首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A striking example of plasticity in life span is seen in social insects such as ants and bees, where different castes may display distinct ageing patterns. In particular, the honeybee offers an intriguing illustration of environmental control on ageing rate. Honeybee workers display a temporal division of labour where young bees (or 'hive bees') perform tasks within the brood nest, and older bees forage for nectar, pollen propolis and water. When bees switch from the hive bee to the forager stage, their cellular defence machinery is down-regulated by a dramatic reduction in the number of functioning haemocytes (immunocytes). This study documents that the yolk precursor vitellogenin is likely to be involved in a regulatory pathway that controls the observed decline in somatic maintenance function of honeybee foragers. An association between the glyco-lipoprotein vitellogenin and immune function has not previously been reported for any organism. Honeybee workers are functionally sterile, and via the expression of juvenile hormone, a key gonotrophic hormone in adult insects, their vitellogenin levels are influenced by social interactions with other bees. Our results therefore suggest that in terms of maintenance of the cellular immune system, senescence of the honeybee worker is under social control.  相似文献   

2.
In most animals, longevity is achieved at the expense of fertility, but queen honey bees do not show this tradeoff. Queens are both long-lived and fertile, whereas workers, derived from the same genome, are both relatively short-lived and normally sterile. It has been suggested, on the basis of results from workers, that vitellogenin (Vg), best known as a yolk protein synthesized in the abdominal fat body, acts as an antioxidant to promote longevity in queen bees. We explored this hypothesis, as well as related roles of insulin-IGF-1 signaling and juvenile hormone. Vg was expressed in thorax and head fat body cells in an age-dependent manner, with old queens showing much higher expression than workers. In contrast, Vg expression in worker head was much lower. Queens also were more resistant to oxidative stress than workers. These results support the hypothesis that caste-specific differences in Vg expression are involved in queen longevity. Consistent with predictions from Drosophila, old queens had lower head expression of insulin-like peptide and its putative receptors than did old workers. Juvenile hormone affected the expression of Vg and insulin-IGF-1 signaling genes in opposite directions. These results suggest that conserved and species-specific mechanisms interact to regulate queen bee longevity without sacrificing fecundity.  相似文献   

3.
Research on aging shows that regulatory pathways of fertility and senescence are closely interlinked. However, evolutionary theories on social species propose that lifelong care for offspring can shape the course of senescence beyond the restricted context of reproductive capability. These observations suggest that control circuits of aging are remodeled in social organisms with continuing care for offspring. Here, we studied a circuit of aging in the honey bee (Apis mellifera). The bee is characterized by the presence of a long-lived reproductive queen caste and a shorter-lived caste of female workers that are life-long alloparental care givers. We focus on the role of the conserved yolk precursor gene vitellogenin that, in Caenorhabditis elegans, shortens lifespan as a downstream element of the insulin/insulin-like growth factor signaling cascade. Vitellogenin protein is synthesized at high levels in honey bee queens and is abundant in long-lived workers. We establish that vitellogenin gene activity protects worker bees from oxidative stress. Our finding suggests that one mechanistic explanation for patterns of longevity in bees is that a reproductive regulatory pathway has been remodeled to extend life. This perspective is of considerable relevance to research on longevity regulation that builds largely on inference from solitary model species.  相似文献   

4.
A striking example of immunosenescence is seen in the honey bee (Apis mellifera) worker caste. The bees' age-associated transition from hive duties to more risky foraging activities is linked to a dramatic decline in immunity. Explicitly, it has been shown that an increase in the juvenile hormone (JH) level, which accompanies onset of foraging behavior, induces extensive hemocyte death through nuclear pycnosis. Here, we demonstrate that foragers that are forced to revert to hive-tasks show reversal of immunosenescence, i.e. a recovery of immunity with age. This recovery, which is triggered by a social manipulation, is accompanied by a drop in the endogenous JH titer and an increase in the hemolymph vitellogenin level. Vitellogenin is a zinc binding glycolipoprotein that has been implicated in the regulation of honey bee immune integrity. We also establish that worker immunosenescence is mediated by apoptosis, corroborating that reversal of immunosenescence emerges through proliferation of new cells. The results presented here, consequently, reveal a unique flexibility in honey bee immunity—a regulatory plasticity that may be of general biological interest.  相似文献   

5.
6.
Three experiments were performed to determine the role of juvenile hormone (JH) in worker reproduction in queenless colonies of honey bees. In Experiment 1, egg-laying workers had low hemolymph titers of JH, as did bees engaged in brood care, while foragers had significantly higher titers. Experiment 2 confirmed these findings by demonstrating that laying workers have significantly lower rates of JH biosynthesis than foragers do. In Experiment 3, ovary development was inhibited slightly by application of the JH analog methoprene to 1-day-old bees, but was not affected by application to older bees, at least some already displaying egg-laying behavior. These results, which are consistent with earlier findings for queen honey bees, are contrary to a common model of insect reproduction, in which elevated JH titers trigger ovary development, which then leads to oviposition. Previous experiments have demonstrated that JH regulates nonreproductive behavior in workers that is associated with colony division of labor; perhaps this function is incompatible with a traditional role for JH in reproduction.  相似文献   

7.
Previous research showed that the presence of older workers causes a delayed onset of foraging in younger individuals in honey bee colonies, but a specific worker inhibitory factor had not yet been identified. Here, we report on the identification of a substance produced by adult forager honey bees, ethyl oleate, that acts as a chemical inhibitory factor to delay age at onset of foraging. Ethyl oleate is synthesized de novo and is present in highest concentrations in the bee's crop. These results suggest that worker behavioral maturation is modulated via trophallaxis, a form of food exchange that also serves as a prominent communication channel in insect societies. Our findings provide critical validation for a model of self-organization explaining how bees are able to respond to fragmentary information with actions that are appropriate to the state of the whole colony.  相似文献   

8.
Previous studies of the division of labor in colonies of eusocial Hymenoptera (wasps and bees) have led to two hypotheses regarding the evolution of juvenile hormone (JH) involvement. The novel- or single-function hypothesis proposes that the role of JH has changed from an exclusively reproductive function in primitively eusocial species (those lacking morphologically distinct queen and worker castes), to an exclusively behavioral function in highly eusocial societies (those containing morphologically distinct castes). In contrast, the split-function hypothesis proposes that JH originally functioned in the regulation of both reproduction and behavior in ancestral solitary species. Then, when reproductive and brood-care tasks came to be divided between queens and workers, the effects of JH were divided as well, with JH involved in regulation of reproductive maturation of egg-laying queens, and behavioral maturation, manifested as age-correlated changes in worker tasks, of workers. We report experiments designed to test these hypotheses. After documenting age-correlated changes in worker behavior (age polyethism) in the neotropical primitively eusocial wasp Polistes canadensis, we demonstrate that experimental application of the JH analog methoprene accelerates the onset of guarding behavior, an age-correlated task, and increases the number of foraging females; and we demonstrate that JH titers correlate with both ovarian development of queens and task differentiation in workers, as predicted by the split-function hypothesis. These findings support a view of social insect evolution that sees the contrasting worker and queen phenotypes as derived via decoupling of reproductive and brood-care components of the ancestral solitary reproductive physiology.  相似文献   

9.
In the honey bee (Apis mellifera), depending on what they are fed, female eggs become either workers or queens. Although queens and workers share a common genome, the maximum lifespan of queens is an order-of-magnitude longer than workers. The mechanistic basis of this longevity difference is unknown. In order to test if differences in membrane composition could be involved we have compared the fatty acid composition of phospholipids of queen and worker honey bees. The cell membranes of both young and old honey bee queens are highly monounsaturated with very low content of polyunsaturates. Newly emerged workers have a similar membrane fatty acid composition to queens but within the first week of hive life, they increase the polyunsaturate content and decrease the monounsaturate content of their membranes, probably as a result of pollen consumption. This means their membranes likely become more susceptible to lipid peroxidation in this first week of hive life. The results support the suggestion that membrane composition might be an important factor in the determination of maximum lifespan. Assuming the same slope of the relationship between membrane peroxidation index and maximum lifespan as previously observed for mammal and bird species, we propose that the 3-fold difference in peroxidation index of phospholipids of queens and workers is large enough to account for the order-of-magnitude difference in their longevity.  相似文献   

10.
We tested the hypothesis that in a genetically mixed assemblage of worker honey bees, individual workers would behave differently toward unfamiliar sisters than toward unfamiliar nonsisters. Groups of worker honey bees of mixed genetic composition were assembled by collecting pupae from separate colonies and placing the worker bees together on eclosion. A total of 10 workers, 5 from each of two kin groups, were used to form each group. When the workers were 5 days old, a worker of one of the two kin groups was introduced into the mixed group. This worker had previously been held in a group of its sisters, without contact with queen or nonsister bees. The interactions with the introduced bee indicate that in a mixed kin group, individual workers learn the composite identity of the group and do not attack unfamiliar bees differentially on the basis of kinship. However, kinship does influence the total number of interactions in which an introduced bee engages when placed in a genetically mixed group; bees interacted significantly more often with sisters than with nonsisters. There was a trend for bees to be involved in more feeding interactions with sisters. This finding indicates an ability of a bee to learn and use its own cues. In mixed groups, each bee maintains its genotypically correlated identity; the bees' odors do not comingle into a “group” or “gestalt” odor. The significance of these results is discussed in light of the genetic structure of natural colonies of honey bees.  相似文献   

11.
Temporal polyethism is a highly derived form of behavioral development displayed by social insects. Hormonal and genetic mechanisms regulating temporal polyethism in worker honey bees have been identified, but the evolution of these mechanisms is not well understood. We performed three experiments with male honey bees (drones) to investigate how mechanisms regulating temporal polyethism may have evolved because, relative to workers, drones display an intriguing combination of similarities and differences in behavioral development. We report that behavioral development in drones is regulated by mechanisms common to workers. In experiment 1, drones treated with the juvenile hormone (JH) analog methoprene started flying at significantly younger ages than did control drones, as is the case for workers. In experiment 2, there was an age-related increase in JH associated with the onset of drone flight, as in workers. In experiment 3, drones derived from workers with fast rates of behavioral development themselves started flying at younger ages than drones derived from workers with slower rates of behavioral development. These results suggest that endocrine and genetic mechanisms associated with temporal polyethism did not evolve strictly within the context of worker social behavior.  相似文献   

12.
Heinze J  Schrempf A 《Gerontology》2008,54(3):160-167
Perennial social insects are characterized by the extraordinarily long lifespan of their reproductive females, which may be tens or hundreds of times larger than that of non-social insects of similar body size and also greatly surpasses that of conspecific non-reproductives. Evolutionary theories of aging explain this phenomenon from the low extrinsic mortality queens experience once they have successfully established their colony. The aim of our review is to summarize recent findings on the ultimate and proximate causes of increased queen longevity in social insects, in particular ants and honey bees. While progress is being made in elucidating the interrelations between the vitellogenin, juvenile hormone, fecundity, and senescence, we feel that the explanation for the comparatively short lifespan of queens in multi-queen societies is as yet not satisfactory and needs further attention, both concerning its proximate and ultimate basis.  相似文献   

13.
Honey bee colonies typically consist of about 20-40 thousand workers, zero to few thousand males (drones), depending on the time of year, and a single queen, the mother of the colony. Workers typically live 3-6 weeks during the spring and summer and can live about 4months during the winter. Queens are longer lived. Anecdotes of queens living 2-3years are not unusual, though they normally live less than a year in commercial hives. Little is known about the life span of drones. Queens develop from fertilized eggs that are not different from the eggs that develop into workers. Queens are, however, twice as large, have specialized anatomy, live much longer, and develop faster from egg to adult. All of these differences are derived from differences in larval rearing environment, primarily nutrition. The developmental trajectory of a female larva from worker into a queen can be determined as late as the third day of larval development, after this time the developmental pathway is fixed for a worker phenotype. The total time of larval development is only 5-6 days, therefore, just 2-3 days of differential feeding can lead to profound differences in development, and longevity. Workers undergo age development after they become adults. Workers usually initiate foraging behavior when they are 2-3 weeks old. The age at which a worker initiates foraging is a strong determinant of her length of life. This is presumed to be a result of the hazards of foraging, but natural senescence also occurs. Some bees remain in the nest and are never observed to forage, thereby outliving their forager sisters. Corresponding to this behavioral development are changes in the sizes of glands and the production of glandular products, increases in biogenic amine titers within the brain, an increase in the volume of specific regions of the brain, and changes in the neural system that affect perception of stimuli, and learning and memory. These age-related changes in behavior are regulated by intrinsic and extrinsic factors. Genetic variation has been demonstrated for many of these life history and behavioral traits. Selection and genome mapping studies have demonstrated relationships between the neural system, behavior, and life history traits.  相似文献   

14.
Queen honeybees (Apis mellifera) have much longer lifespans than worker bees. Energy-regulated molecules in the trophocytes and fat cells of workers during aging have been determined, but are unknown in queen bees. In the present study, energy-regulated molecules were evaluated in the trophocytes and fat cells of young and old queen bees. Adenosine monophosphate-activated protein kinase α2 (AMPK-α2), phosphorylated AMPK-α2 (pAMPK-α2), and cAMP-specific phosphodiesterases activity increased with aging. The pAMPK-α2/AMPK-α2 ratio and AMPK activity; adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP) concentrations; the ADP/ATP ratio and the AMP/ATP ratio; the cyclic adenosine monophosphate concentration; forkhead box protein O expression; Silent information regulator T1 (SirT1) expression and activity; and peroxisome proliferator-activated receptor-α (PPAR-α) expression were not significantly different between young and old queen bees. These results show that energy-regulated molecules maintain a youthful status in the trophocytes and fat cells of queen bees during aging. These cells seem to have longevity-promoting mechanisms and may clarify the secret of longevity in queen bees.  相似文献   

15.
Queen honeybees (Apis mellifera) have a much longer lifespan than worker bees. Whether cellular degradation activity is involved in the longevity of queen bees is unknown. In the present study, cellular degradation activity was evaluated in the trophocytes and oenocytes of young and old queen bees. The results indicated that (i) 20S proteasome activity and the size of autophagic vacuoles decreased with aging, and (ii) there were no significant differences between young and old queen bees with regard to 20S proteasome expression or efficiency, polyubiquitin aggregate expression, microtubule-associated protein 1 light chain 3-II (LC3-II) expression, 70 kDa heat shock cognate protein (Hsc70) expression, the density of autophagic vacuoles, p62/SQSTM1 expression, the activity or density of lysosomes, or molecular target of rapamycin expression. These results indicate that cellular degradation activity maintains a youthful status in the trophocytes and oenocytes of queen bees during aging and that cellular degradation activity is involved in maintaining the longevity of queen bees.  相似文献   

16.
Honeybees (Apis mellifera L.) display a pronounced natural aging plasticity. The differences in aging rates between the alternative phenotypes and behavioral classes could reflect differences in protection against damage or in the ability to repair vulnerable tissues. As in other animals, including humans, the gut is continually exposed to environmental insults and harbors a large population of replicating stem cells that maintain the intestinal epithelium. Through studies of the major internal organs using incorporation and immunodetection of the mitotic marker bromo-deoxyuridine, the intestine was determined to be the main site of tissue renewal in adult honeybees. Proliferative activity of the intestinal stem cells was compared among queens, workers, and males of different ages. Simultaneous attempts to assess intestinal cell loss via apoptosis yielded inconclusive results. The relationship between intestinal cell proliferation and worker life-history was evaluated in greater depth by studying diutinus winter workers, reproductive workers, and by decoupling worker behavioral status from chronological age in a single-cohort colony. Intestinal cell proliferation was abundant in all groups and showed an age-related decline in workers, queens, and males. At young ages, workers exhibited relatively more intestinal cell proliferation than did queens and queens more than drones, but the caste and sex differences decreased with age. Cell proliferation did not decrease beyond 6 weeks of age in older queens and in diutinus workers. Ovary activation did not correlate with the amount of intestinal stem cell proliferation in workers, although the queenless hive condition was associated with lower overall counts. In the single-cohort colony, nurse bees exhibited more cell proliferation than foragers, regardless of age. The overall results do not support our hypothesis that longer-lived phenotypes exhibit increased somatic repair in the form of higher replicative activity of intestinal stem cells. Instead, the observed proliferation patterns reflect differential demands for digestive activity in the different groups, which result in different requirements for replacement of lost intestinal cells. The maintenance of proliferative capacity for over 1 year suggests that queen intestinal stem cells have a relatively high replicative potential, but further studies are needed to relate honeybee lifespan differences to cellular aging.  相似文献   

17.
Chronic bee paralysis virus (CBPV) is known as a disease of worker honey bees. To investigate pathogenesis of the CBPV on the queen, the sole reproductive individual in a colony, we conducted experiments regarding the susceptibility of queens to CBPV. Results from susceptibility experiment showed a similar disease progress in the queens compared to worker bees after infection. Infected queens exhibit symptoms by Day 6 post infection and virus levels reach 1011 copies per head. In a transmission experiment we showed that social interactions may affect the disease progression. Queens with forced contact to symptomatic worker bees acquired an overt infection with up to 1011 virus copies per head in six days. In contrast, queens in contact with symptomatic worker bees, but with a chance to receive food from healthy bees outside the cage appeared healthy. The virus loads did not exceed 107 in the majority of these queens after nine days. Symptomatic worker bees may transmit sufficient active CBPV particles to the queen through trophallaxis, to cause an overt infection.  相似文献   

18.
When adult females of Armadillidium vulgare were ovariectomized, the fat body continued to synthesize vitellogenin. On the other hand, females transplanted with androgenic glands decreased the synthetic activity for vitellogenin in their fat body. In order to elucidate effect of the androgenic hormone for vitellogenin synthesis, the occurrence of vitellogenin was studied with andrectomized males. Vitellogenin was estimated, using rocket immunoelectrophoresis. Vitellogenin synthesis in the fat body was analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis and fluorography. After andrectomy, males ceased elongation of the endopods (copulatory organs) and then vitellogenin was present in their hemolymph. Their vitellogenin titer continued to rise until it reached approximately three times higher than that of normal females. The accumulation level of vitellogenin was comparable with that of ovariectomized females. However, the activity of vitellogenin synthesis was at a low level in the fat body culture of andrectomized males, similar to ovariectomized females. These results indicate that andrectomized males are capable of vitellogenin synthesis, so one of the effects of the androgenic hormone is to inhibit vitellogenin synthesis. In A. vulgare, ovarian factors may not be involved in the induction of vitellogenin synthesis.  相似文献   

19.
Vitellogenin synthesis in the fat body of the female Colorado potato beetle is affected by juvenile hormone (JH) as was demonstrated by its stimulation after topical application of 50 μg JH to allatocardiacectomized prediapause females. The peak of vitellogenin synthesis is reached 5 days after the administration of JH. Allatocardiacectomy in 5-day-old long-day females does not result in decreased rates of vitellogenin synthesis in comparison with the sham-operated control insects. In postdiapausing long-day females which are allatocardiacectomized during diapause, vitellogenin synthesis increases in the absence of JH. It is concluded, therefore, that factors other than JH are involved. β-Ecdysone does not seem to participate in the regulation of vitellogenin synthesis. In virgin long-day females (12 days after adult ecdysis) JH synthesis and protein synthesis are as high as in mated females, although a virgin produces one-sixth the amount of eggs. In the virgin female the rate of vitellogenin synthesis is uncoupled from the rate of egg laying; this suggests a rather autonomous role in the accumulation of proteins by the ovary.  相似文献   

20.
A honey bee odorant receptor for the queen substance 9-oxo-2-decenoic acid   总被引:5,自引:0,他引:5  
By using a functional genomics approach, we have identified a honey bee [Apis mellifera (Am)] odorant receptor (Or) for the queen substance 9-oxo-2-decenoic acid (9-ODA). Honey bees live in large eusocial colonies in which a single queen is responsible for reproduction, several thousand sterile female worker bees complete a myriad of tasks to maintain the colony, and several hundred male drones exist only to mate. The "queen substance" [also termed the queen retinue pheromone (QRP)] is an eight-component pheromone that maintains the queen's dominance in the colony. The main component, 9-ODA, acts as a releaser pheromone by attracting workers to the queen and as a primer pheromone by physiologically inhibiting worker ovary development; it also acts as a sex pheromone, attracting drones during mating flights. However, the extent to which social and sexual chemical messages are shared remains unresolved. By using a custom chemosensory-specific microarray and qPCR, we identified four candidate sex pheromone Ors (AmOr10, -11, -18, and -170) from the honey bee genome based on their biased expression in drone antennae. We assayed the pheromone responsiveness of these receptors by using Xenopus oocytes and electrophysiology. AmOr11 responded specifically to 9-ODA (EC50=280+/-31 nM) and not to any of the other seven QRP components, other social pheromones, or floral odors. We did not observe any responses of the other three Ors to any of the eight QRP pheromone components, suggesting 9-ODA is the only QRP component that also acts as a long-distance sex pheromone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号