首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, an easily magnetically recoverable polydopamine (PDA)-modified hydroxyapatite (HAp)/Fe3O4 magnetic composite (HAp/Fe3O4/PDA) was suitably synthesized to exploit its adsorption capacity to remove Zn2+ from aqueous solution, and its structural properties were thoroughly examined using different analytical techniques. The effect of multiple parameters like pH, ultrasonic power, ultrasonic time, adsorbent dose, and initial Zn2+ concentration on the adsorption efficiency was assessed using RSM-CCD. According to the acquired results, by increasing the adsorbent quantity, ultrasonic power, ultrasonic time, and pH, the Zn2+ adsorption efficiency increased and the interaction between the variables of ultrasonic power/Zn2+ concentration, pH/Zn2+ concentration, pH/absorbent dose, and ultrasonic time/adsorbent dose has a vital role in the Zn2+ adsorption. The uptake process of Zn2+ onto PDA/HAp/Fe3O4 followed Freundlich and pseudo-second order kinetic models. The maximum capacity of Zn2+ adsorption (qm) obtained by PDA/HAp/Fe3O4, HAp/Fe3O4, and HAp was determined as 46.37 mg g−1, 40.07 mg g−1, and 37.57 mg g−1, respectively. Due to its good performance and recoverability (ten times), the HAp/Fe3O4/PDA magnetic composite can be proposed as a good candidate to eliminate Zn2+ ions from a water solution.

A magnetically recoverable polydopamine (PDA)-modified hydroxyapatite (HAp)/Fe3O4 magnetic composite (HAp/Fe3O4/PDA) was synthesized to exploit its adsorption capacity to remove Zn2+ from aqueous solution and the structural properties were examined.  相似文献   

2.

The α-amylase from radish seeds has been purified to apparent homogeneity with specific activity of 821.66 U/mg of protein with 36 folds purification. The purified enzyme displayed single protein band on native PAGE (polyacrylamide gel electrophoresis) confirmed by activity staining. The SDS PAGE (sodium dodecyl sulphate polyacrylamide gel electrophoresis) revealed protein band of approximately 43 and 90 kDa. The calcium content of enzyme preparation was around 1.442 µg/mg of protein as analyzed by AAS (atomic absorption spectrophotometer). The energy of activation for enzyme was 3.82 kcal/moles with Km and Vmax values 4.8 mg/mL and 0.377, respectively, using starch as the substrate. The metal ions such as Ca2+ and Mg2+ showed augmented activity whereas Ni2+, Fe2+ and Cu2+ showed slight inhibition in the amylase activity. The thiol group reagents also activated the enzyme. Further, the effect of pH and temperature on α-amylase activity were analyzed and optimized utilizing response surface methodology. The value of regression coefficients was found significant (R2 = 92.62%) showing the suitability of the proposed model. The multiple regression and analysis of variance showed the individual and cumulative effect of pH and temperature on the activity of enzyme with optimum pH of 6.5 and temperature of 60 °C. Additionally, contour plot, 3D surface plot and optimization plot were used to predict the effect of each variable with minimum set of experiments.

  相似文献   

3.
The facile preparation and modification of low-cost/efficient adsorbents or biochar (CP) derived from the carbonization of palm kernel cake (lignocellulosic residue) has been studied for the selective adsorption of various metal cations, such as Fe3+, Fe2+, Ca2+ and Zn2+, from aqueous solution. The CP surface was modified with KMnO4 (CPMn) and HNO3 (CPHNO3) in order to improve the adsorption efficiency. The physicochemical properties of the as-prepared adsorbents were investigated via BET, pHpzc, FT-IR, Boehm titration, TG-DTG, XRD and SEM-EDS techniques. The surfaces of all adsorbents clearly demonstrated negative charge (pHpzc > pH of the mixture solution), resulting in a high adsorption capacity for each metal cation. Fe2+ was found to be more easily adsorbed on modified CP than the other kinds of metal cations. Synergistic effects between the carboxylic groups and MnO2 on the surface of CPMn resulted in better performance for metal cation adsorption than was shown by CPHNO3. The maximum adsorption capacities for Fe3+, Fe2+, Ca2+ and Zn2+ using CPMn, which were obtained from a monolayer adsorption process via Langmuir isotherms (R2 > 0.99), were 70.67, 68.60, 5.06 and 22.38 mg g−1, respectively. The adsorption behavior and monolayer-physisorption behavior, via a rapid adsorption process as well as single-step intra-particle diffusion, were also verified and supported using Dubinin–Radushkevich, Redlich–Peterson and Toth isotherms, a pseudo-second-order kinetic model and the Weber–Morris model. Moreover, the thermodynamic results indicated that the adsorption process of metal cations onto the CPMn surface was endothermic and spontaneous in nature. This research is expected to provide a green way for the production of low-cost/efficient adsorbents and to help gain an understanding of the adsorption behavior/process for the selective removal of metal ions from wastewater pollution.

Manganese dioxide-modified green biochar exhibited excellent capacity for adsorption of Fe3+, Fe2+, Ca2+ and/or Zn2+.  相似文献   

4.
A luminescent Cd(ii) coordination polymer, namely {[Cd(btic)(phen)]·0.5H2O}n (CP-1) (H2btic = 5-(2-benzothiazolyl)isophthalic acid, phen = 1,10-phenanthroline), was constructed through the mixed-ligand method under solvothermal conditions. CP-1 manifests a chain structure decorated with uncoordinated Lewis basic N and S donors. CP-1 exhibits high sensing towards Zn2+, Fe3+ and Cr2O72− ions with fluorescence enhancement or quenching. CP-1 exhibited a fluorescence enhancement for Zn2+ ions through weak binding to S and N atoms, and a fluorescence quenching for Fe3+ and Cr2O72− ions by an energy transfer process. The binding constants were calculated as 1.812 × 104 mol−1 for Zn2+, 4.959 × 104 mol−1 for Fe3+ and 1.793 × 104 mol−1 for Cr2O72−. This study shows CP-1 as a rare multi-responsive sensor material for the efficient detection of Zn2+, Fe3+ and Cr2O72− ions.

A luminescent Cd(ii) coordination polymer can act as a multi-responsive sensor for efficiently detecting Zn2+, Fe3+ and Cr2O72− ions.  相似文献   

5.
Human liver alpha-D-mannosidase activity   总被引:7,自引:0,他引:7  
Three types of α-D-mannosidase activity have been found in normal human liver, acidic activity with a pH optimum of 4.25, neutral activity with a pH optimum of 6.5 and activity with an intermediate pH optimum of 5.5. The acidic activity is heat stable and can be separated into two peaks A and B on DEAE-cellulose. Under certain conditions peak A converts to peak B spontaneously with an increase in molecular weight and decrease in pI. In peaks A and B there is both activity which is inhibited by EDTA and Co2+ but activated by Zn2+ and activity which is unaffected by EDTA, Co2+ or Zn2+. The neutral activity, which is heat labile, is obtained as a single peak of activity by chromatography on DEAE-cellulose, gel filtration and isoelectric focusing. The activity with a pH optimum of 5.5, which is activated by Co2+ and heat stable has similar isoelectric and Chromatographie properties to the neutral activity. The significance of these multiple forms of α-d-mannosidase is discussed in relation to the genetic disorder, mannosidosis.  相似文献   

6.
Phospholipase C (PLC; heat-labile hemolysin) was purified fromPseudomonas aeruginosa culture supernatants to near homogeneity by ion exchange chromatography. Some chelating reagents and divalent metal ions were examined for their effects on the purified PLC activity. EDTA, ECTA, ando-phenanthroline did not inhibit the enzyme activity top-nitrophenylphosphorylcholine (pNPPC) at concentrations below 10 mmol/L. Inclubation with Zn2+, Cu2+, Co2+ or Ni2+ caused a decrease in the enzyme activity. The activity of EDTA-treated PLC was most remarkably decreased in the presence of Zn2+, followed in descending order by Cu2+, Co2+ and Ni2+, while other metal ions (Mg2+, Ca2+, Ba2+, and Mn2+) did not significantly affect the enzyme activity using concentrations up to 10 mmol/L. Zn2+ competitively inhibited the enzyme activity against pNPPC, with a Ki value of 0.3 mmol/L. The hemolytic activity of PLC was also completely inhibited in the presence of 1 mmol/L Zn2+, and inactivation of the enzyme by Zn2+ was not reversed by concomtitant addition of other divalent metal ions. These results suggest that hemolytic PLC fromP. aeruginosa has a unique property in that there is no metal ion requirement for its activity.  相似文献   

7.
Helicoverpa armigera is the most devastating pest of important crops causing heavy yield losses. The larval midgut harbours proteases and their inhibition starves insects to death or may disrupt their normal metabolism. So there is need to characterize gut protease and its potential inhibitors. A serine protease (trypsin like) from H. armigera gut was purified ~37 folds with 22 % yield and its molecular weight was found to be ~18.8 kilo Dalton. The Michaelis constant using N-α-benzoyl-DL-arginine-p-nitroanilide as a substrate was 0.31 mM. Maximum reaction rate was determined to be 3.47 nmol p-nitroaniline/min. Free energy of binding was found to be ?20.8 kJ/mol. The optimum temperature of enzyme was found to be 50 °C and around 17 % activity was maintained on heating at 80 °C for 30 min. The optimum pH for trypsin like activity was 11 with wide range of activity between 9 and 12 indicating that midgut digestive trypsin of H. armigera is active over wide range of alkaline pH. Metal ions Cu2+, Zn2+, Cd2+ and Hg2+ were found to have the potential to inhibit the enzyme. Maximum inhibition was observed with Cu2+ (73 %) and minimum inhibition with Cd2+ (47 %). Copper inhibited trypsin non-competitively and zinc inhibited uncompetitively. Ascorbic acid, EDTA, leupeptin and benzamidine were found to be competitive inhibitors of H. armigera gut protease. The Ki values for Cu2+, ascorbic acid, EDTA, leupeptin and benzamidine were found to be 1.32, 38.23, 2.51 mM, 37.13 µM and 5.66 mM respectively.  相似文献   

8.
Response surface methodology (RSM) was utilized to optimize the ultrasonic-assisted extraction (UAE) of Dioscorea cirrhosa pigment (DCP). The results demonstrated that the yield of DCP is the highest (32.27%) when acetone volume fraction is 74%, extraction time is 31 min, and the temperature is 54 °C. Next, the effects of pH, temperature, light, metal ions, reductants and oxidants on the stability of DCP were further evaluated to confirm the best storage conditions of DCP. The results showed that DCP should be stored at a wide pH range of 3 to 9, below 80 °C and away from light. Metal ions such as Fe2+, Fe3+, and Ti4+ can destabilize DCP, while K+, Al3+, Ca2+, Cu2+, Mg2+, and Zn2+ have little impact on DCP. Moreover, DCP showed good anti-reduction and poor anti-oxidization properties. These results might provide the basic data and theoretical guidance for the application of DCP.

Response surface methodology (RSM) was utilized to optimize the ultrasonic-assisted extraction (UAE) of Dioscorea cirrhosa pigment (DCP).  相似文献   

9.
Acetoin is an important bio-based platform chemical with wide applications. Among all bacterial strains, Enterobacter cloacae is a well-known acetoin producer via α-acetolactate decarboxylase (ALDC), which converts α-acetolactate into acetoin and is identified as the key enzyme in the biosynthetic pathway of acetoin. In this work, the enzyme properties of Enterobacter cloacae ALDC (E.c.-ALDC) were characterized, revealing a Km value of 12.19 mM and a kcat value of 0.96 s−1. Meanwhile, the optimum pH of E.c.-ALDC was 6.5, and the activity of E.c.-ALDC was activated by Mn2+, Ba2+, Mg2+, Zn2+ and Ca2+, while Cu2+ and Fe2+ significantly inhibited ALDC activity. More importantly, we solved and reported the first crystal structure of E.c.-ALDC at 2.4 Å resolution. The active centre consists of a zinc ion coordinated by highly conserved histidines (199, 201 and 212) and glutamates (70 and 259). However, the conserved Arg150 in E.c.-ALDC orients away from the zinc ion in the active centre of the molecule, losing contact with the zinc ion. Molecular docking of the two enantiomers of α-acetolactate, (R)-acetolactate and (S)-acetolactate allows us to further investigate the interaction networks of E.c.-ALDC with the unique conformation of Arg150. In the models, no direct contacts are observed between Arg150 and the substrates, which is unlikely to maintain the stabilization function of Arg150 in the catalytic reaction. The structure of E.c.-ALDC provides valuable information about its function, allowing a deeper understanding of the catalytic mechanism of ALDCs.

Arg150 in E.c.-ALDC exhibited a unique tilted conformation implying the lower activities of E.c.-ALDC comparing to other bacterial ALDCs. Sequence conservation of E.c.-ALDC is represented by ribbons and lines (conserved, magenta to variable, cyan).  相似文献   

10.
High purity Zn2SiO4:Mn crystals were synthesized by impregnating a precursor solution into mesoporous silica followed by sintering process. The effects of doping alkali metal ions (Li+, Na+, K+) on the structural, morphological and photoluminescence properties were investigated. Formation of single phase α-Zn2SiO4:Mn crystals was confirmed from X-ray diffraction. The crystal size was significantly decreased from 54 nm to 35 nm with increasing molar concentration of alkali metal ion dopants in Zn2SiO4:Mn. Zn2SiO4:Mn crystals co-doped with alkali metal ions showed stronger emission and faster decay times compared to the un-doped Zn2SiO4:Mn phosphor. The highest emission quantum yields (EQEs) of 68.3% at λexc 254 and 3.8% at λexc 425 nm were obtained for the K+ ion doped samples with Mn2+ : K+ ratio of ∼1 : 1. With alkali metal ions (Li+, Na+, K+) co-doping, the decay time of Zn2SiO4:Mn crystals was shortened to ∼4 ms, whereas the emission intensity was elevated, with respect to un-doped Zn2SiO4:Mn crystals. Zn2SiO4:Mn crystal growth in silica pores together with selective doping with alkali metal ions paves a way forward to shorten the phosphor response time, without compromising emission efficiency.

Alkali metal ions co-doped Zn2SiO4:Mn nanocrystals were synthesized in a mesoporous silica matrix using solution impregnation method. A high PL-QY of 68.3% at λexc 254 nm and 3.8% at λexc 425 nm with faster decay time of <5 ms is obtained.  相似文献   

11.
In this work, well-defined 3 nm-sized Ca2+, Fe3+, Na+, Mg2+, Zn2+, Ni2+, Co2+, and Cd2+ cation-adsorbed Fe3O4/γ-Fe2O3 nanoparticles were used as prototype systems to investigate the influence of metallic trace elements in body fluids on the relaxivities of iron-oxide contrast agents. It was found that surface-adsorbed cations formed a deterioration layer to induce pronounced relaxivity loss. Theoretical study showed that such relaxivity loss can be well described by a modified GCAS function, taking into account the harmonic cation oscillations around Fe3O4/γ-Fe2O3 nanoparticles. Quantum mechanics analyses revealed that even-parity and odd-parity states of harmonic oscillations are dominant in r1 and r2 relaxivities, respectively. Moreover, the harmonic oscillations of Na+ and Mg2+ cations around Fe3O4/γ-Fe2O3 nanoparticles are found to be classical forbidden, which are quite different from their counterparts located in the classical permissive area.

Distribution of relaxivity loss can be well described by a modified GCAS function.  相似文献   

12.
Developing novel luminescent materials for sensitive and rapid detection of heavy metal ions, organic solvents and organochlorine pesticides is vital for environmental monitoring. Herein, a new Ag(i) luminescent coordination polymer [Ag(3-dpyb)(H3odpa)]·H2O (LCP 1) (3-dpyb = N,N′-bis(3-pyridinecarboxamide)-1,4-butane, H4odpa = 4,4′-oxydiphthalic acid) was obtained by a hydrothermal reaction and characterized by single crystal, powder X-ray diffraction, infrared spectroscopy, thermogravimetric analysis and luminescence spectroscopy. LCP 1 is a three-dimensional (3D) supramolecular framework formed from 1D [Ag-3-dpyb-H3odpa]n chains and H-bond interactions. The luminescence sensing study of LCP 1 for recognizing organic solvents, organochlorine pesticides and heavy metal ions was performed, which demonstrated it to be a potential luminescent sensor for Hacac, NB, 2,6-DCN, Fe2+, Hg2+, and Fe3+. Fe2+, Hg2+, and Fe3+ in river water were determined using LCP 1 with satisfying recovery.

3D supramolecular LCP 1 can detect Hacac, NB, 2,6-DCN, Fe2+, Hg2+, and Fe3+ with a low detection limit and pH stability.  相似文献   

13.
The rational design principle of highly active catalysts for the oxygen evolution reaction (OER) is desired because of its versatility for energy-conversion applications. Postspinel-structured oxides, CaB2O4 (B = Cr3+, Mn3+, and Fe3+), have exhibited higher OER activities than nominally isoelectronic conventional counterparts of perovskite oxides LaBO3 and spinel oxides ZnB2O4. Electrochemical impedance spectroscopy reveals that the higher OER activities for CaB2O4 series are attributed to the lower charge-transfer resistances. A density-functional-theory calculation proposes a novel mechanism associated with lattice oxygen pairing with adsorbed oxygen, demonstrating the lowest theoretical OER overpotential than other mechanisms examined in this study. This finding proposes a structure-driven design of electrocatalysts associated with a novel OER mechanism.

Postspinel-structured oxides, CaB2O4 (B = Cr3+, Mn3+, and Fe3+), have exhibited systematically higher catalytic activities in the oxygen evolution reaction (OER) than nominally conventional counterparts of perovskite LaBO3 and spinel ZnB2O4.  相似文献   

14.
In this paper, a novel adsorbent, Fe3O4@SiO2@PEI-NTDA, was first prepared by the immobilization of an amine and anhydride onto magnetic Fe3O4@SiO2 nanoparticles with polyethylenimine (PEI) and 1,4,5,8-naphthalenetetracarboxylic-dianhydride (NTDA) for the removal of heavy metal ions from aqueous solutions. The structure of Fe3O4@SiO2@PEI-NTDA was systematically investigated; the results confirmed that amine and anhydride groups were successfully covalently grafted onto the surface of Fe3O4@SiO2, which showed a homogenous core–shell structure with three layers of about 300 nm diameter (Fe3O4 core: 200 nm, nSiO2 layer: 20 nm, and PEI-NTDA layer: 20 nm). The adsorption performance of Fe3O4@SiO2@PEI-NTDA NPs was evaluated for single Pb2+ and coexisting Cd2+, Ni2+, Cu2+, and Zn2+ ions in an aqueous solution in a batch system. The amine and anhydride groups may have a synergistic effect on Pb2+ removal through electrostatic interactions and chelation; Fe3O4@SiO2@PEI-NTDA NPs exhibited preferable removal of Pb2+ with maximum adsorption capacity of 285.3 mg g−1 for Pb2+ at a solution pH of 6.0, adsorbent dosage of 0.5 g L−1, initial Pb2+ concentration of 200 mg L−1 and contact time of 3 h. The adsorption mechanism conformed well to the Langmuir isotherm model, and the adsorption kinetic data were found to fit the pseudo-second order model. Fe3O4@SiO2@PEI-NTDA NPs could be recovered easily from their dispersion by an external magnetic field and demonstrated good recyclability and reusability for at least 6 cycles with a high adsorption capacity above 204.5 mg g−1. The magnetic adsorbents showed high stability with a weight loss below 0.65% in the acid leaching treatment by 2 M HCl solution for 144 h. This study indicates that Fe3O4@SiO2@PEI-NTDA NPs are new promising adsorbents for the effective removal of Pb2+ in wastewater treatment.

A magnetically separable adsorbent, anhydride-functionalized Fe3O4@SiO2@PEI-NTDA, was successfully constructed for removal of heavy metal ions from aqueous solution.  相似文献   

15.
Procedures are described for the preparation of two disaccharides, 4-O -α -L-iduronosyl-2, 5-anhydro[3H]mannitol and 3-O-α-l-iduronosyl-2,5--anhydro[3H]-talitol, from heparin and dermatan sulfate, respectively. These disaccharides lend themselves to an easy assay of α-L-iduronidase which is based on the fractionation of the liberated neutral anhydro[3H]mannitol or anhydro[3H]talitol from the unreacted substrate by adsorption of the latter to Dowex 1.Investigation of the reaction conditions showed that the α-L-iduronidase activity (enzyme from human fibroblasts and Helix pomatia) was optimal at pH 3.6 in acetate buffer containing 0.01 M NaCl with iduronosyl-2,5-anhydro[3H]mannitol as substrate. For iduronosyl-2,5-anhydro[3H]talitol the pH optimum was 4.0 with the H. pomatia enzyme.The Km for iduronosyl-2,5-anhydro[3H]mannitol was 0.23 mM with human fibroblasts and 0.04 mM with Helix enzyme; a KM value of 0.02 mM was determined for iduronosyl-2,5-anhydro[3H]talitol with the Helix α-l-iduronidase.  相似文献   

16.
Synthesis and characterization of graphene quantum dots (GQDs) simultaneously doped with 1% glutathione (GSH-GQDs) by pyrolysis using citric acid rich-lime oil extract as a starting material. The excitation wavelength (λmax = 337 nm) of the obtained GSH-GQD solution is blue shifted from that of bare GQDs (λmax = 345 nm), with the same emission wavelength (λmax = 430 nm) indicating differences in the desired N and S matrices decorating the carbon based nanoparticles, without any background effect of both ionic strength and masking agent. For highly Fe3+-sensitive detection under optimum conditions, acetate buffer at pH 4.0 in the presence of 50 μM H2O2, the linearity range was 1.0–150 μM (R2 = 0.9984), giving its calibration curve: y = 34.934x + 169.61. The LOD and LOQ were found to be 0.10 and 0.34 μM, respectively. The method’s precisions expressed in terms of RSDs for repeatability (n = 3 × 3 for intra-day analysis) were 2.03 and 3.17% and for reproducibility (n = 5 × 3 for inter-day analysis) were 3.11 and 4.55% for Fe2+ and Fe3+, respectively. The recoveries of the method expressed as the mean percentage (n = 3) were found in the ranges of 100.1–104.1 and 98.08–102.7% for Fe2+ and Fe3+, respectively. The proposed method was then implemented satisfactorily for trace determination of iron speciation in drinking water.

Synthesis and characterization of graphene quantum dots (GQDs) simultaneously doped with 1% glutathione (GSH-GQDs) by pyrolysis using citric acid rich-lime oil extract as a starting material.  相似文献   

17.
Boronic acid provides faster fluorescence response to Fe3+ compared to other reported sensors, which is critical for continuous dynamic detection. Herein, we reported a novel boronic acid-based sensor 4 that could recognize Fe3+ ion in real time. After 10 equiv. of Fe3+ ion (1 mM) was added, the fluorescence of sensor 4 was immediately quenched by 96%. While other ions, including Ba2+, Ca2+, Cr2+, Cd2+, Co2+, Cs2+, Cu2+, Fe2+, K+, Li+, Mg2+, Mn2+, Na+, Ni2+ or Zn2+, respectively, did not change the fluorescence significantly. Further tests indicated that the high selectively sensing Fe3+ ion benefits from the two boronic acid functionalities in the structure. Moreover, interference experiments showed this sensor has an excellent anti-interference ability. In addition, we performed binding activity test in rabbit plasma and other real samples for practical applications, obtaining similar results. And the thin layer loading sensor 4 was also successfully applied to recognize Fe3+ ion among various ions. Therefore, 4 may serve as a potential sensor for continuous monitoring and detecting Fe3+ ion in real time.

Boronic acid provides faster fluorescence response to Fe3+ compared to other reported sensors, which is critical for continuous dynamic detection.  相似文献   

18.
The problems of acid mine drainage (AMD) in coal mine acidic wastewaters arise from a range of sources, including severe pollution with heavy metals and SO42− and difficulties during treatment. Based on the ability of Maifan stone to adsorb heavy metals and the dissimilatory reduction of SO42− by sulfate-reducing bacteria (SRB), Maifan stone–sulfate-reducing bacterium-immobilized particles were prepared via immobilization techniques using Shandong Maifan stone as the experimental material. A single factor experiment was used to investigate the influences of the dosage of Maifan stone, the particle size of Maifan stone and the dosage of SRB on the pH improvement effect and the removal rates of SO42−, Fe2+ and Mn2+. The Box–Behnken response surface method was used to determine the optimal preparation conditions for the Maifan stone and SRB immobilized particles in accordance with the ion removal rate and pH improvement effect when dealing with AMD. The results show that: (1) the optimal preparation conditions for Maifan stone synergistic SRB immobilized particles are determined by single factor experiment: the dosage of Maifan stone is 5 g, the particle size of Maifan stone is 0.075–0.106 mm, and the dosage of SRB is 25 mL per 100 mL; the removal rates of SO42−, Fe2+ and Mn2+ from AMD by the Maifan stone and SRB immobilized particles prepared under these conditions were 92.22%, 95.41% and 86.05%, and the pH was increased from 4.08 to 7.45. (2) From the variance analysis of the response surface model, it can be seen that the model effectively predicts the SO42− removal rate, Fe2+ removal rate, Mn2+ removal rate and pH change. (3) After further optimization using the response surface method, the optimal preparation conditions of Maifan stone and SRB immobilized particles are determined as follows: Maifan stone dosage is 5 g, Maifan stone particle size is 0.075–0.106 mm, and SRB dosage is 25 mL per 100 mL. Through experiments, the removal rates of SO42−, Fe2+ and Mn2+ from AMD by the Maifan stone and SRB immobilized particles prepared under these conditions were 92.12%, 95.93% and 87.14%, respectively, and the pH was increased from 4.08 to 7.49.

Based on the ability of Maifan stone to adsorb heavy metals and the dissimilatory reduction of SO42− by sulfate-reducing bacteria (SRB), Maifan stone–sulfate-reducing bacterium-immobilized particles were prepared via immobilization techniques.  相似文献   

19.
Hollow metal–organic framework (MOF) micro/nanostructures have been attracting a great amount of research interest in recent years. However, the synthesis of hollow metal–organic frameworks (MOFs) is a great challenge. In this paper, by using 1,3,5-benzenetricarboxylic acid (H3BTC) as the organic ligand and 2,5-thiophenedicarboxylic acid (H2TDC) as the competitive ligand and protective agent, hollow terbium MOFs (Tb-MOFs) spheres were synthesized by a one-pot solvothermal method. By comparing the morphology of Tb-MOFs in the presence and absence of H2TDC, it is found that H2TDC plays a key role in the formation of the hollow spherical structure. Single crystal analyses and element analysis confirm that H2TDC is not involved in the coordination with Tb3+. Interestingly, Tb-MOFs can be used as the luminescent probes for Fe3+ recognition in aqueous and N,N-dimethylformamide (DMF) solutions. In aqueous solution, the quenching constant (KSV) is 5.8 × 10−4 M−1, and the limit of detection (LOD) is 2.05 μM. In DMF, the KSV and LOD are 9.5 × 10−4 M−1 and 0.80 μM, respectively. The sensing mechanism is that the excitation energy absorption of Fe3+ ions reduces the energy transfer efficiency from the ligand to Tb3+ ions.

(a) Pictures of Tb-MOFs suspension (left) and Fe3+ (right) under 365 nm illumination. (b) Pictures of Fe3+ with (left) and without (right) Tb-MOFs. (c) Pictures of Tb-MOFs powder before (left) and after (right) Fe3+ adsorption.  相似文献   

20.
Surface plasmon resonance (SPR) sensors as novel optical sensors for the detection of a variety of analytes have been receiving increasing attention and their sensitivity has become the research hotspot recently. In this study, the sensitivity of an SPR optical sensor was enhanced by modifying a gold thin film with a nanocrystalline cellulose (NCC)-based material for zinc ion (Zn2+) detection that exists in the environment due to industrial processing. By replacing the gold thin film with a novel modified-gold thin film, Zn2+ can be detected from the range of 0 to 10 ppm using SPR. It is believed that the Zn2+ may interact with the negative charge molecules that exist on the modified-gold thin film, and this was confirmed via X-ray photoelectron spectroscopy (XPS). Moreover, this modified-gold-SPR has a high sensitivity of 1.892° ppm−1 up to 0.1 ppm with an enhanced detection of Zn2+ as low as 0.01 ppm. The SPR results also followed the Langmuir isotherm model with a binding affinity of 1.927 × 103 M−1, which further confirmed the sensitivity of the SPR sensor. In addition, using the modified-gold thin film, SPR has a higher affinity towards Zn2+ compared to other metal ions, i.e. Ni2+, Fe2+, Cr2+, Mn2+, and Co2+.

This work focus on sensitivity enhancement of surface plasmon resonance (SPR) optical sensor by modifying the gold thin film with nanocrystalline cellulose (NCC) based material for zinc ion (Zn2+) detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号