc fibres were confined, and a superficial region, where primarily type IIx and IIb fibres were observed.  相似文献   

7.
Five muscle fibre types (I, IIc, IIa, IIx and IIb) were found in the suprahyoid muscles (mylohyoid, geniohyoid, and the anterior and posterior bellies of the digastric) of the rat using immuno and enzyme histochemical techniques. More than 90% of fibres in the muscles examined were fast contracting fibres (types IIa, IIx and IIb). The geniohyoid and the anterior belly of the digastric had the greatest number of IIb fibres, whilst the mylohyoid was almost exclusively formed by aerobic fibres. The posterior belly of the digastric contained a greater percentage of aerobic fibres (83.4%) than the anterior belly (67.8%). With the exception of the geniohyoid, the percentage of type I and IIc fibres, which have slow myosin heavy chain (MHCβ), was relatively high and greater than has been previously reported in the jaw-closing muscles of the rat, such as the superficial masseter. The geniohyoid and mylohyoid exhibited a mosaic fibre type distribution, without any apparent regionalisation, although in the later MHCβ-containing fibres (types I and IIc) were primarily located in the rostral 2/3 region. In contrast, the anterior and posterior bellies of the digastric revealed a clear regionalisation. In the anterior belly of the digastric 2 regions were observed: both a central region, which was almost exclusively formed by aerobic fibres and where all of the type I and IIc fibres were located, and a peripheral region, where type IIb fibres predominated. The posterior belly of the digastric showed a deep aerobic region which was greater in size and where type I and IIc fibres were confined, and a superficial region, where primarily type IIx and IIb fibres were observed.  相似文献   

8.
Skeletal muscles have a heterogeneous fiber type composition, which reflects their functional demand. The daily muscle use and the percentage of slow‐type fibers have been shown to be positively correlated in skeletal muscles of larger animals but for smaller animals there is no information. The examination of this relationship in adult rats was the purpose of this study. We hypothesized a positive relationship between the percentage of fatigue‐resistant fibers in each muscle and its total duration of use per day. Fourteen Wistar strain male rats (410–450 g) were used. A radio‐telemetric device was implanted to record muscle activity continuously from the superficial masseter, deep masseter, anterior belly of digastric and anterior temporalis muscles. The degree of daily muscle use was quantified by the total duration of muscle activity per day (duty time) exceeding specified levels of the peak activity (2, 5, 20 and 50%). The fiber type composition of the muscles was examined by the myosin heavy chain content of the fibers by means of immunohistochemical staining. At lower activity levels (exceeding 2 and 5% of the peak activity), the duty time of the anterior belly of digastric muscle was significantly (P < 0.01) longer than those of the other muscles. The anterior belly of digastric muscle also contained the highest percentage of slow‐type fibers (type I fiber and hybrid fiber co‐expressing myosin heavy chain I + IIA) (ca. 11%; P < 0.05). By regression analysis for all four muscles, an inter‐muscular comparison showed a positive relationship between the duty time (exceeding 50% of the peak activity) and the percentage of type IIX fibers (P < 0.05), which demonstrate intermediate physiological properties relative to type IIA and IIB fibers. For the jaw muscles of adult male rats, the variations of fiber type composition and muscle use suggest that the muscle containing the largest amounts of slow‐type fibers (the anterior belly of digastric muscle) is mainly involved in low‐amplitude activities and that the amount of type IIX fibers is positively related to the generation of large muscle forces, validating our hypothesis.  相似文献   

9.
The number and histochemical properties of muscle fibers and motoneurons were studied in the extensor digitorum longus muscle in female albino rats at the ages of 10, 60 and 120 weeks. The number of fast twitch glycolytic (FG) fibers was decreased at 60 weeks, while that of fast twitch oxidative glycolytic (FOG) fibers was decreased at 120 weeks. The number and oxidative enzyme activity of motoneurons were decreased later at 120 weeks. Thus, it is suggested that the decrease in FG fibers at 60 weeks was due to selective muscle fiber atrophy or to degeneration of neuromuscular junctions, while on the other hand, the decrease in FOG fibers at 120 weeks was due mainly to both a decrease in motoneurons and a type shift of fibers from FOG to FG.  相似文献   

10.
Wistar male rats were sacrificed at 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, and 21 days, and at 5 and 10 weeks of age. The histochemical differentiation of slow twitch soleus and fast twitch plantaris muscle fibers was examined from the enzyme activities of adenosine triphosphatase (slow- or fast-contracting), succinate dehydrogenase (high- or low-oxidative), and alpha-glycerophosphate dehydrogenase (high- or low-glycolytic). The soleus muscle fibers differentiated into slow-contracting (S) and fast-contracting (F) fibers at 7 days of age. In the plantaris muscle, differentiation into S and F fibers in the deep portion occurred earlier (9 days) than in the superficial portion (11 days). Thereafter, fiber type shifts between S and F were observed in both muscles. Differentiation into fast-contracting oxidative glycolytic (FOG), fast-contracting glycolytic (FG), and slow-contracting oxidative (SO) fibers occurred in both muscles at 15 and 17 days of age. After subdivision into the three fiber types, a type shift from FOG to FG was observed in both the deep and superficial portions of the plantaris muscle.  相似文献   

11.
Distribution, frequency and diameter of fiber types were ascertained in the thigh muscles of I, C, W and M chicken inbred lines. The iliotibialis posterior muscle is composed of FOG and FG types uniformly distributed over the whole muscle cross-section. Three fiber types are demonstrated in the sartorius and semimembranosus muscles. In the superficial regions, the FOG and FG types are present only. Avian SO type appears down into the depth of the muscles. The frequency of this type and FOG type gradually increases in this direction whereas the proportion of FG type decreases. Semimembranosus muscle shows generally higher percentage of FOG fibers and lower frequency of remaining two types. Differences between inbred lines in fiber type frequencies are mostly insignificant. However, the M line with the highest live and muscle weights shows larger fiber diameter of FG and FOG types than I, C and W lines.  相似文献   

12.
In spite of a decline in muscle strength with age, the cause of the overall decrease in motor performance in aged mammals, including rodents, is incompletely understood. To add clarity, the gross organization, innervation, histochemical fiber types, and age-associated changes are described for mouse forearm muscles used in a variety of motor functions. The anterior (flexor) and posterior (extensor) forearm compartments have the same arrangement of muscles and gross pattern of innervation as the rat. Two primary histochemical fiber types, fast/oxidative/glycolytic (FOG) and fast/glycolytic (FG), with characteristic hitsochemical staining patterns were observed in all forearm muscles. Additionally, there was a small population of slow/oxidative (SO) fibers confined to the deep region of a single muscle, the flexor carpi ulnaris (FCU). Between 18 and 26 months the FCU muscle displayed fibers with morphological features distinct from earlier ages. Fibers displayed a greater variation in size, a loss of their uniform polygonal shape, and a dramatic increase in clumps of subsarcolemmal mitochondria, lysosomes, and lipofuscin granules. Many of the fibers had a distinctly atrophic, angular shape consistent with recent denervation. Morphometric analyses of the FCU's source of innervation, the ulnar nerve and one of its ventral roots (C8), were consistent with the denervation-like changes in the muscle fibers. Although, there was no net loss of myelinated axons between 4 and 26 months of age, there was a significant increase in the density of degenerating cells in both the ulnar nerve and ventral root C8. © 1993 Wiley-Liss, Inc.  相似文献   

13.
1. Physiological and histochemical properties of the cat ankle extensor muscles, the lateral and medial gastrocnemius, and the soleus were studied after cross-reinnervation by flexor motoneurons. 2. Tibial and common peroneal nerves were cut and cross-united in the popliteal fossa of 2- to 6-mo-old cats. Eighteen to 24 mo later, single motor units were isolated by dissection and stimulation of ventral root filaments and classified into four types: fast-twitch, fatigable (FF), fast-twitch with intermediate fatigue resistance (FI), fast-twitch, fatigue-resistant (FR), and slow, fatigue-resistant (S). Muscle fibers were classified as fast glycolytic (FG), fast, oxidative glycolytic (FOG), and slow oxidative (SO) on the basis of histochemical staining. 3. Although motor-unit force was normally well correlated with the size of the innervating motor axon in the cross-reinnervated muscles, the force of different unit types overlapped considerably. The reinnervated motor units also showed a higher than normal degree of fatigability. 4. The range of muscle unit forces in cross-reinnervated triceps surae muscles was the same as in the normally innervated triceps surae muscles. This range is 2-3 times greater than the flexor muscles, which the common peroneal nerve normally supplies. The range of contraction speed of units in the cross-reinnervated extensor muscles was comparable to that in the flexor muscles, consistent with a motoneuron-specific determination of muscle speed (28). 5. SO and FOG muscle fibers were found in all reinnervated triceps surae muscles, but FG fibers were only found in reinnervated medial gastrocnemius (MG) and lateral gastrocnemius (LG) muscles, consistent with previous findings of the resistance of soleus muscles to complete conversion (10, 16, 20, 21). Type grouping of muscle fibers was characteristic of the reinnervated muscles. 6. Reinnervated SO muscle fibers were larger than the corresponding fibers in normally innervated muscles as were the estimated number of muscle fibers innervated by slow motor axons. Nonetheless, the force generated by the S motor units remained relatively smaller than FR and FF units. The relative contributions of the number, cross-sectional area and specific tension to the force generation of reinnervated motor units are discussed.  相似文献   

14.
The populations of fiber types in hindlimb muscles of the tree shrew (Tupaia glis), lesser bushbaby (Galago senegalensis), and the slow loris (Nycticebus coucang) were described and an attempt was made to correlate populations of fiber types and locomotor patterns. Muscle fibers were assigned to one of the following groups: fast-twitch glycolytic (FG), fast-twitch oxidative-glycolytic (FOG), and slow-twitch oxidative (SO). Histochemical techniques for the demonstration of alkaline- and acid-stable ATPases, succinic dehydrogenase, and mitochondrial á-glycerophosphate dehydrogenase were used in the classification of muscle fibers. Results indicated that the FG fiber type is the predominant fiber type in muscles used for jumping, the FOG fiber type is predominant in muscles used for running, and the SO fiber type occurs in high percentages in postural muscles. The SO fiber was also the most common fiber in muscles of the slow loris--a species that exhibits a slow, deliberate, sustained locomotor pattern. Intramuscular regional variations in populations were seen in some larger muscles of the tree shrew, but not in the lesser bushbaby and slow loris. Our results did not support the contentions of others that analogous muscles in different species have similar populations of fiber types.  相似文献   

15.
Summary The aim of this report is to elucidate the effects of exercise training on metabolic properties of different muscle fibre types of the rat hindlimb. Single muscle fibres were dissected from soleus (SOL) or extensor digitorum longus (EDL) muscles of Wistar strain male rats trained on a treadmill for 16 weeks. Each fibre was typed histochemically (SO, slow-twitch oxidative; FOG, fast-twitch oxidative glycolytic; FG, fast-twitch glycolytic). Then glycolytic and oxidative enzymes (CK, LDH, PFK, PK, SDH, and MDH) activities were measured biochemically. Slow,-type fibres (SO) were hypertrophied following endurance training and fast-twitch fibres (FOG and FG) were hypertrophied following sprint training. In EDL muscles the distribution of the slow-type fibres was reduced following the sprint training. The activity of glycolytic enzymes increased significantly in the fast-type fibres (FOG and FG) following sprint training, while oxidative enzymes activities increased in both fast (FOG and FG) and slow (SO) muscle fibres following the endurance training. Neither glycolytic nor oxidative enzymes' activities always increased equally in all types of fibre following exercise training. Consequently, the metabolic profiles in each type of single muscle fibre were affected differently by different intensities of exercise training. These results suggest that the functional (enzymes activity) and structural (muscle fibre hypertrophy) changes of skeletal muscle fibre following exercise training appeared gradually, and would be controlled by different factors.  相似文献   

16.
Histological examination of the jaw muscles of the Japanese ermine showed that 4 jaw-closing muscles have 13 muscle spindles on one side of the face. The temporal muscle has 99 muscle spindles, 68 being in the anterior vertical and 31 in the posterior horizontal belly. The masseter muscle has 33 muscle spindles, 23 being in the profound and 10 in the superficial belly. The medial pterygoid muscle has 7 muscle spindles and the zygomaticomandibular muscle contains 4 muscle spindles. The lateral pterygoid and the jaw-opening muscles have no spindles.  相似文献   

17.
We describe a rare anomaly in the submental region of a single male cadaver specimen. The anterior belly of the right digastric muscle was observed to have three separate insertions. Most medial of these crossed the midline and inserted to the digastric fossa with the opposite digastric muscle. These muscle bands were united in a common tendon as they continued with the posterior belly. This is an anatomical variation in the mylohyoid digastric muscle group in the floor of the mouth. Consideration of such variations of the anterior bellies of the digastric muscles should be noted during the evaluation of the floor of the mouth in the CT examination or MR imaging. © 1993 Wiley-Liss, Inc.  相似文献   

18.
The digastric muscle is located in the suprahyoid region on each side and frequently exhibits two muscular bellies (anterior and posterior) linked by an intermediate tendon. The paired digastric muscles act together either depressing the mandible or elevating the hyoid bone; therefore acting as a single muscle with important physiological roles. In the present study, the digastric muscle has been analyzed bilaterally in 74 adult human cadavers. A computerized morphometrical investigation of the digastric muscles has been performed (Image Pro Plus software package, Media Cybernetics, USA) and the resulting quantitative data have been statistically assessed (SPSS 11.0 for Windows, USA). We hereby propose an original morphological classification that encompasses five types (I-V) for the anterior belly (AB); three types (I-III) for the intermediate tendon (IT); and two types (I-II) for the posterior belly (PB) of the human digastric muscle. In each digastric muscle, the aforementioned anatomical types have been characterized according to the muscular bellies and intermediate tendon. Consequently, as a result of the combinations of those diverse types, individual digastric muscles have been considered as pertaining to distinctive morphological patterns (named from A to J). Cases with absence of either AB or PB have been included in patterns K and L and would be more appropriately defined as monogastric muscles. This innovative classification provides clear-cut anatomical parameters for interpreting morphological variants of the digastric muscle with relevant clinical and surgical correlations.  相似文献   

19.
The relationships between ultrastructural and metabolic profiles in different types of single muscle fiber after hindlimb suspension in rats were examined. Glycolytic (lactate dehydrogenase, LDH; phosphofructokinase, PFK) and oxidative (succinate dehydrogenase, SDH; malate dehydrogenase, MDH) enzyme activities in extensor digitorum longus (EDL) and soleus (SOL) muscles were measured. Relative mitochondrial and lipid droplet volumes were also measured in single muscle fiber of different types. Glycolytic enzyme activity in EDL muscle and oxidative enzyme activity in soleus muscle decreased following suspension for 2 weeks. LDH and PFK activities in fast-twitch (FG, fast-twitch glycolytic; FOG, fast-twitch oxidative glycolytic) fibers and oxidative enzymes in FOG and FG fibers decreased following suspension. Relative mitochondrial volume decreased significantly in all types (SO, slow-twitch oxidative; FOG, and FG) of fibers following suspension. The mitochondrial volume in SO fiber of the control group was significantly (p less than 0.01) higher than that of suspended group; however, SDH and MDH activities were not different between the control and suspended groups. The structural and metabolic changes following hindlimb suspension were influenced by different factors, respectively. Changes in ultrastructural and metabolic profiles in response to the hindlimb suspension differed according to the type of fibers.  相似文献   

20.
We came across a very rare case in which the anterior belly of the digastric muscle was innervated by the twigs of the facial nerve in addition to those of the mylohyoid nerve. The anomaly was discovered in the cadaver of an 84-year-old Japanese male bequeathed for a training seminar in gross anatomy at Kumamoto University in 2003. One twig issued from the marginal mandibular branch of the facial nerve and entered the central region of the anterior belly of the digastric muscle on the lower surface. The other twig issued from the stylohyoid branch of the facial nerve, descended along the lateral margin of the stylohyoid muscle and entered the anterior belly of the digastric muscle on the lower surface near the intermediate tendon. The twig from the marginal mandibular branch was distributed to the shallow (lower) and central region near the medial margin of the anterior belly. The twig from the stylohyoid branch was distributed to the shallow and lateral region of the anterior belly. These two twigs communicated with the mylohyoid nerve at several peripheral parts. Textbooks on general anatomy make mention of only one nerve, the mylohyoid, supplying the anterior belly of the digastric muscle. However, the present case manifests that the anterior belly receiving twigs from the mylohyoid and facial nerves is formed with the second brachial component as well as the first.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号