首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
To remove arsenite (As(iii)) from wastewater effectively, the catalytic oxidation of As(iii) to arsenate (As(v)) and As(v) precipitation with iron ions (Fe(iii)) was investigated. The Pt/SiO2 catalyst functioned as a reaction site for As(iii) with oxygen in the atmosphere. The combination of the Pt/SiO2 catalyst and Fe(iii) precipitant improved the removal of As(iii) in the precipitate; Pt/SiO2 worked as both an As(iii) oxidation site and precipitation site with Fe(iii) precipitant.

A Pt/SiO2 catalyst promoted an oxidative reaction of arsenite to arsenate with air, and it also functioned as a nucleation site of its precipitate with iron precipitant, achieving high removal efficiency from water.  相似文献   

2.
Heavy metal ions in water refer to significant risks to the biological system due to their high toxicity. Therefore, the decontamination of water polluted by heavy metal ions attracts significant interest of researchers. Adsorption by nanomaterials has been a widely used technique for removing heavy metal ions from water. Chitosan was extracted from shrimp shellfish and mixed with laboratory-prepared AgNPs/GO in the ratio of 3 : 1. A series of tests evaluates the best condition of pH, amount of adsorbent, retention time, stirring speed, temp, and initial concentration. The research was conducted under various conditions. Langmuir, Freundlich, Tempkin, and Dubinin–Radushkevich isotherms were also tested. Also, the column adsorption experiment was carried out on industrial wastewater at different flow rates and column bed heights. The optimal values of the contact time, pH, and adsorbent dose of Cr(vi) were found to be 80 min, 4, and 0.1 g 100 mL−1, respectively, at room temperature (30 °C), agitation at 150 rpm, and initial concentration of 50 ppm. On the other hand, the optimal value of contact time, pH, and adsorbent dose of Fe(iii) were found to be 30 min, 6, and 0.02 g 100 mL−1, respectively, at room temp (30 °C) with a stirring speed of 250 rpm and an initial concentration of 40 ppm. For Cr(vi) and Fe(iii), equilibrium studies show that the data fit the Freundlich isotherm well (correlation coefficient, R2 = 0.98) (III). A link between the pseudo-second order active model and data fitting the pseudo-first order active models were made. Within the intraparticle diffusion model, there are four stages that the mechanism must go through before it is at equilibrium. The adsorbent was tested in an industrial adsorbent column. This test proves that the nanocomposite''s adsorption capacity can be restored by washing it with 0.1 M HCl, as shown by the periodicity test. After four cycles, the amount of Cr(vi) adsorbed on AgNPs/GO/chitosan was just 20%, which is insufficient for further adsorption experiments. Cr(vi) removal rates (%R) decreased slightly.

Steps of AgNPs/GO/chitosan nanocomposite preparation.  相似文献   

3.
In this study, a jacobsite–biochar nanocomposite (MnFe2O4–BC) was fabricated and used to simultaneously remove Sb(iii) and Cd(ii) from water via adsorption. The MnFe2O4–BC nanocomposite was prepared via a co-precipitation method and analyzed using various techniques. The results confirm the successful decoration of the biochar surface with MnFe2O4 nanoparticles. The maximum Sb(iii) removal efficiency was found to be higher from bi-solute solutions containing Cd(ii) than from single-solute systems, suggesting that the presence of Cd(ii) enhances the removal of Sb(iii). The Langmuir isotherm model describes well Sb(iii) and Cd(ii) removal via adsorption onto the MnFe2O4–BC nanocomposite. The maximum adsorption capacities are 237.53 and 181.49 mg g−1 for Sb(iii) and Cd(ii), respectively, in a bi-solute system. Thus, the prepared MnFe2O4–BC nanocomposite is demonstrated to be a potential adsorbent for simultaneously removing Sb(iii) and Cd(ii) ions from aqueous solutions.

In this study, a jacobsite–biochar nanocomposite (MnFe2O4–BC) was fabricated and used to simultaneously remove Sb(iii) and Cd(ii) from water via adsorption.  相似文献   

4.
An aluminium-based metal–organic framework ((MOF), MIL-53(Al)), was hydrothermally synthesized, characterized and applied for the remediation of the herbicides dicamba (3,6-dichloro-2-methoxy benzoic acid) and 4-chloro-2-methylphenoxyacetic acid (MCPA) in aqueous medium. Response surface methodology (RSM) and artificial neural network (ANN) were used to design, optimize and predict the non-linear relationships between the independent and dependent variables. The shared interaction of the effects of key response parameters on the adsorption capacity were assessed using the central composite design-RSM and ANN optimization models. The optimum adsorption capacities for dicamba and MCPA are 228.5 and 231.9 mg g−1, respectively. The RSM ANOVA results showed significant p-values, with coefficients of determination (R2) = 0.988 and 0.987 and R2 adjusted = 0.974 and 0.976 for dicamba and MCPA, respectively. The ANN prediction model gave R2 = 0.999 and 0.999, R2 adjusted = 0.997 and 0.995 and root mean square errors (RMSEs) of 0.001 and 0.004 for dicamba and MCPA, respectively. In each set of experimental conditions used for the study, the ANN gave better prediction than the RSM, with high accuracy and minimal error. The rapid removal (∼25 min), reusability (5 times) and good agreement between the experimental findings and simulation results suggest the great potential of MIL-53(Al) for the remediation of dicamba and MCPA from water matrices.

Rapid equilibration within a short time, high adsorption capacity, optimization, multivariate interaction of adsorption parameters and artificial neural network prediction model.  相似文献   

5.
The synergistic catalytic effect in a hetero-trimetallic catalytic monolayer is one of the intriguing topics because the additive effects of the second or third component play an important role in improving the activity. In this paper, a new Schiff-base organometallic nanosheet containing Pd/Fe/Ru immobilized on graphene oxide (GO@H-Pd/Fe/Ru) was prepared and characterized. The catalytic performance of GO@H-Pd/Fe/Ru and synergistic effect were systematically investigated. GO@H-Pd/Fe/Ru was found to be an efficient catalyst with higher turnover frequency (TOF) (26 892 h−1) and stability with recyclability of at least 10 times in the Suzuki–Miyaura coupling reaction. The deactivation mechanism was caused by the aggregation of the active species, loss of the active species, the changes of the organometallic complex, and active sites covered by adsorbed elements during the catalytic process. GO@H-Pd/Fe/Ru was a heterogeneous catalyst, as confirmed by kinetic studies with in situ FT-IR, thermal filtration tests and poisoning tests. The real active center containing Pd, Ru and Fe arranged as Fe(iii)–Ru(iii)–Pd(ii)–Fe(iii) was proposed. Although Ru(iii) and Fe(iii) were shown to be less active or inactive, the addition of Fe and Ru could effectively improve the entire activity by their ‘‘indirect’’ function, in which Fe or Ru made Pd more negative and more stable. The ensemble synergistic effect between metals, the ligand and support was described as a process in which the electron was transferred from GOvia ligand to Ru, and then to Pd or from Fe to Pd to make Pd more negative, promoting the oxidation addition with aryl halide. Also, the vicinity of Ru around Pd as the promoter adsorbed aryl boronic acid, which facilitates its synergism to react with the oxidation intermediate to the trans-metallic intermediate.

An ensemble synergistic effect between metals, ligand and support occurs when an electron transferred from GOvia ligand to Ru, and then to Pd or from Fe to Pd, to make Pd more negative, resulting in higher activity.  相似文献   

6.
Herein, nanoscale iron (oxyhydr)oxide-coated carbon nanotube (CNT) filters were rationally designed for rapid and effective removal of Sb(iii) from water. These iron (oxyhydr)oxide particles (<5 nm) were uniformly coated onto the CNT sidewalls. The as-fabricated hybrid filter demonstrated improved sorption kinetics and capacity compared with the conventional batch system. At a flow rate of 6 mL min−1, a Sb(iii) pseudo-first-order adsorption rate constant of 0.051 and a removal efficiency of >99% was obtained when operated in the recirculation mode. The improved Sb(iii) sorption performance can be ascribed to the synergistic effects of convection-enhanced mass transport, limited pore size, and more exposed active sorption sites of the filters. The presence of 1–10 mmol L−1 of carbonate, sulfate, and chloride inhibits Sb(iii) removal negligibly. Exhausted hybrid filters can be effectively regenerated by an electrical field-assisted chemical washing method. STEM characterization confirmed that Sb was mainly sequestered by iron (oxyhydr)oxides. XPS, AFS and XAFS results suggest that a certain amount of Sb(iii) was converted to Sb(v) during filtration. DFT calculations further indicate that the bonding energy for Sb(iii) onto the iron (oxyhydr)oxides was 2.27–2.30 eV, and the adsorbed Sb(iii) tends to be oxidized.

Herein, nanoscale iron (oxyhydr)oxide-coated carbon nanotube (CNT) filters were rationally designed for rapid and effective removal of Sb(iii) from water.  相似文献   

7.
Optimization of adenosine deaminase assay by response surface methodology   总被引:1,自引:0,他引:1  
The effect of four variables (adenosine, glutamate dehydrogenase, phosphate buffer, and pH) on the measured catalytic concentration of adenosine deaminase (EC 3.5.4.4) was studied by Response Surface Methodology (RSM). This multivariate methodology offers an empirical approach to the study of enzyme assays and allows to detect the interaction between different variables of the system. Response–surface data showed maximum adenosine deaminase catalytic concentration at pH 7.2, adenosine 20 mmol/l, phosphate buffer 200 mmol/l and glutamate dehydrogenase 850 μkat/l when pleural fluids were used as samples. Optimum conditions for a material containing purified adenosine deaminase from human erythrocytes differed only slightly from that obtained for the pleural fluid.  相似文献   

8.
In this work we studied the extraction behaviors of Cf(iii) by NTAamide (N,N,N′,N′,N′′,N′′-hexaocactyl-nitrilotriacetamide, C8) in nitric acid medium. Influencing factors such as contact time, concentration of NTAamide(C8), HNO3 and NO3 as well as temperature were considered. The slope analysis showed that Cf(iii) should be coordinated in the form of neutral molecules, and the extraction complex should be Cf(NO3)3·2L (L = NTAamide(C8)), which can achieve better extraction effect under the low acidity condition. When the concentration of HNO3 was 0.1 mol L−1, the separation factor (SFCf/Cm) was 3.34. The extractant has application prospect to differentiate the trivalent Cf(iii) and Cm(iii) when the concentration of nitric acid is low. On the other hand, density functional theory (DFT) calculations were conducted to explore the coordination mechanism of NTAamide(C8) ligands with Cf/Cm cations. The NTAamide(C8) complexes of Cf(iii)/Cm(iii) have similar geometric structures, and An(iii) is more likely to form a complex with 1 : 2 stoichiometry (metal ion/ligands). In addition, bonding property and thermodynamics analyses showed that NTAamide(C8) ligands had stronger coordination ability with Cf(iii) over Cm(iii). Our work provides meaningful information with regard to the in-group separation of An(iii) in practical systems.

We performed basic chemical studies on Cf using NTAamide extractant. The results of experiments and DFT calculations show that NTAamide has a good coordination ability to Cf/Cm and is expected to be applied to Cf/Cm separation.  相似文献   

9.
Development of novel porous materials for efficient adsorption and removal of environmental pollutants from aqueous solution is of great importance and interest in environmental science and chemistry. Herein, we reported a facile synthesis of recyclable magnetic carbonaceous porous composite derived from iron-based metal–organic framework MIL-100(Fe) for superior adsorption and removal of malachite green (MG) from aqueous solution. Because of large surface area and high porosity, the synthesized magnetic carbonaceous porous material presented a superior adsorption capacity of 2090 mg g−1 for MG. The adsorption of MG on magnetic carbonaceous porous composite is endothermic and spontaneous. The prepared magnetic carbonaceous porous composite could be separated easily and rapidly from the solution matrix by an external magnet. The rapid adsorption, large adsorption capacity and good reusability make it attractive for practical use in the adsorption and removal of dyes from aqueous solutions.

Magnetic carbonaceous porous composites (MCPCs) showed excellent adsorption capacity (up to 2090 mg g−1) for malachite green with good reusability and stability.  相似文献   

10.
目的筛选胆碱酯酶(ChE)的最佳测量条件。方法选择5,5'-二硫双(2-硝基苯甲酸)法(DTNB)测量ChE的关键影响因子,用单因素分析法确定响应面分析法(RSM)的理想实验区域,用RSM的中央合成设计建立相应的反应面模型,获得影响因子响应值的关系方程。用Minitab 15软件进行RSM测量条件优化,筛选出ChE最佳测量条件并进行验证。结果 ChE测量的关键影响因子为缓冲液pH值(A)、丁酰硫代胆碱浓度(B)、DTNB浓度(C)。RSM的理想实验区域为缓冲液pH值7.6~9.2;丁酰硫代胆碱浓度6.7~20.1 mmol/L;DTNB浓度0.2~0.4 mmol/L。各影响因子与响应值(Y)的关系方程为Y=8 476.13-73.29A+20.00B-4.56C-126.86A2+32.85B2+71.48C2-55.47AB-1.06AC-16.34BC。ChE的最佳测量条件为缓冲液pH值8.10;丁酰硫代胆碱浓度13.40 mmol/L;DTNB浓度0.29 mmol/L,此条件下ChE催化活性为8 755 U/L,相当于理论最高酶活性的95%以上。结论用RSM成功筛选出ChE最佳测量条件,建立了合理可行的ChE测量影响因子的RSM多因子分析模型。  相似文献   

11.
The role of breathing behavior in hydrated and dehydrated forms of MIL-53(Fe) is investigated here. The material can be used as an efficient electrocatalyst and photocatalyst for a hydrogen evolution reaction (HER) in an alkaline medium and the same was further tested for the degradation of organic pollutants. The as-synthesized MIL-53(Fe)/hydrated and dehydrated forms were characterized by different analytical techniques to study their structure, morphology, surface analysis, thermal, physical and chemical properties. The breathing behavior of the hydrated and dehydrated forms of MIL-53(Fe) was studied through BET surface analysis. Our results show a low onset potential (−0.155 V and −0.175 V), Tafel slope (71.6 mV per decade, 88.7 mV per decade) and a large exchange current density (1.6 × 10−4 mA cm−2 and 2.5 × 10−4 mA cm−2). Hydrated and dehydrated MIL-53(Fe) degraded an RhB dye solution within 30 minutes thus proving their efficiency as efficient photocatalysts.

The role of breathing behavior in hydrated and dehydrated forms of MIL-53(Fe) is investigated here.  相似文献   

12.
A new spherical cellulose-based adsorbent and high phosphate removal rate microcrystalline cellulose-g-acrylamide/ethylenediamine/phthalic anhydride (MCC-g-AM/EDA/PA) loaded Fe(iii) adsorbent was prepared by a pre-radiation grafting and chemical modification method. Fe(iii) was successfully introduced into the modified grafted chains of the MCC-g-AM/EDA/PA resin, and characterized by FTIR, TG, XRD, SEM and XPS. The optimized conditions for the grafting reaction of acrylamide (AM) onto MCC were 20% AM emulsion at an absorbed dose of 30 kGy, and a grafting rate as high as 247%. In addition, the adsorption performance of the adsorbent was tested by static adsorption experiments with phosphate. The adsorbent resin showed excellent adsorption performance under alkaline conditions, contributions to the synergetic effect of precipitation, and inner-sphere surface complex reactions. The adsorption efficiency can reach 89.7% at low concentration. In summary, the neotype spherical cellulose-based adsorbent has the advantages of being separation-free in bulk materials, avoiding secondary pollution, and being easy to recycle, and it could be employed as an environmentally friendly adsorbent for phosphate removal in eutrophic water.

A new spherical cellulose-based adsorbent and high phosphate removal rate microcrystalline cellulose-g-acrylamide/ethylenediamine/phthalic anhydride (MCC-g-AM/EDA/PA) loaded Fe(iii) adsorbent was prepared by a pre-radiation grafting and chemical modification method.  相似文献   

13.
目的 通过响应面法优化绞股蓝总皂苷的超声提取工艺.方法 以超声功率、提取时间、温度、乙醇体积分数为考察因素,以绞股蓝总皂苷提取率为考察指标,通过Box-Behnken设计方案,对绞股蓝总皂苷超声提取工艺进行优化,得到最佳工艺参数.结果 在超声功率300 W、提取时间50 min、提取温度为60℃、乙醇体积分数为60%的...  相似文献   

14.
Magnetic GO/Fe3O4 was synthesized using co-precipitation of Fe2+ and Fe3+ composited with graphene oxide (GO) in alkaline conditions. SEM, XPS, FTIR, N2 adsorption and VSM techniques were employed to characterize the surface peculiarities of GO/Fe3O4 and it was then used for removal of malachite green (MG). The key influencing factors on adsorption, such as mass ratio of GO, pH value and dosage of GO/Fe3O4, were investigated. The Freundlich isotherm was well fitted to the experimental data, suggesting GO/Fe3O4 has more than one type of reactive site. By comparing the adsorption of anionic dyes and cationic dyes onto GO/Fe3O4, it was concluded that GO/Fe3O4 could be extensively applied to take up cationic dyes mainly for electrostatic interaction. In addition, the spent GO/Fe3O4 was almost 100% recovered in a water bath at 80 °C. An ultraviolet-visible (UV-vis) spectrophotometer and an atom adsorption spectrophotometer (AAS) were used to determine leached GO and Fe ions discharged into the treated solutions. Low leaching showed that magnetic GO/Fe3O4 is a stable environmentally-friendly material.

MG adsorbed onto magnetic GO/Fe3O4 by electrostatic interaction and π–π band.  相似文献   

15.
Membrane separation technologies have great promising potential for applications in several industries. Metal–organic frameworks (MOFs), for their large surface areas, low framework densities, transition-metal ions in the skeleton and high pore volumes relative to other porous matrices, have great potential for the removal of sulfur from gasoline with high efficiency. In the present study, a novel porous membrane adsorbent MIL-101(Cr)/SA was prepared by immobilizing MIL-101(Cr) onto sodium alginate (SA) matrix, which can combine the size/shape selectivity of MIL-101(Cr) with the processability and mechanical stability of SA polymer. The physico-chemical properties of MIL-101(Cr)/SA were investigated by FT-IR, SEM, BET, XRD and EDX methods. To investigate the effects of some important factors on the adsorption behavior for thiophene, a batch of experiments were performed by changing the concentration of porogen polyethylene glycol in the MIL-101(Cr)/SA, solution temperature, initial thiophene concentration and contact time. Meanwhile, benzothiophene, thiophene and 3-methyl thiophene were used to test the selectivity of MIL-101(Cr)/SA. The MIL-101(Cr)/SA showed an excellent uptake capacity of 671 mg g−1 under the optimal adsorption conditions. Selectivity testing indicated that the uptake capacity of MIL-101(Cr)/SA follows the order of benzothiophene > thiophene > 3-methyl thiophene. Kinetics experiments indicated the pseudo-second-order model displayed good correlation with adsorption kinetics data. The Crank model showed that the intraparticle solute diffusion is the rate-controlling adsorption step. Regeneration experiment result shows that the prepared MIL-101(Cr)/SA has excellent adsorption and desorption efficiencies.

Membrane separation technologies have great promising potential for applications in several industries.  相似文献   

16.
In the present study, a bioelectrochemical system (BES) was developed for 2,4-dichloronitrobenzene (DClNB) transformation. Response surface methodology (RSM) was applied to optimize the operational conditions, including the V/S ratio (volume of the BES/size of the electrode ratio), interval (D) (distance between the anode and cathode) and position (P) (proportion of the electrodes immerged in the sludge). The optimum conditions for the V/S ratio, interval and position were 40, 2.31 cm and 0.42. The pollutant removal rate and increase in Cl were 1.819 ± 0.037 mg L−1 h−1 and 11.894 ± 0.180 mg L−1, which were close to the predicted values (1.908 mg L−1 h−1 and 12.485 mg L−1). A continuous experiment indicated that the pollutant removal efficiency in the BES with 50% of the electrodes immerged in the sludge was 34.6% and 22.6% higher than that in the ones with 0 and 100% of the electrodes immerged in the sludge.

In the present study, a bioelectrochemical system (BES) was developed for 2,4-dichloronitrobenzene (DClNB) transformation.  相似文献   

17.
徐建红 《国际检验医学杂志》2014,(21):2929-2930,2933
目的利用响应面分析法对检验尿液中微量清蛋白以及血液中糖化血红蛋白的条件进行优化。方法随机选择60例糖尿病患者分别抽取清晨空腹静脉血3mL,同时留取尿标本6mL,对不同保存温度、保存时间进行单因素实验。根据中心组合Box-Behnken的实验设计原理,在单因素实验的基础上,对样品保存温度、保存时间2个影响显著因素采用双因素双水平的响应面分析法优化检验条件,以保存温度4℃、保存时间3d为中心点进行响应面分析实验。结果尿液以及血液测量的最佳保存温度是4℃,最佳保存时间是1d,在此条件下尿液中微量清蛋白以及血液中糖化血红蛋白的测量值几乎没有影响,十分接近于稳定情况下的理想值。结论利用响应面分析法可以优化微量清蛋白及糖化血红蛋白检验条件。  相似文献   

18.
Clenbuterol (CLB) is an illegal antibiotic for livestock, which is misused as a growth promoter drug. In this study, an immunosensor modified with poly(3,4-ethylenedioxythiophene) (PEDOT), multi-walled carbon nanotubes (MWCNT) and anti-clenbuterol antibody (Ab) was developed for the detection of CLB. A screen-printed carbon electrode (SPCE) was modified with PEDOT/MWCNT as a sensor platform before immobilizing Ab for specific CLB binding through a competitive-type immunoassay. Free CLB in the sample solution competed with clenbuterol-horseradish peroxide (CLB–HRP) to bind with Ab. A high current signal was obtained after optimization of the electrochemical immunoassay conditions (pH, incubation temperature, antigen (Ag) incubation time and % blocking) using the response surface methodology/central composite design (RSM/CCD). The developed immunosensor is highly reproducible and sensitive with good storage stability, which are necessary for practical application. In real sample application, this immunosensor produces comparable results with liquid chromatography-mass spectrometry; thus, it is useful for CLB screening and monitoring in real meat samples.

A clenbuterol immunosensor was developed with a poly(3,4-ethylenedioxythiophene)/multi-walled carbon nanotube-modified screen-printed carbon electrode and optimized using response surface methodology.  相似文献   

19.
In order to effectively destroy the structure of the passive oxidation film that covers zero-valent iron (ZVI), an Fe(iii)-reducing strain, namely Morganella sp., was isolated from anaerobic activated sludge and coated on ZVI, which was distributed in porous ceramsite made of iron dust, kaolin and straw, with a ratio of 7 : 3 : 1. Batch experiments showed that under the optimized conditions, the maximum removal amount of Cr(vi) by ZVI increased from 7.33 mg g−1 to 26.87 mg g−1 in the presence of the Fe(iii)-reducing bacterium. The column experiment was performed with the addition of the agar globules to supply nutrients to the strain. Compared with ZVI, the column penetration time and maximum capture amount of RB-ZVI increased to 17 h and 112.5 mg g−1, respectively, on the 15th day. Furthermore, the service life of RB-ZVI was prolonged in the existence of the strain. Based on X-ray diffraction, Raman spectroscopy and X-ray photoelectron spectroscopy analyses, the key mechanisms for the removal of Cr(vi) by ZVI coated with Fe(iii)-reducing bacterium were determined to be adsorption, reduction, coprecipitation and biomineralization.

To effectively destroy the structure of the passive oxidation film covering zero-valent iron (ZVI), an Fe(iii)-reducing strain, Morganella sp., was isolated from anaerobic activated sludge and coated on the ZVI.  相似文献   

20.
Polydopamine/zirconium(iv) iodate was prepared by incorporating polydopamine into zirconium iodate gel and studied as an effective adsorbent for ampicillin. In order to characterize the prepared composite, FTIR, XRD, TGA-DTA, SEM and TEM were used. The effects of experimental variables on ampicillin removal were examined using response surface methodology. The optimum conditions for ampicillin removal were 7, 130 min, 20 mg/20 mL and 50 mg L−1 for pH, contact time, adsorbent dose and initial ampicillin concentration, respectively. Under the optimum conditions, the maximum ampicillin removal percentage was found to be 99.12%. The Langmuir isotherm and pseudo-second-order kinetic models explained the removal process more appropriately. The maximum adsorption capacity at 303 K was 100.0 mg g−1. Thermodynamic study revealed that the ampicillin adsorption was spontaneous and endothermic in nature. The reusability of the prepared material was also explored.

Polydopamine/zirconium(iv) iodate was prepared by incorporating polydopamine into zirconium iodate gel and studied as an effective adsorbent for ampicillin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号