首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Biomarker signatures identified through minimally invasive procedures already at diagnosis of non‐small‐cell lung cancer (NSCLC) could help to guide treatment with immune checkpoint inhibitors (ICI). Here, we performed multiplex profiling of immune‐related proteins in fine‐needle aspirate (FNA) samples of thoracic lesions from patients with NSCLC to assess PD‐L1 expression and identify related protein signatures. Transthoracic FNA samples from 14 patients were subjected to multiplex antibody‐based profiling by proximity extension assay (PEA). PEA profiling employed protein panels relevant to immune and tumor signaling and was followed by Qlucore® Omics Explorer analysis. All lesions analyzed were NSCLC adenocarcinomas, and PEA profiles could be used to monitor 163 proteins in all but one sample. Multiple key immune signaling components (including CD73, granzyme A, and chemokines CCL3 and CCL23) were identified and expression of several of these proteins (e.g., CCL3 and CCL23) correlated to PD‐L1 expression. We also found EphA2, a marker previously linked to inferior NSCLC prognosis, to correlate to PD‐L1 expression. Our identified protein signatures related to stage included, among others, CXCL10 and IL12RB1. We conclude that transthoracic FNA allows for extensive immune and tumor protein profiling with assessment of putative biomarkers of important for ICI treatment selection in NSCLC.  相似文献   

2.
c‐Kit overexpression and activating mutations, which are reported in various cancers, including gastrointestinal stromal tumor (GIST), small‐cell lung cancer (SCLC), acute myeloid leukemia, acral melanoma, and systemic mastocytosis (SM), confer resistance to tyrosine kinase inhibitors (TKIs). To overcome TKI resistance, an anti‐c‐Kit antibody–drug conjugate was developed in this study to treat wild‐type and mutant c‐Kit‐positive cancers. NN2101, a fully human IgG1, was conjugated to DM1, a microtubule inhibitor, through N‐succinimidyl‐4‐(N‐maleimidomethyl) cyclohexane‐1‐carboxylate (SMCC) (to give NN2101‐DM1). The antitumor activity of NN2101‐DM1 was evaluated in vitro and in vivo using various cancer cell lines. NN2101‐DM1 exhibited potent growth‐inhibitory activities against c‐Kit‐positive cancer cell lines. In a mouse xenograft model, NN2101‐DM1 exhibited potent growth‐inhibitory activities against imatinib‐resistant GIST and SM cells. In addition, NN2101‐DM1 exhibited a significantly higher anti‐cancer effect than carboplatin/etoposide against SCLC cells where c‐Kit does not mediate cancer pathogenesis. Furthermore, the combination of NN2101‐DM1 with imatinib in imatinib‐sensitive GIST cells induced complete remission compared with treatment with NN2101‐DM1 or imatinib alone in mouse xenograft models. These results suggest that NN2101‐DM1 is a potential therapeutic agent for wild‐type and mutant c‐Kit‐positive cancers.  相似文献   

3.
Cancer‐associated fibroblasts (CAFs) regulate cancer progression through the modulation of extracellular matrix (ECM) and cancer cell adhesion. While undergoing a series of phenotypic changes, CAFs control cancer–stroma interactions through integrin receptor signaling. Here, we isolated CAFs from patients with non‐small‐cell lung cancer (NSCLC) and examined their gene expression profiles. We identified collagen type XI α1 (COL11A1), integrin α11 (ITGA11), and the ITGA11 major ligand collagen type I α1 (COL1A1) among the 390 genes that were significantly enriched in NSCLC‐associated CAFs. Increased ITGA11 expression in cancer stroma was correlated with a poor clinical outcome in patients with NSCLC. Increased expression of fibronectin and collagen type I induced ITGA11 expression in CAFs. The cellular migration of CAFs toward collagen type I and fibronectin was promoted via ERK1/2 signaling, independently of the fibronectin receptor integrin α5β1. Additionally, ERK1/2 signaling induced ITGA11 and COL11A1 expression in cancer stroma. We, therefore, propose that targeting ITGA11 and COL11A1 expressing CAFs to block cancer–stroma interactions may serve as a novel, promising anti‐tumor strategy.  相似文献   

4.
5.
Long non‐coding RNAs (lncRNAs) are emerging as key molecules in various cancers, yet their potential roles in the pathogenesis of breast cancer are not fully understood. Herein, using microarray analysis, we revealed that the lncRNA RACGAP1P, the pseudogene of Rac GTPase activating protein 1 (RACGAP1), was up‐regulated in breast cancer tissues. Its high expression was confirmed in 25 pairs of breast cancer tissues and 8 breast cell lines by qRT‐PCR. Subsequently, we found that RACGAP1P expression was positively correlated with lymph node metastasis, distant metastasis, TNM stage, and shorter survival time in 102 breast cancer patients. Then, in vitro and in vivo experiments were designed to investigate the biological function and regulatory mechanism of RACGAP1P in breast cancer cell lines. Overexpression of RACGAP1P in MDA‐MB‐231 and MCF7 breast cell lines increased their invasive ability and enhanced their mitochondrial fission. Conversely, inhibition of mitochondrial fission by Mdivi‐1 could reduce the invasive ability of RACGAP1P‐overexpressing cell lines. Furthermore, the promotion of mitochondrial fission by RACGAP1P depended on its competitive binding with miR‐345‐5p against its parental gene RACGAP1, leading to the activation of dynamin‐related protein 1 (Drp1). In conclusion, lncRNA RACGAP1P promotes breast cancer invasion and metastasis via miR‐345‐5p/RACGAP1 pathway‐mediated mitochondrial fission.

Abbreviations

CDS
coding sequence
ceRNAs
competitive endogenous RNAs
Drp1
dynamin‐related protein 1
FFPE
formalin‐fixed paraffin‐embedded
lncRNAs
long non‐coding RNAs
miRNAs
microRNAs
RACGAP1
Rac GTPase activating protein 1
TCGA
The Cancer Genome Atlas
  相似文献   

6.
It has been reported that certain microRNAs (miRNA) are associated with the pathogenesis of lymphoma. We have previously demonstrated that histone deacetylase inhibitors restore tumor‐suppressive miRNAs, such as miR‐16, miR‐29, miR‐150, and miR‐26, in advanced cutaneous T‐cell lymphoma (CTCL). Among these, the function of miR‐26 remains unclear. In this study, we aimed to reveal the function of miR‐26 in CTCL oncogenesis. First, we confirmed that the miR‐26 family was markedly dysregulated in CTCL cell lines and primary samples. In vivo analysis using miR‐26a‐transduced CTCL cells injected into immunodeficient NOG mice demonstrated the significant prolonged survival of the mice, suggesting that the miRNA had a tumor‐suppressive function. We performed gene expression assays and identified 12 candidate miR‐26 targets, namely RGS13, FAM71F1, OAF, SNX21, CDH2, PTPLB, IL22, DNAJB5, CASZ1, CACNA1C, MYH10, and CNR1. Among these, IL22 was the most likely candidate target because the IL‐22–STAT3–CCL20–CCR6 cascade is associated with tumor invasion and metastasis of advanced CTCL. In vitro analysis of IL22 and IL22RA knockdown and miR‐26 transduction demonstrated inhibited CTCL cell migration. In particular, IL22 knockdown induced cell apoptosis. Finally, we conducted in vivo inoculation analysis of mice injected with shIL22‐transfected CTCL cells, and found no tumor invasion or metastasis in the inoculated mice, although the control mice showed multiple tumor invasions and metastases. These results, along with our previous data, demonstrated that miR‐26 is a tumor suppressor that is associated with tumor invasion and the metastasis of advanced CTCL by regulating the IL‐22–STAT3–CCL20 cascade. Therefore, a IL‐22‐targeting therapy could be a novel therapeutic strategy for advanced CTCL.  相似文献   

7.
8.
Chronic kidney disease (CKD) is a common and complex disease in kidneys which has been associated with an increased risk of renal cell carcinoma. Elevated homocysteine (Hcy) levels are known to influence the development and progression of CKD by regulating podocyte injury and apoptosis. To investigate the molecular mechanisms triggered in podocytes by Hcy, we used cbs+/− mice and observed that higher Hcy levels increased the apoptosis rate of podocytes with accompanying glomerular damage. Hcy‐induced podocyte injury and apoptosis in cbs+/− mice was regulated by inhibition of microRNA (miR)‐1929‐5p expression. Overexpression of miR‐1929‐5p in podocytes inhibited apoptosis by upregulating Bcl‐2. Furthermore, the expression of miR‐1929‐5p was regulated by epigenetic modifications of its promoter. Hcy upregulated DNA methyltransferase 1 (DNMT1) and enhancer of zeste homolog 2 (EZH2) levels, resulting in increased DNA methylation and H3K27me3 levels on the miR‐1929‐5p promoter. Additionally, we observed that c‐Myc recruited DNMT1 and EZH2 to the miR‐1929‐5p promoter and suppressed the expression of miR‐1929‐5p. In summary, we demonstrated that Hcy promotes podocyte apoptosis through the regulation of the epigenetic modifiers DNMT1 and EZH2, which are recruited by c‐Myc to the promoter of miR‐1929‐5p to silence miR‐1929‐5p expression.  相似文献   

9.
It is not clear whether pembrolizumab monotherapy (MONO) or pembrolizumab plus platinum‐based chemotherapy (COMB) should be selected for patients with advanced non–small‐cell lung cancer (NSCLC) exhibiting high PD‐L1 expression (tumor proportion score ≥ 50%). We performed a retrospective, multicenter study of 300 patients with NSCLC exhibiting high PD‐L1 expression who received MONO or COMB as first‐line treatment between December 2018 and January 2020. We reviewed the medical records of all consecutive patients with no driver mutations, and assessed the patient characteristics, therapeutic regimens, treatment periods, and adverse events. In total, 166 (55%; median age: 74 years) and 134 (45%; median age: 68 years) patients received MONO and COMB, respectively. Patients were younger and had better performance status (0–1) in the COMB group (< 0.01). With a median follow‐up time of 10.6 (range: 0.1–20.6) months, the median progression‐free survival was 7.1 months with MONO and 13.1 months with COMB. The objective response rate was 42.2% with MONO and 67.9% with COMB. With respect to treatment discontinuation, 36 out of 166 (21.7%) and 28 out of 134 (20.1%) patients discontinued MONO and COMB, respectively. In conclusion, COMB may be a promising option for first‐line treatment for NSCLC with high PD‐L1 expression and good performance status.  相似文献   

10.
N‐myc downstream‐regulated gene 2 (NDRG2) is a candidate tumor suppressor in various cancers, including adult T‐cell leukemia/lymphoma (ATLL). NDRG2, as a stress‐responsive protein, is induced by several stress‐related signaling pathways and NDRG2 negatively regulates various signal transduction pathways. Although it has not been found to function alone, NDRG2 binds serine/threonine protein phosphatase 2A (PP2A), generating a complex that is involved in the regulation of various target proteins. The main function of NDRG2 is to maintain cell homeostasis by suppressing stress‐induced signal transduction; however, in cancer, genomic deletions and/or promoter methylation may inhibit the expression of NDRG2, resulting in enhanced tumor development through overactivated signal transduction pathways. A wide variety of tumors develop in Ndrg2‐deficient mice, including T‐cell lymphoma, liver, lung and other tumors, the characteristics of which are similar to those in Pten‐deficient mice. In particular, PTEN is a target molecule of the NDRG2/PP2A complex, which enhances PTEN phosphatase activity by dephosphorylating residues in the PTEN C‐terminal region. In ATLL cells, loss of NDRG2 expression leads to the failed recruitment of PP2A to PTEN, resulting in the inactivation of PTEN phosphatase with phosphorylation, ultimately leading to the activation of PI3K/AKT. Thus, NDRG2, as a PP2A adaptor, regulates the global phosphorylation of important signaling molecules. Moreover, the downregulation of NDRG2 expression by long‐term stress‐induced methylation is directly correlated with the development of ATLL and other cancers. Thus, NDRG2 might be important for the development of stress‐induced leukemia and other cancers and has become an important target for novel molecular therapies.  相似文献   

11.
12.
The standard treatment for locally advanced non‐small cell lung cancer (NSCLC) is chemoradiotherapy (CRT) followed by anti‐programmed cell death‐ligand 1 (anti‐PD‐L1) treatment. BIM deletion polymorphism induces the suppression of apoptosis resulting from epidermal growth factor (EGFR)‐tyrosine kinase inhibitors in EGFR‐mutated NSCLC patients. We aimed to examine the effects of BIM polymorphism on CRT and anti‐PD‐L1/PD‐1 treatment in NSCLC patients. In this retrospective study of 1312 patients with unresectable NSCLC treated at Higashi‐Hiroshima Medical Center and Hiroshima University Hospital between April 1994 and October 2019, we enrolled those who underwent CRT or chemotherapy using carboplatin + paclitaxel or cisplatin + vinorelbine, or anti‐PD‐L1/PD‐1 treatment. Of 1312 patients, 88, 80, and 74 underwent CRT, chemotherapy, and anti‐PD‐L1/PD‐1 treatment, respectively, and 17.0%, 15.2% and 17.6% of these patients showed BIM polymorphism. Among patients receiving CRT, the progression‐free survival was significantly shorter in those with BIM deletion than in those without. In the multivariate analyses, BIM polymorphism was an independent factor of poor anti‐tumor effects. These results were not observed in the chemotherapy and anti‐PD‐L1/PD‐1 treatment groups. In in vitro experiments, BIM expression suppression using small interfering RNA in NSCLC cell lines showed a significantly suppressed anti‐tumor effect and apoptosis after irradiation but not chemotherapy. In conclusion, we showed that BIM polymorphism was a poor‐predictive factor for anti‐tumor effects in NSCLC patients who underwent CRT, specifically radiotherapy. In the implementation of CRT in patients with BIM polymorphism, we should consider subsequent treatment, keeping in mind that CRT may be insufficient.  相似文献   

13.
Homeodomain‐interacting protein kinase 2 (HIPK2), a well‐known tumor suppressor, shows contradictory expression patterns in different cancers. This study was undertaken to clarify HIPK2 expression in oral squamous cell carcinoma (OSCC) and to reveal the potential mechanism of HIPK2 involvement in OSCC metastasis. Two hundred and four OSCC tissues, together with paired adjacent normal epithelia, dysplastic epithelia, and lymph node metastasis specimens, were collected to profile HIPK2 expression by immunohistochemical staining. High throughput RNA‐sequencing was used to detect the dysregulated signaling pathways in HIPK2‐deficient OSCC cells. Transwell assay and lymphatic metastatic orthotopic mouse model assay were undertaken to identify the effect of HIPK2 on tumor invasion. Western blotting and luciferase reporter assay were used to examine the HIPK2/P53/E‐cadherin axis in OSCC. Nuclear delocalization of HIPK2 was observed during oral epithelial cancerization progression and was associated with cervical lymph node metastasis and poor outcome. Depletion of HIPK2 promoted tumor cell invasion in vitro and facilitated cervical lymph node metastasis in vivo. According to mRNA‐sequencing, pathways closely related to tumor invasion were notably activated. Homeodomain‐interacting protein kinase 2 was found to trigger E‐cadherin expression by mediating P53, which directly targets the CDH1 (coding E‐cadherin) promoter. Restoring P53 expression rescued the E‐cadherin suppression induced by HIPK2 deficiency, whereas rescued cytoplasmic HIPK2 expression had no influence on the expression of E‐cadherin and cell mobility. Together, nuclear delocalization of HIPK2 might serve as a valuable negative biomarker for poor prognosis of OSCC and lymph node metastasis. The depletion of HIPK2 expression promoted OSCC metastasis by suppressing the P53/E‐cadherin axis, which might be a promising target for anticancer therapies.  相似文献   

14.
Despite the importance of accurate disease definitions for effective management and treatment decisions, there is currently no consensus on what constitutes oligometastatic non–small‐cell lung cancer (NSCLC). Predominant patterns of initial progressive disease (PD) after first‐line systemic therapy have been shown to be a substantial basis for local ablative therapy (LAT) for all disease sites in patients with oligometastatic NSCLC, suggesting that these patterns could be helpful in defining synchronous oligometastatic NSCLC. Therefore, this retrospective study aimed to propose a threshold number of metastases for synchronous oligometastatic NSCLC, based on the pattern of initial PD after first‐line systemic therapy. The cut‐off threshold number of metastases compatible with synchronous oligometastatic NSCLC was determined using receiver operating characteristic (ROC) curve analyses of PD at the initially involved sites alone. ROC analysis of 175 patients revealed that the presence of 1‐3 metastases before first‐line treatment (sensitivity, 85.9%; specificity, 97.3%; area under the curve, 0.91) was compatible with oligometastatic NSCLC, therefore we divided patients into oligometastatic NSCLC and non‐oligometastatic NSCLC groups. Multivariate logistic regression analyses revealed oligometastatic NSCLC to be the only independent predictor of PD at initially involved sites alone (odds ratio 165.7; P < .001). The median survival times in patients with oligometastatic or non‐oligometastatic NSCLC were 23.0 and 10.9 mo (hazard ratio, 0.51; P = .002), respectively. Based on these findings, we propose synchronous oligometastatic NSCLC as 1‐3 metastases in accordance with patterns of initial progression. The result of our study might be contributory to provide a common definition of synchronous oligometastatic NSCLC.  相似文献   

15.
Precision diagnostic testing (PDT) employs appropriate biomarkers to identify cancer patients that may optimally respond to precision medicine (PM) approaches, such as treatments with targeted agents and immuno‐oncology drugs. To date, there are no published systematic appraisals evaluating the cost‐effectiveness of PDT in non‐small‐cell lung cancer (NSCLC). To address this gap, we conducted Preferred Reporting Items for Systematic Reviews and Meta‐Analyses searches for the years 2009–2019. Consolidated Health Economic Evaluation Reporting Standards were employed to screen, assess and extract data. Employing base costs, life years gained or quality‐adjusted life years, as well as willingness‐to‐pay (WTP) threshold for each country, net monetary benefit was calculated to determine cost‐effectiveness of each intervention. Thirty‐seven studies (50%) were included for analysis; a further 37 (50%) were excluded, having failed population‐, intervention‐, comparator‐, outcomes‐ and study‐design criteria. Within the 37 studies included, we defined 64 scenarios. Eleven scenarios compared PDT‐guided PM with non‐guided therapy [epidermal growth factor receptor (EGFR), n = 5; programmed death‐ligand 1 (PD‐L1), n = 6]. Twenty‐eight scenarios compared PDT‐guided PM with chemotherapy alone (anaplastic lymphoma kinase, n = 3; EGFR, n = 17; PD‐L1, n = 8). Twenty‐five scenarios compared PDT‐guided PM with chemotherapy alone, while varying the PDT approach. Thirty‐four scenarios (53%) were cost‐effective, 28 (44%) were not cost‐effective, and two were marginal, dependent on their country’s WTP threshold. When PDT‐guided therapy was compared with a therapy‐for‐all patients approach, all scenarios (100%) proved cost‐effective. Seven of 37 studies had been structured appropriately to assess PDT‐PM cost‐effectiveness. Within these seven studies, all evaluated scenarios were cost‐effective. However, 81% of studies had been poorly designed. Our systematic analysis implies that more robust health economic evaluation could help identify additional approaches towards PDT cost‐effectiveness, underpinning value‐based care and enhanced outcomes for patients with NSCLC.  相似文献   

16.
17.
The low sensitivity of radiotherapy is the main cause of tumor tolerance against ionizing radiation (IR). However, the molecular mechanisms by which radiosensitivity is controlled remain elusive. Here, we observed that high expression of pellino E3 ubiquitin protein ligase 1 (PELI1) was correlated with improved prognosis in human esophageal squamous cell carcinoma stage III patients that received adjuvant radiotherapy. Moreover, we found PELI1‐mediated IR‐induced tumor cell apoptosis in vivo and in vitro. Mechanistically, PELI1 mediated the lysine 48 (Lys48)–linked polyubiquitination and degradation of NF‐κB–inducing kinase (NIK; also known as MAP3K14), the master kinase of the noncanonical NF‐κB pathway, thereby inhibiting IR‐induced activation of the noncanonical NF‐κB signaling pathway during radiotherapy. As a consequence, PELI1 inhibited the noncanonical NF‐κB–induced expression of the anti‐apoptotic gene BCL2 like 1 (Bclxl; also known as BCL2L1), leading to an enhancement of the IR‐induced apoptosis signaling pathway and ultimately promoting IR‐induced apoptosis in tumor cells. Therefore, Bclxl or NIK knockdown abolished the apoptosis‐resistant effect in PELI1‐knockdown tumor cells after radiotherapy. These findings establish PELI1 as a critical tumor intrinsic regulator in controlling the sensitivity of tumor cells to radiotherapy through modulating IR‐induced noncanonical NF‐κB expression.  相似文献   

18.
19.
20.
Pembrolizumab plus pemetrexed‐platinum significantly improved overall survival (OS) and progression‐free survival (PFS) with manageable safety compared with placebo plus pemetrexed‐platinum in patients with previously untreated metastatic nonsquamous non–small‐cell lung cancer (NSCLC) without EGFR/ALK alterations in the global, randomized, double‐blind, phase 3 KEYNOTE‐189 study. We present results of Japanese patients enrolled in the KEYNOTE‐189 global and Japan extension studies. Patients were randomized 2:1 to intravenous pembrolizumab 200 mg or placebo every 3 weeks (Q3W) for up to 35 cycles. All patients received pemetrexed 500 mg/m2 plus the investigator’s choice of cisplatin or carboplatin Q3W for four cycles, followed by maintenance pemetrexed 500 mg/m2 Q3W (all intravenous). Co–primary endpoints were OS and PFS. Forty Japanese patients enrolled (pembrolizumab, n = 25; placebo, n = 15). At data cutoff (20 May 2019; median time from randomization to data cutoff, 18.5 [range, 14.7‒38.2] months), the median OS was not reached in the pembrolizumab plus pemetrexed‐platinum arm; the median OS was 25.9 (95% confidence interval [CI], 11.9‒29.0) months in the placebo plus pemetrexed‐platinum arm (hazard ratio [HR] .29; 95% CI, .07‒1.15). The median (95% CI) PFS was 16.5 (8.8‒21.1) compared with 7.1 (4.7‒21.4) months (HR, .62; 95% CI, .27‒1.42), respectively. There were no grade 5 adverse events (AE). Grade 3/4 AE occurred in 72% vs 60% of patients in the pembrolizumab vs placebo arms; 40% vs 20% had immune‐mediated AE, and 4% vs 0% had infusion reactions. Efficacy and safety outcomes were similar to those from the global study and support first‐line therapy with pembrolizumab plus pemetrexed‐platinum in Japanese patients with nonsquamous NSCLC without EGFR/ALK alterations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号