首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Balakrishnan S  Bellamy TC 《Glia》2009,57(4):393-401
In the cerebellar cortex, Bergmann glia enclose the synapses of both parallel and climbing fiber inputs to the Purkinje neuron. The glia express Ca(2+)-permeable AMPA receptors, and the GLAST and GLT-1 classes of glutamate transporter, which are activated by glutamate released during synaptic transmission. We have previously reported that parallel fiber to Bergmann glial transmission in rat cerebellar slices exhibits a form of frequency-dependent plasticity, namely long-term depression, following repetitive stimulation at 0.1-1 Hz. Here, we report that this form of plasticity is also present at the climbing fiber input, that climbing and parallel fibers can be depressed independently, that discrete parallel fiber inputs can also be depressed independently, and that depression is maintained when a distributed array of parallel fibers are stimulated (in contrast to several forms of synaptic plasticity at the Purkinje neuron). Depression of glutamate transporter currents does not correlate with a decrease in the stringency with which Purkinje neuron synapses are isolated. Rather, postsynaptic currents in Purkinje neurons decay more rapidly and perisynaptic metabotropic glutamate receptors are activated less effectively after stimulation at 0.2 and 1 Hz, suggesting that depression arises from a decrease in extrasynaptic glutamate concentration and not from impairment of glutamate clearance in and around the synapse. These results indicate that neuron-glial plasticity is activity dependent, input specific and does not require spillover between adjacent synapses to manifest. They also argue against a withdrawal of the glial sheath from synaptic regions as the putative mechanism of plasticity.  相似文献   

2.
C Lohr  J W Deitmer 《Glia》1999,26(2):109-118
Glial cells have been shown to respond to neuronal activity with changes in the membrane potential and the intracellular Ca2+ concentration. In order to get closer to glial structures associated with neuronal synapses, we have now looked at Ca2+ signalling in the glial processes ("glial dendrites") in response to neurotransmitters and neuronal activity. Single giant glial cells in situ of isolated ganglia of the leech Hirudo medicinalis were filled iontophoretically with the Ca(2+)-sensitive dyes Oregon green 488 BAPTA-1 or Fluo-3. Relative Ca(2+)-dependent fluorescence changes in response to bath and focal application of the ionotropic glutamate receptor agonist kainate (50 microM) and of 5-hydroxytryptamine (5-HT, 100 microM) were recorded in glial dendrites, using confocal laser scanning microscopy. The amplitudes of the [Ca2+]i transients in the dendritic processes were 2-4 times larger than those recorded in the cell body. Electrical stimulation of a nerve root (20 Hz for 15 s) elicited [Ca2+]i transients in glial dendrites (n = 32) that were reduced by the ionotropic glutamate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; n = 14). The results demonstrate that neuronal activity can evoke [Ca2+]i transients not only in glial cell bodies but also in glial dendrites, where these transients display regional variation. This may reflect local release of neurotransmitters like glutamate and 5-hydroxytryptamine and/or regional differences in the density of glial receptors.  相似文献   

3.
Animals as well as humans adapt their locomotor patterns to suit different situations. To perform smooth and stable locomotion, they coordinate not only parts of a limb but also different limbs. The cerebellum is important for sensorimotor control and plays a crucial role in intra- and inter-limb coordination. Cerebellar gait ataxia is characterized by postural deficiencies and decomposition of movements. During locomotion, the vermis and the intermediate region of the cerebellum receive information through the spinocerebellar pathways about the ongoing activities in the spinal stepping generator and the somatosensory receptors. The information is conveyed by mossy fiber afferents to Purkinje neurons via granule cells and their axons, i.e., parallel fibers. Purkinje neurons transform the mossy fiber input signals to output signals that in turn modulate activities in the brainstem descending tract neurons of the brainstem that are involved in locomotion. Further, Purkinje neurons receive enhanced climbing fiber signals during perturbed locomotion. These climbing fiber signals may induce synaptic plasticity at the parallel fiber-Purkinje neuron synapses. Long-term depression (LTD) occurs in parallel fiber-Purkinje neuron synapses and is regarded as the cellular basis for the learning mechanism of the cerebellar neuronal circuit. The activation of parallel fibers releases glutamate and nitric oxide, and the released glutamate activates the glutamate receptors in the Purkinje neurons. mGluR1, a subtype of the metabotropic glutamate receptors, is highly expressed in Purkinje neurons. In addition, delta 2 glutamate receptor is expressed in only Purkinje neurons throughout the brain. Genetically targeted mice for these glutamate receptors and/or pharmacological blocking studies have been promoted to determine the functional linkage between the molecules at the cellular level and the adaptability of locomotion at the behavioral level. This article highlights some recent advances in the understanding of the role played by the cerebellum in the adaptive control of locomotion.  相似文献   

4.
Bellamy TC  Ogden D 《Glia》2005,52(4):325-335
Bergmann glial cells (BGC) enclose the synapses of Purkinje neurons (PN) and interneurons in the molecular layer of the cerebellar cortex. During synaptic transmission, glutamate evokes inward currents in the glia by activation of Ca2+-permeable aminohydroxymethylisoxazole propionic acid receptors (AMPAR) and electrogenic transporters. We describe the plasticity of BGC currents during paired-pulse and repetitive stimulation of parallel fibers in cerebellar slices. Paired-pulse facilitation (PPF) of BGC AMPAR currents was 4-fold, twice that of PN PPF. Experiments with a low-affinity AMPAR antagonist showed an increase in extrasynaptic glutamate concentration during the second pulse of the pair. PPF of glial transporter currents was 1.8-fold, similar to synaptic PPF. Tetanic stimulation revealed that facilitation of BGC AMPAR currents is not sustained during high-frequency stimulation, and substantial depression is observed after a few pulses. Consequently, Ca2+ influx through glial AMPARs would initially be facilitated but subsequently depressed, generating a transient Ca2+ influx in response to a sustained tetanus. This pattern of plasticity may be important in enabling Bergmann glial cell processes to detect and support synapses with high-frequency input. Finally, a new current was observed in BGC during repetitive stimulation. It was blocked by NBQX and intracellular GDP-beta-S, increased by glutamate uptake inhibition, had PPF similar to synaptic PPF, and was unaffected by an inhibitor of fast glial AMPAR currents. The evidence suggests that activation of neuronal AMPARs causes the release of a paracrine messenger to activate a G-protein coupled receptor in the BGC.  相似文献   

5.
An electron microscopic study of neuronal types and different synaptic contacts has been made in the cerebellum of the frog Rana ridibunda. The Purkinje cells have a pear-shaped cell body and in their cytoplasm the organelles show a special arrangement because of the great amount of microtubules they contain. The granule cells are small, rounded neurons with a large nucleus surrounded by a thin rim of cytoplasm. The stellate cells are interneurons of the molecular layer whose large nuclei show a single finger-like invagination of its nuclear envelope. The afferent tracts to the cerebellum end either as climbing fibers or mossy fibers. The axon terminals of climbing fibers are large and the synaptic complexes exhibit all the features of a type-I Gray synapse. The mossy fibers reach the granular layer and synapses between them and granule cell dendrites are by far the most abundant. The parallel fibers establish synaptic contacts on the spines arising from the spiny branchlet units of the Purkinje cells and with the perikaryon and dendrites of stellate cells. The stellate cell axons cross the molecular layer and establish type-II Gray synapses on the Purkinje cells.  相似文献   

6.
This study deals with some consequences of the early postnatal abnormalities of cerebellar Bergmann glial fibers and granule cell neurons. (1) Cerebellar size is mildly reduced in heterozygous weaver (+/wv) mice and markedly reduced in homozygotes (wv/wv), but the pattern of fissures is essentially normal. Comparison with other mutants displaying small cerebella suggests that cell proliferation rate in the external granular layer is a key deteminant of cerebellar cortical folding. (2) Mossy fiber terminals differentiate on schedule despite the reduced number and abnormal positions of granule cells. However, many of them enter the modified molecular layer, and as noted especially in noninbred wv/wv mice one to two years old, form synapses with dendrites of aberrant granule cells. Where granule cells are absent, mossy fibers form more than the normal number of synapses with dendrites of Golgi type II neurons. (3) Purkinje cells are only mildly affected by the disorder of neighbouring cells. Their dendrites grow abnormally into the territory occupied by external granule cells, reach the external surface, and may turn inward. They form few tertiary branches. Dendritic spines are present in profusion and show membrane thickenings akin to normal postsynaptic elements. Although they receive no axonal contacts, the spines persist, enveloped by glial processes, for at least two years. Apart from the absence of parallel fiber contacts, afferent and intrinsic axons form the normal classes of synaptic connections with Purkinje cells. (4) Interneurons of the molecular layer are generated on schedule. At the time of their earliest recognition, they reside in the external granular layer, where they receive synaptic contacts from climbing fibers and other interneurons. In the absence of parallel fibers, interneurons differentiate in situ but their dendrites are abortive and randomly oriented. Growth of their dendrites, in contrast to that of Purkinje cell dendrites, appears to be markedly influenced by the organization of the local cellular milieu.  相似文献   

7.
Recent studies have provided evidence that transmitters released by neurons can activate glial receptors and stimulate calcium signalling in glial cells. Glial calcium signalling, in turn, may affect neuronal performance such as long-term changes in synaptic efficacy. Olfactory ensheathing cells (OECs) are a special glial cell type in vertebrates and insects and promote axon growth in the developing and mature nervous system. Physiological properties of OECs, however, have not been studied so far in detail. We measured changes in the calcium concentration in OECs of the moth Manduca sexta, in situ and in vivo. Electrical stimulation of olfactory receptor neurons in pupae or odour stimulation of receptor neurons in adults resulted in calcium transients in OECs. Olfactory receptor axons release acetylcholine; however, application of acetylcholine or other transmitters such as glutamate, GABA or nitric oxide did not induce calcium transients in OECs. Upon nerve stimulation, extracellular potassium rose by several millimolar as measured with potassium-sensitive microelectrodes. When potassium in the perfusion saline was increased from 4 to 10 mM or higher, voltage-dependent calcium transients in OECs that resembled stimulation-induced calcium transients were evoked. Blocking neuronal potassium channels with TEA reduced both the stimulation-induced increases in extracellular potassium and the calcium transients in OECs, whereas calcium transients in receptor axons were augmented. Our results show for the first time that accumulation of potassium, released by electrically active axons, is sufficient to evoke voltage-dependent calcium influx into glial cells, whereas neurotransmitters appear not to be involved in this neuron-glia communication in Manduca.  相似文献   

8.
Ca2+ and Na+ play important roles in neurons, such as in synaptic plasticity. Their concentrations in neurons change dynamically in response to synaptic inputs, but their kinetics have not been compared directly. Here, we show the mechanisms and dynamics of Ca2+ and Na+ transients by simultaneous monitoring in Purkinje cell dendrites in mouse cerebellar slices. High frequency parallel fibre stimulation (50 Hz, 3-50-times) depolarized Purkinje cells, and Ca2+ transients were observed at the anatomically expected sites. The magnitude of the Ca2+ transients increased linearly with increasing numbers of parallel fibre inputs. With 50 stimuli, Ca2+ transients lasted for seconds, and the peak [Ca2+] reached approximately 100 microm, which was much higher than that reported previously, although it was still confined to a part of the dendrite. In contrast, Na+ transients were sustained for tens of seconds and diffused away from the stimulated site. Pharmacological interventions revealed that Na+ influx through alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and Ca2+ influx through P-type Ca channels were essential players, that AMPA receptors did not operate as a Ca2+ influx pathway and that Ca2+ release from intracellular stores through inositol trisphosphate receptors or ryanodine receptors did not contribute greatly to the large Ca2+ transients.  相似文献   

9.
The growth and synaptic maturation of Purkinje cells and of the molecular layer were studied in the cerebellar cortex of rats aged 0, 3, 5, 7, 10, 12, 15, 21 and 30 days with histological (including Golgi), histochemical, autoradiographic and electron microscopic techniques. Five phases were distinguished in the maturation of Purkinje cells. During the first phase, Purkinje cells become dispersed and aligned in a monolayer but as yet few or no synapses are formed. Next, two transient structures appear: a hypertrophied apical cone composed of ?reticular”? cytoplasm, and lateral perisomatic processes which establish conspicuous asymmetrical synapses with climbing fibers. During the third phase the perisomatic processes disappear; the ?reticular”? cytoplasm streams upward into the growing dendrites; the soma is invaded by permanent inconspicuous, symmetrical synapses of basket cells; and, finally, it is surrounded by glial processes, which marks the end of the synaptic maturation of the soma. During the fourth phase parallel fibers form synapses with dendritritic spines in the lower half of the molecular layer. During the fifth phase, which occurs after the disappearance of the external germinal layer, parallel fibers establish synapses with dendritic spines in the upper molecular layer. The ?march”? of synaptogenesis in the molecular layer from the bottom upward is characterized by three successive events: an initial gradient in the appearance and disappearance of coated vesicles, heralding synaptogenesis; a similar subsequent trend in the formation of synapses; and finally, the interposition in the same sequence of glial processes between Purkinje cell dendrities and parallel fibers, marking the cessation of synaptogenesis.  相似文献   

10.
Glial cells respond to neuronal activity by transient increases in their intracellular calcium concentration. At hippocampal Schaffer collateral to CA1 pyramidal cell synapses, such activity-induced astrocyte calcium transients modulate neuronal excitability, synaptic activity, and LTP induction threshold by calcium-dependent release of gliotransmitters. Despite a significant role of astrocyte calcium signaling in plasticity of these synapses, little is known about activity-dependent changes of astrocyte calcium signaling itself. In this study, we analyzed calcium transients in identified astrocytes and NG2-cells located in the stratum radiatum in response to different intensities and patterns of Schaffer collateral stimulation. To this end, we employed multiphoton calcium imaging with the low-affinity indicator dye Fluo-5F in glial cells, combined with extracellular field potential recordings to monitor postsynaptic responses to the afferent stimulation. Our results confirm that somata and processes of astrocytes, but not of NG2-cells, exhibit intrinsic calcium signaling independent of evoked neuronal activity. Moderate stimulation of Schaffer collaterals (three pulses at 50 Hz) induced calcium transients in astrocytes and NG2-cells. Astrocyte calcium transients upon this three-pulse stimulation could be evoked repetitively, increased in amplitude with increasing stimulation intensity and were dependent on activation of metabotropic glutamate receptors. Activity-induced transients in NG2-cells, in contrast, showed a rapid run-down upon repeated three-pulse stimulation. Theta burst stimulation and stimulation for 5 min at 1 Hz induced synaptic potentiation and depression, respectively, as revealed by a lasting increase or decrease in population spike amplitudes upon three-pulse stimulation. Synaptic plasticity was, however, not accompanied by corresponding alterations in the amplitude of astrocyte calcium signals. Taken together, our results suggest that the amplitude of astrocyte calcium signals reflects the number of activated synapses but does not correlate with the degree of synaptic potentiation or depression at Schaffer collateral to CA1 pyramidal cell synapses.  相似文献   

11.
T J Anastasio 《Neuroreport》2001,12(17):3825-3831
The cerebellum is critical for motor learning. Current cerebellar learning models follow the Marr/Albus paradigm, in which climbing fibers provide error signals that shape plastic synapses between parallel fibers and Purkinje cells. However, climbing fibers have slow and largely random discharge, and seem unlikely to provide error signals with resolution sufficient to guide cerebellar learning. Parallel fibers carry error signals and could direct the plasticity of their own synapses, but the error signals are carried along with other signals. This report presents the new input minimization (InMin) model, in which Purkinje cells reduce error by minimizing their overall parallel fiber input. The slowly, randomly firing climbing fiber provides only synchronization pulses. InMin offers an alternative that can unify cerebellar findings.  相似文献   

12.
Several subtypes of glutamate transporters are abundantly expressed near the excitatory synapses on cerebellar Purkinje cells. We investigated the roles of the glutamate transporters in shaping the excitatory postsynaptic currents (EPSCs) and regulating the levels of extracellular glutamate in the mouse cerebellum using a potent blocker of glutamate transporters, dl-threo-beta-benzyloxyaspartate (dl-TBOA). This drug markedly prolonged AMPA receptor-mediated EPSCs in Purkinje cells evoked by stimulating both parallel fibres and climbing fibres. The decay phase of the prolonged EPSCs was fitted by double exponentials, of which the slower component was preferentially inhibited by a low-affinity competitive antagonist of AMPA receptors, gamma-d-glutamyl-glycine, indicating that the slow component induced by dl-TBOA was the AMPA receptor-mediated current activated by lower concentrations of glutamate than those contributing to the peak of the EPSC. This result suggests that dl-TBOA prolongs the stay of synaptically released glutamate in the synaptic cleft and also induces glutamate spillover to extrasynaptic targets as well as neighbouring synapses. Furthermore, high concentrations of dl-TBOA in the presence of cyclothiazide generated a continuous inward current in Purkinje cells, of which the amplitude reached the peak level of the climbing-fibre EPSC. This continuous inward current was abolished by the blocker of AMPA receptors, indicating that the strong inhibition of glutamate uptake causes the rapid accumulation of glutamate in the extracellular space. These results highlight the importance of glutamate transporters in maintaining the proper glutamatergic transmission in Purkinje cell synapses.  相似文献   

13.
Climbing fibers provide one of the two major excitatory inputs to the cerebellar cortex. In an immature animal, several climbing fibers form synapses with one Purkinje neuron. During postnatal development most climbing fiber innervations with a Purkinje neuron are eliminated and only one strong fiber remains. Previous studies suggested that this pruning of surplus climbing fiber innervations depends on the neuronal activity. We hypothesized that synaptic plasticity might play a role in the maturation and refinement of such a climbing fiber projection pattern, and examined the plasticity properties of synapses between postnatal days 5 and 9 in mice. We found that a 5 Hz conditioning stimulation of climbing fibers forming relatively strong synapses with a Purkinje neuron induced long-term potentiation of the transmission accompanied by a decrease in the paired-pulse ratio of excitatory postsynaptic current amplitudes. This was suggestive of an increased probability of presynaptic release. However, the conditioning stimulation of climbing fibers forming relatively weak synapses induced long-term depression and tended to increase the paired-pulse ratio. Thus, the direction of plasticity appears to be determined by the strength of synaptic connection. Long-term depression occurred only in the conditioned climbing fiber, whereas long-term potentiation spread to unconditioned climbing fibers. A postsynaptic increase in the intracellular Ca2+ concentration was required for long-term potentiation but not for long-term depression. These results reveal the existence of novel presynaptic plasticity at immature climbing fiber–Purkinje cell synapses, which may contribute to the maturation and refinement of the climbing fiber projection pattern.  相似文献   

14.
Glutamate transporters are involved in maintaining extracellular glutamate at a low level to ensure a high signal-to-noise ratio for glutamatergic neurotransmission and to protect neurons from excitotoxic damage. The mammalian retina is known to express the excitatory amino acid transporters, EAAT1-5; however, their specific role in glutamate homeostasis is poorly understood. To examine the role of the glial glutamate/aspartate transporter (GLAST) in the retina, we have studied glutamate transport by Muller cells in GLAST-/- mice, using biochemical, electrophysiological, and immunocytochemical techniques. Glutamate uptake assays indicated that the Km value for glutamate uptake was similar in wild-type and GLAST-/- mouse retinas, but the Vmax was approximately 50% lower in the mutant. In Na+-free medium, the Vmax was further reduced by 40%. In patch-clamp recordings of dissociated Muller cells from GLAST-/- mice, application of 0.1 mM glutamate evoked no current showing that the cells lacked functional electrogenic glutamate transporters. The result also indicated that there was no compensatory upregulation of EAATs in Muller cells. [3H]D-Aspartate uptake autoradiography, however, showed that Na+-dependent, high-affinity transporters account for most of the glutamate uptake by Muller cells, and that Na+-independent glutamate transport is negligible. Additional experiments showed that the residual glutamate uptake in Muller cells in the GLAST-/- mouse retina is not due to known glutamate transporters-cystine-glutamate exchanger, ASCT-1, AGT-1, or other heteroexchangers. The present study shows that while several known glutamate transporters are expressed by mammalian Muller cells, new Na+-dependent, high-affinity glutamate transporters remain to be identified.  相似文献   

15.
Langer J  Stephan J  Theis M  Rose CR 《Glia》2012,60(2):239-252
Activation of glutamatergic synapses results in long-lasting sodium transients in astrocytes mediated mainly by sodium-dependent glutamate uptake. Sodium elevations activate Na(+) /K(+) -ATPase and glucose uptake by astrocytes, representing key signals for coupling glial metabolism to neuronal activity. Here, we analyzed the spread of sodium signals between astrocytes in hippocampal slice preparations. Stimulation of a single astrocyte resulted in an immediate sodium elevation that spread to neighboring astrocytes within a distance of ~ 100 μm. Amplitude, slope, and propagation speed of sodium elevations in downstream cells decayed monotonically with increasing distance, indicative of a diffusion process. In contrast to sodium, calcium increases elicited by electrical stimulation were restricted to the stimulated cell and a few neighboring astrocytes. Pharmacological inhibition of mGluR1/5 slightly dampened the spread of sodium, whereas inhibition of glutamate uptake or purinergic receptors had no effect. Spread of sodium to neighboring cells was disturbed on pharmacological inhibition of gap junctions, reduced in animals at P4 and virtually omitted in Cx30/Cx43 double-deficient mice. In contrast to results obtained earlier in cultured astrocytes, our data thus indicate that calcium signaling and metabotropic glutamate receptors are supportive of, but not prerequisites for, the spread of sodium between hippocampal astrocytes in situ, whereas expression of Cx30 and Cx43 is essential. Cx30/Cx43-mediated sodium diffusion between astrocytes could represent a signal indicating increased metabolic needs, independent of concomitant calcium signaling. Spread of sodium might also serve a homeostatic function by supporting the re-establishment of steep sodium gradients and by lowering the metabolic burden imposed on single cells.  相似文献   

16.
The transient appearance of 5'-nucleotidase, an adenosine-producing ecto-enzyme, was studied during specific stages of postnatal synaptogenesis in the rat cerebellum. For ultrastructural detection of 5'-nucleotidase activity, an enzyme-cytochemical technique was used. Between postnatal days 4 and 6, enzymatic reaction product was present in the synaptic clefts of climbing fibers containing the perisomatic spines, apical cones and emerging dendrites of Purkinje cells (CF-PC synapses). Labeled parallel fiber synapses were observed on dendritic shafts of cerebellar interneurons. At postnatal days 9 and 12, enzyme-positive parallel fiber terminals were in addition numerous on the spines of peripheral Purkinje branchlets, and gradually disappeared thereafter. Between postnatal days 8 and 15, labeling of perisomatic CF-PC contacts persisted. In contrast, climbing fiber synapses on Purkinje dendrites were only occasionally labeled. Between postnatal days 18 and 21, synaptic reaction product was restricted to mossy fibers. At the same time, association of 5'-nucleotidase with glial profiles was prominent throughout the cerebellar layers. In adult cerebellum (from 24 days onwards) all synapses were devoid of enzymatic activity. Throughout development, basket, stellate and Golgi cell synapses were devoid of enzymatic activity. We conclude that 5'-nucleotidase is present in excitatory cerebellar synapses during part of their generation period. The transient nature of this phenomenon suggests that 5'-nucleotidase may serve as a novel, cytochemical marker for a specific state of synaptic maturation, and in particular for climbing fiber plasticity. A role of 5'-nucleotidase in purinergic neuromodulation and cellular contact formation could be significant in these processes.  相似文献   

17.
Zinc deficiency during the first 3 postnatal weeks retarded the maturation of Purkinje cells. The dendrites of the Purkinje cells of 21-day-old zinc-deficient (ZD) rats were reduced in size and had fewer branches. Somatic processes were found in 24% of the Purkinje cells of ZD animals. Only 3% of the Purkinje cells of normal animals had somatic processes. A basal polysomal mass in the Purkinje cells of 21-day-old ZD rats indicated that zinc deficiency impaired the cytoplasmic maturation of Purkinje cells. The development of the glial envestment of the dendrites and the maturation of climbing fibers also were retarded. Pair-fed controls were studied to control for the effects of inanition in the ZD dams. In the pups of pair-fed dams, undernutrition slightly impaired the growth of the dendrites but produced few qualitative changes in the maturation of the soma and climbing fibers. Somatic processes were found on 10% of the Purkinje cells of pair-fed animals. Thus, the findings in the ZD animals were not only caused by the decreased maternal food consumption but by zinc deficiency. The retarded maturation of Purkinje cells was related to the altered metabolism of Purkinje cells and to effects secondary to decreased numbers of parallel fibers.  相似文献   

18.
The high affinity, Na(+)-dependent, electrogenic glial L-glutamate transporters GLAST1 and GLT1, and two neuronal EAAC1 and EAAT4, regulate the neurotransmitter concentration in excitatory synapses of the central nervous system. We dissected the function of the individual transporters in the monogenic null allelic mouse lines, glast1(-/-) and eaac1(-/-), and the derived double mutant glast(-/-)eaac1(-/-). Unexpectedly, the biochemical analysis and the behavioral phenotypes of these null allelic mouse lines were inconspicuous. Inhibition studies of the Na(+)-dependent glutamate transport by plasma membrane vesicles and by isolated astrocytes of wt and glast1(-/-) mouse brains indicated the pivotal compensatory role of GLT1 in the absence particularly of GLAST1 and GLAST1 and EAAC1 mutant mice. In electrophysiological studies, the decay rate of excitatory postsynaptic currents (EPSCs) of Purkinje cells (PC) after selective activation of parallel and climbing fibers proved to be similar in wt and eaac1(-/-), but was significantly prolonged in glast1(-/-) PCs. Bath application of the glutamate uptake blocker SYM2081 prolonged EPSC decay profiles in both wt and double mutant glast1(-/-)eaac1(-/-) PCs by 286% and 229%, respectively, indicating a prominent role of compensatory glutamate transport in shaping glast1(-/-)eaac1(-/-) EPSCs.  相似文献   

19.
We examined the effects of the antitumor agent cisplatin on the development and plasticity of cerebellar cytoarchitecture. Since knowledge of the parallel and climbing fiber-Purkinje cell system is important in order to determine the architectural basis of cerebellar function, we used immunofluorescence for vesicular glutamate transporters (VGluT1 and VGluT2) to evaluate the trend of synaptogenesis of parallel and climbing fibers on Purkinje cells in the cerebellum vermis after a single injection of cisplatin to 10-day-old rats, i.e., during a crucial period of cerebellar development. The temporal and spatial patterns of VGluT1 and VGluT2 immunoreactivity after the early cisplatin injury provided evidence that remodeling of excitatory afferents and Purkinje cell dendrites occurs. After an early slow down of Purkinje cell dendrite growth, 7 days following the treatment, the extension of the molecular layer was reduced, as was parallel fiber innervation, but VGluT1 immunoreactive fibers contacted Purkinje cell dendrite branches extending within the external granular layer. VGluT2 immunopositive climbing fiber varicosities were still largely present on the soma and stem dendrites of Purkinje cells. Twenty days after the cisplatin injection, the thickness of the VGluT1 immunopositive molecular layer was reduced. VGluT2 climbing fiber varicosities were found on the remodeled Purkinje cell dendrites, as in controls, although at a lower density. Alterations in the immunoreactivity for polysialic acid neural cell adhesion molecule (PSA-NCAM) during the recovery phase suggest that this molecule plays a fundamental role not only during development, but also in the reorganization of neuroarchitecture. The changes were restricted to the neocerebellar vermis and were likely dependent on the different timing of lobule formation. The results of these investigations reveal the existence of vulnerability windows of the cerebellum to exposure to experimental or environmental cytotoxic agents during a critical period in development.  相似文献   

20.
Glial cells possess transport systems for the three major amino acid neurotransmitters glutamate, gamma-aminobutyric acid (GABA) and glycine, involved in the arrest of neurotransmission mediated by these compounds. Two glycine transporters have been cloned: GLYT1, mainly expressed by glial cells and shown to colocalize with NMDA receptors, and GLYT2, exclusively expressed by neurons and colocalized with the inhibitory glycine receptors. The way in which the regulation of extracellular glycine concentration by glial glycine transporters affects physiological and pathological conditions is discussed. The presence, differential pharmacology and specific regulation of glycine transporters in glial cells strongly support an important role for glia in the modulation of both, excitatory and inhibitory neurotransmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号