首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA is immunogenic and many cells express cytosolic DNA sensors that activate the stimulator of interferon genes (STING) adaptor to trigger interferon type I (IFN‐β) release, a potent immune activator. DNA sensing to induce IFN‐β triggers host immunity to pathogens but constitutive DNA sensing can induce sustained IFN‐β release that incites autoimmunity. Here, we focus on cytosolic DNA sensing via the STING/IFN‐β pathway that regulates immune responses. Recent studies reveal that cytosolic DNA sensing via the STING/IFN‐β pathway induces indoleamine 2,3 dioxygenase (IDO), which catabolizes tryptophan to suppress effector and helper T‐cell responses and activate Foxp3‐lineage CD4+ regulatory T (Treg) cells. During homeostasis, and in some inflammatory settings, specialized innate immune cells in the spleen and lymph nodes may ingest and sense cytosolic DNA to reinforce tolerance that prevents autoimmunity. However, malignancies and pathogens may exploit DNA‐induced regulatory responses to suppress natural and vaccine‐induced immunity to malignant and infected cells. In this review, we discuss the biologic significance of regulatory responses to DNA and novel approaches to exploit DNA‐induced immune responses for therapeutic benefit. The ability of DNA to drive tolerogenic or immunogenic responses highlights the need to evaluate immune responses to DNA in physiologic settings relevant to disease progression or therapy.  相似文献   

2.
Xing Liu  Chen Wang 《Immunology》2016,147(3):285-291
DNA that gains access to the cytoplasm generally serves as a danger signal for the hosts. An emerging paradigm for responding to cytosolic DNAs centres on the endoplasmic reticulum‐resident protein stimulator of interferon genes (STING, also known as MITA, ERIS or MPYS), the hub adaptor of the recently identified DNA sensors. Dynamic regulations of STING action are critical for shaping innate immune responses against microbial infections, as well as for preventing autoimmune diseases. STING is also indispensable for the detection of immunogenic tumours. A deeper understanding of STING modulations could be instrumental for developing novel immunotherapeutic strategies against infectious, autoimmune and cancerous diseases. In this review, we summarize the latest advances on the role of STING in the DNA‐triggered immune reactions, and underscore the critical issues that remain to be resolved in future studies.  相似文献   

3.
4.
Most cells are believed to be capable of producing type I interferons (IFN I) as part of an innate immune response against, for instance, viral infections. In macrophages, IFN I is potently induced upon cytoplasmic exposure to foreign nucleic acids. Infection of these cells with herpesviruses leads to triggering of the DNA sensors interferon-inducible protein 16 (IFI16) and cyclic GMP-AMP (cGAMP) synthase (cGAS). Thereby, the stimulator of interferon genes (STING) and the downstream molecules TANK-binding kinase 1 (TBK1) and interferon regulatory factor 3 (IRF3) are sequentially activated culminating in IFN I secretion.Human gamma-herpesviruses, such as Epstein-Barr virus (EBV), exploit B cells as a reservoir for persistent infection. In this study, we investigated whether human B cells, similar to macrophages, engage the cytoplasmic DNA sensing pathway to induce an innate immune response. We found that the B cells fail to secrete IFN I upon cytoplasmic DNA exposure, although they express the DNA sensors cGAS and IFI16 and the signaling components TBK1 and IRF3. In primary human B lymphocytes and EBV-negative B cell lines, this deficiency is explained by a lack of detectable levels of the central adaptor protein STING. In contrast, EBV-transformed B cell lines did express STING, yet both these lines as well as STING-reconstituted EBV-negative B cells did not produce IFN I upon dsDNA or cGAMP stimulation. Our combined data show that the cytoplasmic DNA sensing pathway is dysfunctional in human B cells. This exemplifies that certain cell types cannot induce IFN I in response to cytoplasmic DNA exposure providing a potential niche for viral persistence.  相似文献   

5.
Tsuchida T  Zou J  Saitoh T  Kumar H  Abe T  Matsuura Y  Kawai T  Akira S 《Immunity》2010,33(5):765-776
The innate immune system detects pathogen- and host-derived double-stranded DNA exposed to the cytosol and induces type I interferon (IFN) and other cytokines. Here, we identified interferon-inducible tripartite-motif (TRIM) 56 as a regulator of double-stranded DNA-mediated type I interferon induction. TRIM56 overexpression enhanced IFN-β promoter activation after double-stranded DNA stimulation whereas TRIM56 knockdown abrogated it. TRIM56 interacted with STING and targeted it for lysine 63-linked ubiquitination. This modification induced STING dimerization, which was a prerequisite for recruitment of the antiviral kinase TBK1 and subsequent induction of IFN-β. Taken together, these results indicate that TRIM56 is an interferon-inducible E3 ubiquitin ligase that modulates STING to confer double-stranded DNA-mediated innate immune responses.  相似文献   

6.
《Autoimmunity reviews》2022,21(9):103155
The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS–STING) signaling pathway, as vital component of innate immune system, acts a vital role in distinguishing invasive pathogens and cytosolic DNA. Cytosolic DNA sensor cGAS first binds to cytosolic DNA and catalyzes synthesis of cyclic guanosine monophosphate-adenosine monophosphate (cGAMP), which is known as the second messenger. Next, cGAMP activates the adaptor protein STING, triggering a molecular chain reaction to stimulate cytokines including interferons (IFNs). Recently, many researches have revealed that the regulatory role of cGAS-STING signaling pathway in autoimmune diseases (AIDs) such as Rheumatoid arthritis (RA), Aicardi Goutières syndrome (AGS) and systemic lupus erythematosus (SLE). Moreover, accumulated evidence have showed inhibition of the cGAS-STING signaling pathway could remarkably suppress the joint swelling and inflammatory cell infiltration in RA mice. Therefore, in this review, we describe the molecular properties, biologic function and mechanisms of the cGAS-STING signaling pathway in AIDs. In addition, potential clinical applications especially selective small molecule inhibitors targeting the cGAS-STING signaling pathway are also discussed.  相似文献   

7.
Upon sensing microbial and self-derived DNA, DNA sensors initiate innate immune responses. These sensors include the interferon (IFN)-inducible Toll-like receptor 9 (TLR9) and PYHIN proteins. Upon sensing DNA, cytosolic (murine Aim2 and human AIM2) and nuclear (IFI16) PYHIN proteins recruit an adaptor protein (ASC) and pro-caspase-1 to form an inflammasome, which activates caspase-1. The activated caspase-1 cleaves pro-IL-1β and pro-IL-18 to generate active forms. However, upon sensing cytosolic DNA, the IFI16 protein recruits STING to induce the expression of type I IFN. Recognition of self DNA by innate immune cells contributes to the production of increased levels of type I IFN. Given that the type I IFNs modulate the expression of inflammasome proteins and that the IFN-inducible proteins inhibit the activity of DNA-responsive inflammasomes, an improved understanding of the molecular mechanisms that regulate the activity of DNA-responsive inflammasomes is likely to identify new therapeutic targets to treat autoimmune diseases.  相似文献   

8.
The fact that a subset of human cancers showed evidence for a spontaneous adaptive immune response as reflected by the T cell‐inflamed tumor microenvironment phenotype led to the search for candidate innate immune pathways that might be driving such endogenous responses. Preclinical studies indicated a major role for the host STING pathway, a cytosolic DNA sensing pathway, as a proximal event required for optimal type I interferon production, dendritic cell activation, and priming of CD8+ T cells against tumor‐associated antigens. STING agonists are therefore being developed as a novel cancer therapeutic, and a greater understanding of STING pathway regulation is leading to a broadened list of candidate immune regulatory targets. Early phase clinical trials of intratumoral STING agonists are already showing promise, alone and in combination with checkpoint blockade. Further advancement will derive from a deeper understanding of STING pathway biology as well as mechanisms of response vs resistance in individual cancer patients.  相似文献   

9.
The equipoise between the disease states of cancer and autoinflammation has perhaps been underappreciated in clinical practice and biomedical research. However, since the discover of STING (stimulator of interferon genes) as an integral regulator of innate immunity, a wealth of information has implicated this signaling pathway in both of these diseases. Under cellular homeostasis, STING serves to detect – and promote immune defense against – DNA viruses and intracellular bacteria, as described in its initial discovery. The role of STING has since been expanded to include tumor surveillance and immune responses to cancer; indeed, defective STING responses are associated with certain cancers. Conversely, constitutive activation of this pathway can result in autoinflammatory disease, whereby STING is over-stimulated by self-DNA. This review explores the current state of STING research, concluding that further elucidation of the details of the STING pathway may offer novel therapeutics for these diseases, which are of considerable clinical gravity.  相似文献   

10.
Sun  Feng  Liu  Zhijian  Yang  Zhengyang  Liu  Song  Guan  Wenxian 《Immunologic research》2019,67(2-3):290-296
Immunologic Research - STING is a newly identified adaptor protein for sensing cytosolic nucleic acid. It is well established that STING plays a crucial role in innate immune response via inducing...  相似文献   

11.
Cellular infections by DNA viruses trigger innate immune responses mediated by DNA sensors. The cyclic GMP–AMP synthase (cGAS)-stimulator of interferon gene (STING) signaling pathway has been identified as a DNA-sensing pathway that activates interferons in response to viral infection and, thus, mediates host defense against viruses. Previous studies have identified oncogenes E7 and E1A of the DNA tumor viruses, human papillomavirus 18 (HPV18) and adenovirus, respectively, as inhibitors of the cGAS-STING pathway. However, the function of STING in infected cells and the mechanism by which HPV18 E7 antagonizes STING-induced Interferon beta production remain unknown. We report that HPV18 E7 selectively antagonizes STING-triggered nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation but not IRF3 activation. HPV18 E7 binds to STING in a region critical for NF-κB activation and blocks the nuclear accumulation of p65. Moreover, E7 inhibition of STING-triggered NF-κB activation is related to HPV pathogenicity but not E7–Rb binding. HPV18 E7, severe acute respiratory syndrome coronavirus-2 open reading frame 3a, human immunodeficiency virus-2 viral protein X, and Kaposi's sarcoma-associated herpesvirus KSHV viral interferon regulatory factor 1 selectively inhibited STING-triggered NF-κB or IRF3 activation, suggesting a convergent evolution among these viruses toward antagonizing host innate immunity. Collectively, selective suppression of the cGAS-STING pathway by viral proteins is likely to be a key pathogenic determinant, making it a promising target for treating oncogenic virus-induced tumor diseases.  相似文献   

12.
13.
目的探索腺苷酸活化蛋白激酶(AMPK)与cGAS-STING通路之间的联系及其在先天免疫中扮演的角色。方法利用CRISPR/Cas9技术、蛋白质印迹、RT-qPCR等方法,探究AMPK对DNA相关免疫通路的调控机制。结果在HT-DNA和cGAMP刺激下,AMPK-/-细胞株的IFN-β的表达量明显高于野生型细胞株,但这种变化在RNA信号通路中并不明显;激活AMPK可以抑制细胞内的DNA信号通路;在DNA信号通路中,AMPK-/-细胞株相较于野生型细胞株,STING在RNA和蛋白水平上都明显升高,即AMPK对cGAS-STING通路的抑制很可能是通过抑制STING起作用。结论AMPK在调节cGAS-STING介导的干扰素免疫应答中起重要作用。  相似文献   

14.
Toll样受体(TLR)能够识别病原体,并在病原体入侵机体的早期启动固有免疫,促进免疫细胞成熟分化及调节免疫应答,触发炎症反应。脂多糖(LPS)激活TLR4的信号转导通路后导致NF—κB和JNK/SAPK激活,使炎症因子大量表达,导致全身炎症反应和多器官功能衰竭的发生。A20作为一种NF—κB依赖性表达的胞质蛋自,对NF—κB活性有负反馈调控作用,参与了体内炎症反应的调节和凋亡抑制,对机体起到保护作用。  相似文献   

15.
The discovery of innate immune sensors (pattern recognition receptors, PRRs) has profoundly transformed the notion of innate immunity, in providing a mechanistic basis for host immune interactions with a wealth of environmental signals, leading to a variety of immune-mediated outcomes including instruction and activation of the adaptive immune arm. As part of this growing understanding of host-environmental cross talk, an intimate connection has been unveiled between innate immune sensors and signals perceived from the commensal microbiota, which may be regarded as a hub integrating a variety of environmental cues. Among cytosolic PRRs impacting on host homeostasis by interacting with the commensal microbiota are nucleotide-binding domain, leucine-rich repeat-containing protein receptors (NLRs), together with a number of cytosolic DNA sensors and the family of absent in melanoma (AIM)–like receptors (ALRs). NLR sensors have been a particular focus of research, and some NLRs have emerged as key orchestrators of inflammatory responses and host homeostasis. Some NLRs achieve this through the formation of cytoplasmic multiprotein complexes termed inflammasomes. More recently discovered PRRs include retinoic acid-inducible gene-I (RIG-I)–like receptors (RLRs), cyclic GMP-AMP synthase (cGAS), and STING. In the present review, they summarize recent advancements in knowledge on structure and function of cytosolic PRRs and their roles in host-microbiota cross talk and immune surveillance. In addition, we discuss their relevance for human health and disease and future therapeutic applications involving modulation of their activation and signaling.  相似文献   

16.
The role of mitochondria in cellular defense against microbial infection   总被引:2,自引:0,他引:2  
Mitochondria have been long recognized for their key role in the modulation of cell death pathways. Thus, it is therefore not surprising that this organelle represents a recurrent target for pathogenic microbes, aiming to manipulate the fate of the infected host cell. More recently, mitochondria have been shown to serve as a crucial platform for innate immune signaling, as illustrated by the identification of MAVS (also known as IPS-1, VISA and Cardif), NLRX1 and STING as mitochondrial proteins. This review discusses the tight interplay between microbial infection, innate immune signaling and mitochondria.  相似文献   

17.
Stimulator of interferon genes (STING) is an adaptor protein that is critical for effective innate antiviral and antitumor immunity. The activity of STING is heavily regulated by protein ubiquitination, which is fine-tuned by both E3 ubiquitin ligases and deubiquitinases. Here, we report that the deubiquitinase OTUD5 interacts with STING, cleaves its K48-linked polyubiquitin chains, and promotes its stability. Consistently, knockout of OTUD5 resulted in faster turnover of STING and subsequently impaired type I IFN signaling following cytosolic DNA stimulation. More importantly, Lyz2-Cre Otud5fl/Y mice and CD11-Cre Otud5fl/Y mice showed more susceptibility to herpes simplex virus type 1 (HSV-1) infection and faster development of melanomas than their corresponding control littermates, indicating that OTUD5 is indispensable for STING-mediated antiviral and antitumor immunity. Our data suggest that OTUD5 is a novel checkpoint in the cGAS-STING cytosolic DNA sensing pathway.  相似文献   

18.
STING is an endoplasmic reticulum (ER)-resident protein critical for sensing cytoplasmic DNA and promoting the production of type I interferons; however, the role of STING in B cell receptor (BCR) signaling remains unclear. We generated STING V154M knock-in mice and showed that B cells carrying constitutively activated STING specifically degraded membrane-bound IgM, Igα, and Igβ via SEL1L/HRD1-mediated ER-associated degradation (ERAD). B cells with activated STING were thus less capable of responding to BCR activation by phosphorylating Igα and Syk than those without activated STING. When immunized with T-independent antigens, STING V154M mice produced significantly fewer antigen-specific plasma cells and antibodies than immunized wild-type (WT) mice. We further generated B cell-specific STINGKO mice and showed that STINGKO B cells indeed responded to activation by transducing stronger BCR signals than their STING-proficient counterparts. When B cell-specific STINGKO mice were T-independently immunized, they produced significantly more antigen-specific plasma cells and antibodies than immunized STINGWT mice. Since both human and mouse IGHV-unmutated malignant chronic lymphocytic leukemia (CLL) cells downregulated the expression of STING, we explored whether STING downregulation could contribute to the well-established robust BCR signaling phenotype in malignant CLL cells. We generated a STING-deficient CLL mouse model and showed that STING-deficient CLL cells were indeed more responsive to BCR activation than their STING-proficient counterparts. These results revealed a novel B cell-intrinsic role of STING in negatively regulating BCR signaling in both normal and malignant B cells.  相似文献   

19.
Polyvalent interactions mediate the formation of higher-order macromolecular assemblies to improve the sensitivity, specificity, and temporal response of biological signals. In host defense, innate immune pathways recognize danger signals to alert host of insult or foreign invasion, while limiting aberrant activation from auto-immunity and cellular senescence. Of recent attention are the unique higher-order assemblies in the cGAS-STING pathway. Natural stimulation of cGAS enzymes by dsDNA induces phase separation and enzymatic activation for switchlike production of cGAMP. Subsequent binding of cGAMP to STING induces oligomerization of STING molecules, offering a scaffold for kinase assembly and signaling transduction. Additionally, the discovery of PC7A, a synthetic polymer which activates STING through a non-canonical biomolecular condensation, illustrates the engineering design of agonists by polyvalency principles. Herein, we discuss a mechanistic and functional comparison of natural and synthetic agonists to advance our understanding in STING signaling and highlight the principles of polyvalency in innate immune activation. The combination of exogenous cGAMP along with synthetic PC7A stimulation of STING offers a synergistic strategy in spatiotemporal orchestration of the immune milieu for a safe and effective immunotherapy against cancer.  相似文献   

20.
UNC93B1存在于内质网上,具多次跨膜区域,它能与TLR(Toll-like receptors,TLRs)-3,-7,-9发生特异性结合并将它们从内质网上运输(trafficking)至溶酶体中。UNC93B1与TLRs相互作用并通过MyD88/TRIF途径进行着信号传递。TLRs通过识别相应的高度保守的病原相关分子模式(PAMPs),在介导防御外来微生物入侵的先天性免疫反应并桥连或触发获得性免疫反应中起重要作用。在3d(N-乙基-N-亚硝基脲诱导的染色体基因的隐性突变)小鼠中,UNC93B1上H412R位点的突变阻断了其和TLRs的结合,进而阻碍了TLRs信号的传递,这使得该小鼠易被各种病原体感染。另外,UNC93B1的突变阻止了小鼠体内抗原的交叉呈递途径,也降低了MHC-II类分子呈递途径。UNC93B1缺陷使得人体易受单纯疱疹病毒I型(HSV-1)病毒感染而引起单纯疱疹病毒1型脑炎(HSE)。此外,通过调节UNC93B1和TLR7/9的接触可控制或避免系统性红斑狼疮、关节炎等自身性免疫疾病的发生。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号