首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Background: Parthenogenetic mammalian embryos were reported to die in utero no later than the 25‐somite stage due to abnormal development of both embryonic and extraembryonic lineages. Interestingly, it has been shown that parthenogenetic ICM cells tend to differentiate more into primitive endoderm cells and less into epiblast and ES cells. Hence we are interested in studying the molecular mechanisms underlying lineage defects of parthenotes. Results: We found that parthenote inner cell masses (ICMs) contained decreased numbers of Sox2+/Nanog+ epiblast cells but increased numbers of Gata4+ primitive endoderm cells, indicating an unusual lineage segregation. We demonstrate for the first time that the increased Gata4 level in parthenotes may be explained by the strong up‐regulation of Fgf3 and Fgfr2 phosphorylation. Inhibition of Fgfr2 activation by SU5402 in parthenotes restored normal Nanog and Gata4 levels without affecting Fgf3, indicating that Fgf3 is upstream of Fgfr2 activation. In parthenote trophectoderm, we detected normal Cdx2 but ectopic Gata4 expression and reduced Elf5 and Tbr2(Eomes) levels. Conclusions: Taken together, our work provides for the first time the insight into the molecular mechanisms of the developmental defects of parthenogenetic embryos in both the trophectoderm and ICM. Developmental Dynamics 241:1651–1664, 2012. © 2012 Wiley Periodicals,Inc.  相似文献   

2.
In many organisms the allocation of primordial germ cells (PGCs) is determined by the inheritance of maternal factors deposited in the egg. However, in mammals, inductive cell interactions are required around gastrulation to establish the germ line. Here, we show that Bmp4 homozygous null embryos contain no PGCs. They also lack an allantois, an extraembryonic mesodermal tissue derived, like the PGCs, from precursors in the proximal epiblast. Heterozygotes have fewer PGCs than normal, due to a reduction in the size of the founding population and not to an effect on its subsequent expansion. Analysis of beta-galactosidase activity in Bmp4(lacZneo) embryos reveals that prior to gastrulation, Bmp4 is expressed in the extraembryonic ectoderm. Later, Bmp4 is expressed in the extraembryonic mesoderm, but not in PGCs. Chimera analysis indicates that it is the Bmp4 expression in the extraembryonic ectoderm that regulates the formation of allantois and primordial germ cell precursors, and the size of the founding population of PGCs. The initiation of the germ line in the mouse therefore depends on a secreted signal from the previously segregated, extraembryonic, trophectoderm lineage.  相似文献   

3.
4.
A transgenic mouse strain derived from embryonic stem (ES) cells infected with multiple copies of a retroviral vector carries a recessive insertional mutation resulting in prenatal lethality. A detailed histological analysis of developing embryos has shown that the mutation results in hyperplasia of both embryonic and extraembryonic ectoderm and failure of mesoderm formation in the egg cylinder stage embryo. The number of cells in each lineage of normal and mutant embryos was estimated using stereological analysis of serial sections taken from implantation sites. We observed a 2-fold increase in the number of embryonic ectoderm cells in mutant embryos at 7.5 days postcoitum (dpc). In addition, we found that mutant embryonic ectoderm cells are only 0.6 times as large as normal cells. The number of extraembryonic ectoderm cells in mutant embryos at 7.5 dpc is also increased, by almost 4-fold. Mutant extraembryonic ectoderm cells are also smaller than normal, being only two-thirds the size of wild-type cells. The mutant phenotype suggests that the gene identified by this insertional mutation plays an important role in the growth control of early embryonic lineages.  相似文献   

5.
Cellular localization of the Yes-associated protein (YAP) is dependent on large tumor suppressor (LATS) kinase activity and initiates lineage specification in the preimplantation embryo. We temporally reduced LATS activity to disrupt this early event, allowing its reactivation at later stages. This interference resulted in an irreversible lineage misspecification and aberrant polarization of the inner cell mass (ICM). Complementation experiments revealed that neither epiblast nor primitive endoderm can be established from these ICMs. We therefore conclude that precisely timed YAP localization in early morulae is essential to prevent trophectoderm marker expression in, and lineage specification of, the ICM.  相似文献   

6.
7.
8.
9.
The signaling mechanisms regulating pluripotency in porcine embryonic stem cells and embryos are unknown. In this study, we characterize cell signaling in the in‐vivo porcine inner cell mass and later‐stage epiblast. We evaluate expression of OCT4, NANOG, SOX2, genes within the JAK/STAT pathway (LIF, LIFR, GP130), FGF pathway (bFGF, FGFR1, FGFR2), BMP pathway (BMP4), and downstream‐activated genes (STAT3, cMyc, cFos, and SMAD4). We discovered two different expression profiles exist in the developing porcine embryo. The D6 porcine blastocyst (inner cell mass stage) is devoid in the expression of most genes analyzed, with the exception of OCT4. In contrast, the D11 epiblast expressed 10 of the 12 genes investigated. Immunocytochemistry confirmed LIFR and bFGF was not expressed in the epiblast, but within the trophectoderm. These findings reveal cell signaling associated with maintaining pluripotency in human embryonic stem cells is detectable in the porcine epiblast, but not in the inner cell mass. Developmental Dynamics 238:2014–2024, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
11.
12.
BACKGROUND:Studies have shown that methylation modification using CARM1-catalyzed histone H3R17/R26 can maintain the stemness of embryonic stem cells. However, mechanism underlying CARM1 effect on the stemness of amniotic fluid-derived stem cells is still unclear. OBJECTIVE:To investigate the function and underlying molecular mechanism of CARM1 to maintain stemness in the amniotic fluid-derived stem cells. METHODS:Amniotic fluid-derived stem cells from term pregnancy were isolated and cultured. RT-PCR was used to identify the stem cell mark and CARM1 gene expression. CARM1 expression in amniotic fluid-derived stem cells was knocked down by using two shRNA. RT-qPCR was used to detect the silencing efficiency, and western blot employed to examine the methylation level of Arginines 17 at N terminus of histone 3 (H3mR17). Moreover, the expression of embryonic stem cell markers, including OCT4, SOX2 and NANOG, were detected. RESULTS AND CONCLUSION:Amniotic fluid-derived stem cells from term pregnancy could express CARM1 and stem cell markers, including OCT4, SOX2, Nanog and KLF4. Both of the shRNAs could knock down the expression of CARM1 efficiently. When CARM1 was knocked down, the H3mR17 level was decreased and OCT4, SOX2 expression was also reduced, but NANOG expression had no change. All these indicate that CARM1 is required for amniotic fluid-derived stem cells to maintain stemness through regulating OCT4 and SOX2 expression.  相似文献   

13.
Deletion of various bone morphogenetic proteins (BMPs) and their downstream Smads in mice have clearly shown that BMP signaling is essential for the formation of primordial germ cells (PGCs). However, the molecular mechanism through which this takes place is still unclear. Here, we demonstrate that BMP4 produced in the extraembryonic ectoderm signals through ALK2, a type I BMP receptor, in the visceral endoderm (VE) to induce formation of PGCs from the epiblast. Firstly, embryonic day 5.5-6.0 (E5.5-E6.0) embryos cultured on fibronectin formed PGCs in the presence of VE, but not in its absence. Secondly, Alk2-deficient embryos completely lacked PGCs and the heterozygotes had reduced numbers, resembling Bmp4-deficient phenotypes. Thirdly, expression of constitutively active ALK2 in the VE, but not in the epiblast, was sufficient to rescue the PGC phenotype in Bmp4-deficient embryos. In addition, we show that the requirement for the VE at E5.5-E6.0 can be replaced by culturing embryos stripped of VE on STO cells, indicating that STO cells provide or transduce signals necessary for PGC formation that are normally transmitted by the VE. We propose a model in which direct signaling to proximal epiblast is supplemented by an obligatory indirect BMP-dependent signal via the VE.  相似文献   

14.
Unlike mouse embryonic stem cells (ESCs), which are closely related to the inner cell mass, human ESCs appear to be more closely related to the later primitive ectoderm. For example, human ESCs and primitive ectoderm share a common epithelial morphology, growth factor requirements, and the potential to differentiate to all three embryonic germ layers. However, it has previously been shown that human ESCs can also differentiate to cells expressing markers of trophoblast, an extraembryonic lineage formed before the formation of primitive ectoderm. Here, we show that phorbol ester 12-O-tetradecanoylphorbol 13-acetate causes human ESCs to undergo an epithelial mesenchymal transition and to differentiate into cells expressing markers of parietal endoderm, another extraembryonic lineage. We further confirmed that this differentiation is through the activation of protein kinase C (PKC) pathway and demonstrated that a particular PKC subtype, PKC-δ, is most responsible for this transition.  相似文献   

15.
Differences in early lineage segregation between mammals.   总被引:3,自引:0,他引:3  
Two lineage segregation events in mammalian development form the trophectoderm, primitive endoderm, and pluripotent primitive ectoderm. In mouse embryos, Oct4, Cdx2, Nanog, and Gata6 govern these events, but it is unknown whether this is conserved between mammals. Here, the expression patterns of these genes and their products were determined in porcine oocytes and embryos and in bovine embryos. CDX2 and GATA6 expression in porcine and bovine blastocysts resembled that of mouse, indicating conserved functions. However, NANOG expression was undetectable in porcine oocytes and embryos. Some inner cell mass cells in bovine blastocysts expressed NANOG protein. OCT4 protein was undetectable in porcine morulae, but present in both the trophectoderm and the inner cell mass of blastocysts, suggesting that downregulation of OCT4 in the trophectoderm does not precede trophectoderm formation. Combined, the results indicate differences in lineage segregation between mammals.  相似文献   

16.
17.
Here we analyze limb development after the conditional inactivation of Fgf8 from the epiblast, using the previously described MORE (Mox2Cre) line. This line drives variable mosaic recombination of a floxed Fgf8 allele, resulting in a small proportion of AER cells that maintain Fgf8 expression. The phenotype of Mox2Cre;Fgf8 limbs is most similar to that of Msx2Cre;Fgf8 forelimbs, indicating that a small but durable expression of FGF8 is equivalent to an early normal, but transitory, expression. This functional equivalence likely relies on the subsequent Fgf4 upregulation that buffers the differences in the pattern of Fgf8 expression between the two conditional mutants. The molecular analysis of Mox2Cre;Fgf8 limbs shows that, despite Fgf4 upregulation, they develop under reduced FGF signaling. These limbs also exhibit an abnormal area of cell death at the anterior forelimb autopod, overlapping with an ectopic domain of Bmp7 expression, which can explain the abnormal morphogenesis of the anterior autopod.  相似文献   

18.
The expression patterns of NANOG and OCT4 have previously been reported to differ markedly between mammalian species indicating distinct species‐specific roles during development. We investigate the three‐dimensional expression pattern of NANOG and OCT4 in porcine pre‐ and peri‐implantation embryos. The expression of NANOG differed remarkably from that reported in other species. NANOG was not detected in the inner cell mass of hatched porcine blastocysts, but later appeared in the epiblast and hypoblast of spherical blastocysts where Rauber's layer had disintegrated. In pre‐gastrulating, filamentous embryos NANOG was localised to nuclei in a minor portion of the epiblast cells in which E‐CADHERIN seemed to be up‐regulated and OCT4 down‐regulated. Later NANOG was restricted to the potential PGCs. OCT4 was detected in inner cell mass, epiblast, and mesoderm, and we found that OCT4 expression, in contrast to earlier speculations, at least in hatched blastocysts, resembles the expression pattern in the mouse embryo. Developmental Dynamics, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

19.
20.
ActRIB is a type I transmembrane serine/threonine kinase receptor that has been shown to form heteromeric complexes with the type II activin receptors to mediate activin signal. To investigate the function of ActRIB in mammalian development, we generated ActRIB-deficient ES cell lines and mice by gene targeting. Analysis of the ActRIB−/− embryos showed that the epiblast and the extraembryonic ectoderm were disorganized, resulting in disruption and developmental arrest of the egg cylinder before gastrulation. To assess the function of ActRIB in mesoderm formation and gastrulation, chimera analysis was conducted. We found that ActRIB−/− ES cells injected into wild-type blastocysts were able to contribute to the mesoderm in chimeric embryos, suggesting that ActRIB is not required for mesoderm formation. Primitive streak formation, however, was impaired in chimeras when ActRIB−/− cells contributed highly to the epiblast. Further, chimeras generated by injection of wild-type ES cells into ActRIB−/− blastocysts formed relatively normal extraembryonic tissues, but the embryo proper developed poorly probably resulting from severe gastrulation defect. These results provide genetic evidence that ActRIB functions in both epiblast and extraembryonic cells to mediate signals that are required for egg cylinder organization and gastrulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号