首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Magnitude-reconstructed short inversion-time (TI) inversion-recovery (IR) sequences have the advantage of reducing the signal of fat while providing additive T1 and T2 contrast. A double-echo short TI IR sequence was implemented to offer different degrees of T1- and T2-dependent image contrast. In 50 consecutive patients with proved liver tumors (30 metastases, 13 hemangiomas, seven other primary liver tumors), images obtained with a double-echo IR sequence at a repetition time (TR) of 1,500 msec, echo time (TE) of 30 and 60 msec, and TI of 80 msec (TR/TE/TI = 1,500/30, 60/80) were compared with those obtained with spin-echo (SE) sequences at a TR of 275 msec and a TE of 14 msec (TR/TE = 275/14) and 2,350/60, 120, 180. Metastases-liver contrast-to-noise ratios were highest at SE 275/14, followed by IR 1,500/30/80 and SE 2,350/180. IR 1,500/30/80 and SE 275/14 sequences consistently showed higher sensitivity for the detection of metastases than T2-weighted SE sequences. Differential diagnosis of benign and malignant lesions was more reliable with T2-weighted SE sequences than T2-weighted short TI IR sequences.  相似文献   

2.
Henkelman  RM; Hardy  P; Poon  PY; Bronskill  MJ 《Radiology》1986,161(3):727-734
For magnetic resonance (MR) imaging studies in which the diagnosis is dependent on image contrast, it is essential that an optimized imaging technique be used. Using detection of hepatic metastases as an example, the authors describe a rational strategy for optimizing MR imaging technique. First, for a single patient with proved hepatic metastases, a variety of imaging sequences is discussed and evaluated, leading to characterization of the patient's hepatic tissues. Then the characteristics of the tissues of a representative patient population are presented. These are used to determine two optimal pulse sequences that maximize the achievable signal difference-to-noise ratio achievable in a fixed imaging time. The recommended imaging sequence for detection of hepatic metastases at 0.15 T is either a three-dimensional volume spin-echo (SE) sequence with echo time (TE) = 12 msec and repetition time (TR) = 184 msec or a multisection inversion recovery sequence with TE = 22 msec, inversion time = 250 msec, and TR = 1,375 msec. The variation of this optimum pulse sequence with field strength is also presented.  相似文献   

3.
Magnetic resonance imaging is frequently complicated by the presence of motion and susceptibility gradients. Also, some biologic tissues have short T2s. These problems are particularly troublesome in fast spin-echo (FSE) imaging, in which T2 decay and motion between echoes result in image blurring and ghost artifacts. The authors reduced TE in conventional spin-echo (SE) imaging to 5 msec and echo spacing (E-space) in FSE imaging to 6 msec. All magnetic gradients (except readout) were kept at a maximum, with data sampling as fast as 125 kHz and only ramp waveforms used. Truncated sine radio-frequency pulses and asymmetric echo sampling were also used in SE imaging. Short TE (5.8 msec) SE images of the upper abdomen were compared with conventional SE images (TE =11 msec). Also, FSE images with short E-space were compared with conventional FSE images in multiple body sites. Short TE significantly improved the liver-spleen contrast-to-total noise ratio (C/N) (7.9 vs 4.1, n = 9, P <.01) on T1-weighted SE images, reduced the intensity of ghost artifacts (by 34%, P <.02), and increased the number of available imaging planes by 30%. It also improved delineation of cranial nerves and reduced susceptibility artifacts. On short E-space FSE images, spine, lung, upper abdomen, and musculoskeletal tissues appeared crisper and measured spleen-liver C/N increased significantly (6.9 vs 4.0, n = 12, P <.01). The delineation of tissues with short T2 (eg, cartilage) and motion artifact suppression were also improved. Short TE methods can improve image quality in both SE and FSE imaging and merit further clinical evaluation.  相似文献   

4.
MR imaging of the lungs: value of short TE spin-echo pulse sequences.   总被引:6,自引:0,他引:6  
OBJECTIVE. An experimental short echo delay (TE = 7 msec) T1-weighted spin-echo sequence was compared with a conventional (TE = 20 msec) T1-weighted spin-echo sequence in the assessment of normal and abnormal lung parenchyma. Comparison was also made with high-resolution CT of abnormal lung parenchyma. SUBJECTS AND METHOD. At 1.5 T, an experimental short echo delay T1-weighted multislice spin-echo sequence (TR = RR interval, TE = 7 msec) was compared with an optimal conventional T1-weighted spin-echo sequence (TR = RR interval, TE = 20 msec, spatial presaturation). Ten healthy volunteers were examined with both sequences. The mean signal intensity and signal-to-noise ratios were calculated in lung parenchyma for both sequences. Two radiologists compared the visualization of normal lung parenchymal structures with the two techniques. In 24 patients with diffuse lung disease, results with both MR sequences and with high-resolution CT were compared. RESULTS. The signal intensity was significantly greater (p < .001) with the TE of 7 msec than with the TE of 20 msec, resulting in a 3.5-fold improvement in the signal-to-noise ratio. The 7-msec TE improved visualization of lung parenchymal structures, including peripheral vessels, interlobular septa or veins, and centrilobular arteries. In the patients with diffuse lung disease, pulmonary parenchymal abnormalities were better visualized on the images with TEs of 7 msec than on images with TEs of 20 msec. When compared with high-resolution CT, the sequence with a TE of 7 msec provided comparable assessment of air-space opacification and dense consolidation, but it was inferior to high-resolution CT in the anatomic assessment of lung parenchyma. CONCLUSION. This experimental spin-echo sequence with a TE of 7 msec significantly improves the signal-to-noise ratio, allowing improved visualization of normal and abnormal pulmonary parenchyma when compared with conventional spin-echo images with a TE of 20 msec. Although anatomic detail remains inferior to that seen with high-resolution CT, the improved image quality with a TE of 7 msec suggests that assessment and follow-up of parenchymal lung disease might be possible with MR, thereby avoiding ionizing radiation.  相似文献   

5.
This paper deals with a study to obtain the optimal sequence of gradient echo (GE) for T1- and T2*-weighted images similar to T1- and T2-weighted images of spin echo (SE). Two GE sequences, fast low angle shot (FLASH) and fast imaging with steady-state precession (FISP), were performed in 15 cases of liver metastasis in various combination of flip angle (FA), repetition time (TR), and echo time (TE). The optimal combinations were summarized as follows: 1) T1-weighted FLASH image with FA of 40 degrees, TR of 22 msec and TE of 10 msec, 2) T1-weighted FISP image with FA of 70 degrees, TR of 100 msec, TE of 10 msec, 3) both T2*-weighted FLASH and FISP images with FA of 10 degrees, TR of 100 msec and TE of 30 msec. Not only to provide the adequate T1- and T2*-weighted images but also to enable breath-holding MR imaging, GE sequences can optionally take place SE in cases of deteriorated images caused by moving artifacts. Other applications support the re-examination and further detailing when required, conveniently rather in short time.  相似文献   

6.
Conventional and rapid MR imaging of the liver with Gd-DTPA   总被引:1,自引:0,他引:1  
Hamm  B; Wolf  KJ; Felix  R 《Radiology》1987,164(2):313-320
Twenty-three patients with malignant hepatic tumors underwent magnetic resonance (MR) imaging before and after intravenous administration of gadolinium-diethylene-triaminepentaacetic acid (DTPA). Two different doses were used, 0.1 mmol/kg and 0.2 mmol/kg. The larger dose proved to be more effective than the smaller dose. The signal-enhancement-to-noise ratio was significantly larger in the tumor than in the liver (2 alpha less than or equal to .05). In a moderately T1-weighted spin echo (SE) sequence (SE 400/30) (repetition time [TR] msec/echo time [TE] msec), the tumor was better defined 6 minutes after administration of Gd-DTPA. More strongly T1-weighted sequences--that is, SE 200/20 and inversion recovery 1,500/35/400 (TR msec/TE msec/inversion time, msec)--showed significantly worse contrast between tumor and liver (signal-difference-to-noise ratio [SD/N]) 10 and 15 minutes after administration (2 alpha less than or equal to .05). On the other hand, the low SD/N in the rapid MR imaging sequence was significantly improved (2 alpha less than or equal to .05). The most important indications for administration of Gd-DTPA in diagnosing hepatic tumors are the presentation of perfusion conditions and contrast optimization in rapid MR images.  相似文献   

7.
The relative efficacies of different spin-echo pulse sequences at 1.5 T were evaluated in the detection of focal hepatic disease. Pulse sequences compared were spin-echo with a repetition time (TR) of 200 msec and echo time (TE) of 20 msec, with six excitations; TR = 300 msec, TE = 20 msec, with 16 excitations (T1-weighted sequences); and a double spin-echo with TR = 2500 and TE = 25 and 70, with two excitations (proton-density-weighted and T2-weighted pulse sequences, respectively). Respiratory-motion compensation, which involved a recording of the phase-encoding gradients (Exorcist), was used for the last two sequences. Spin-echo with TR = 2500 msec and TE = 70 msec was superior in lesion detection and contrast-to-noise ratio. The proton-density-weighted and T2-weighted sequences with respiratory compensation produced better artifact suppression than did the short TR, short TE T1-weighted sequence with temporal averaging. In contradistinction to prior results at 0.6 T, T2-weighted pulse sequences appear superior to T1-weighted pulse sequences with multiple excitations for both lesion detection and artifact suppression at 1.5 T.  相似文献   

8.
Arthritis was induced in rats by intradermal injection of Freund's complete adjuvant. MRI was performed with a resistive imager operating at 0.35 T. A spin echo (SE) technique with TR = 0.5 and 2.0 seconds, TE = 28 and 56 msec was used. Transaxial images of hindpaws and knees were obtained at different times after injection of adjuvant. In vitro proton spectroscopy of normal and arthritic hindpaws was also performed. Histologic confirmation was obtained in each case. Inflammatory soft-tissue lesions were seen as focal areas of high intensity on spin echo images obtained with TR = 2.0 seconds and TE = 56 msec and were characterized by long T1 and T2 relaxation times and high spin density. In comparison with both conventional radiography and physical examination, early soft-tissue changes were detected more frequently by MRI. This study suggests that MRI is likely to be of value for the early diagnosis of arthritis.  相似文献   

9.
Wiener  JI; Chako  AC; Merten  CW; Gross  S; Coffey  EL; Stein  HL 《Radiology》1986,160(2):299-305
We tested a variety of inversion-recovery (IR) and spin-echo (SE) sequences by imaging the breast masses of 22 patients before surgery and 23 tissue specimens with magnetic resonance (MR) imaging at 0.6 T to determine the most effective pulse sequences to evaluate breast disease. An SE pulse sequence using a long repetition time (TR) of 1,600 msec and a long echo time (TE) of 90 msec was found to be the most sensitive in depicting carcinoma in the excised tissue specimens, with all of the carcinomas (n = 15) demonstrating irregular areas of higher signal intensity (SI) than that of the adjacent fat. However, only five of 11 breast carcinomas present in the preoperative patients produced a higher SI than that produced by fat on the same T2-weighted sequence. Five of the remaining six carcinomas in the preoperative patients appeared as localized distortions of fibroductular architecture on both T2-weighted SE and IR sequences. In axillary tissue specimens, both metastatic carcinoma and hyperplastic lymph nodes produced a high SI on T2-weighted SE sequences. However, metastatic carcinoma had a significantly longer T2 relaxation time than did hyperplastic lymph nodes.  相似文献   

10.
The role of magnetic resonance (MR) imaging in the detection of gallbladder disease was evaluated in 39 individuals (16 healthy, five with asymptomatic gallstones, and 18 with clinical symptoms of gallbladder disease). MR imaging was performed after they fasted for 12 hours. Imaging sequences included a combination of repetition times (TR) of 0.5 and 1.5 sec and echo times (TE) of 28 and 56 msec. On the images obtained at TR = 0.5 sec and TE = 56 msec, gallbladder bile was hyperintense compared with the liver in all healthy and asymptomatic subjects and was hypointense (n = 9), isointense (n = 4), or hyperintense (n = 5) in symptomatic patients, eight of whom had surgical confirmation of cholecystitis. Comparison of normal versus pathologically proved cases for the presence of gallbladder disease yielded a specificity of 100%, sensitivity of 75%, and a significant difference of P less than .01. Thus, with a pulse sequence of TR = 0.5 sec and TE = 56 msec, MR was sensitive in detecting gallbladder disease. However, the role of MR in the radiologic workup of gallbladder disease will be determined by more experience with this modality.  相似文献   

11.
In vivo spin-spin (T2) relaxation measurements were acquired from the flexor digitorum profundus (FDP) of 13 subjects. A standard imaging T2 measurement technique [number of points (N) = 6, TE = 18 msec, signal-to-noise ratio (SNR) approximately equal to 300] yielded a single T2 value of 31 msec. A novel technique, projection presaturation combined with a CPMG sequence, was used to acquire data (N = 1000, TE = 1.2 msec, SNR 3500) from a cylindrical voxel (2 cm diameter, 5 cm length) within the FDP. All 13 subjects had at least four T2 components, at < 5, 21 +/- 4, 39 +/- 6, and 114 +/- 31 msec, with fractional areas of 11 +/- 2, 28 +/- 15, 46 +/- 12, and 11 +/- 5% respectively. The shortest and longest components have been observed in ex vivo muscle studies, probably corresponding to water associated with macromolecules and extracellular water, respectively. The middle T2 components are suggestive of an organization of in vivo intracellular water.  相似文献   

12.
We investigated the feasibility of using echo-shifted fast low-angle shot (FLASH) for temperature-monitored thermo-therapeutic procedures in a 0.2 T interventional magnetic resonance (MR) scanner. Based on the proton resonance frequency shift technique, modified echo-shifted FLASH has sufficiently high signal-to-noise ratio to provide accurate temperature maps with short scan times, i.e., 5 seconds in phantoms (TR = 20.5 msec; effective TE = 30 msec; one echo shift; NSA = 2) and ex vivo experiments (TR = 19.4 msec; effective TE = 28.9 msec; one echo shift; NSA = 2) and 3 seconds (TR = 19.4 msec; effective TE = 28.9 msec, one echo shift; NSA 1) for an in vivo case. The proton resonance frequency shifts with temperature observed in a 0.2 T MR scanner using this sequence were -0.0072 ppm/degrees C (temperature uncertainty = +/-2.5 degrees C) for polyacrylamide phantoins and -0.0086 ppm/degrees C (temperature uncertainty = +/- 1 degrees C) for ex vivo bovine liver. These experiments demonstrated that echo-shifted FLASH is a viable method for low-field temperature monitoring despite the decreased signal and decreased phase sensitivity compared with its counterpart in a 1.5 T MR imaging system. The improved temporal resolution of temperature images, now possible in low-field interventional MR systems using echo-shifted FLASH, will allow clinicians more accurate monitoring of interstitial ablation in MR-guided interventional procedures.  相似文献   

13.
Combined gadolinium-enhanced and fat-saturation MR imaging of renal masses   总被引:4,自引:0,他引:4  
Combined gadopentetate dimeglumine enhancement and fat-saturation (FS) spin-echo (SE) magnetic resonance (MR) imaging for the detection and characterization of renal masses was evaluated in 43 patients with a total of 71 lesions (28 solid masses and 43 cysts). SE MR sequences compared were the following: short repetition time (TR)/echo time (TE), conventional SE, short TR/TE FS SE, long TR/TE conventional SE, gadolinium-enhanced short TR/TE conventional SE, and gadolinium-enhanced short TR/TE FS SE techniques. MR findings were compared with findings of contrast-enhanced computed tomography (CT) and with pathologic findings in all patients. The sensitivities for detection of renal masses with gadolinium-enhanced FS (71 of 71 lesions) and with gadolinium-enhanced short TR/TE conventional (65 of 71 lesions) SE sequences were significantly (P less than .01) greater than with any unenhanced (short TR/TE conventional [40 of 71 lesions], or long TR/TE [39 of 71 lesions]) SE sequence. Lesion characterization was also best with the gadolinium-enhanced FS SE sequence (65 of 71 lesions correctly classified). When combined pre- and postcontrast short TR/TE FS SE images were analyzed with both qualitative (visual) and quantitative (region-of-interest measurements) assessment, lesion characterization improved even further (70 of 71 lesions were correctly characterized). All lesions detected with CT were visualized with the gadolinium-enhanced FS SE MR sequence, which in addition depicted seven cysts and two small renal cell carcinomas. In summary, the use of gadopentetate dimeglumine, especially when combined with the FS technique, was superior to unenhanced MR imaging for detection and characterization of renal lesions.  相似文献   

14.
Retraction of the liver capsule adjacent to a hepatic tumor is an unusual feature that has received little attention in radiological literature. We report two patients with pathologically proved malignant tumor of the biliary tract (one cholangiocarcinoma and one gallbladder cancer) in whom magnetic resonance imaging (MRI) showed retraction of the liver capsule to the tumors. MRI was performed at 1.0 T using a spin-echo (SE) technique, with T1 (TR/TE = 450/15 msec) and T2 (TR/TE = 2000/45 to 90 msec)-weighted images. Capsular retraction was seen on both T1- and T2-weighted SE MRI. Although capsular retraction of the liver adjacent to hepatic tumors is highly suggestive for epithelioid hemangioendothelioma, these two cases confirm that retraction of the liver capsule adjacent to hepatic tumors can be associated with other types of tumor, and especially with malignant tumors of the biliary tract.  相似文献   

15.
E C Wong  A Jesmanowicz  J S Hyde 《Radiology》1991,181(2):393-397
The many fibrous tissues of the wrist and hand have short T2s, and, because of the small size of the tissues, their magnetic resonance (MR) imaging necessitates use of the high spatial resolution obtainable with fields of view as small as 2 cm x 2 cm x 1 mm. The authors demonstrate that the use of a local xyz gradient coil, positioned off-center in a clinical MR imager to facilitate patient positioning, permits acquisition of high-resolution images in spin-echo (SE) and gradient-recalled-echo (GRE) sequences with echo time (TE) as short as 6 msec (SE) or 3 msec (GRE). The authors compare this method for obtaining high-resolution images with the alternative method of using normal gradient strengths and increased pulse duration. The effects on image quality of TE, bandwidth, gradient strength, and chemical shift artifacts are presented. Images obtained with the local gradient coil of the carpal tunnel, carpal bones, and proximal interphalangeal joint in healthy volunteers are shown.  相似文献   

16.
PURPOSE: To evaluate the usefulness of a time-efficient MRI method for the quantitative determination of tissue iron in the liver and heart of beta-thalassemic patients using spin-spin relaxation rate, R2, measurements. MATERIALS AND METHODS: Images were obtained at 1.5 T from aqueous Gd-DTPA solutions (0.106-8 mM) and from the liver and heart of 46 beta-thalassemic patients and 10 controls. The imaging sequence used was a respiratory-triggered 16-echo Carr-Purcell-Meiboom-Gill (CPMG) spin-echo (SE) pulse sequence (TR = 2000 msec, TE(min) = 5 msec, echo spacing (ES) = 5 msec, matrix = 192 x 256, slice thickness = 10 mm). Liver iron concentration (LIC) measurements were obtained for 22 patients through biopsy specimens excised from the relevant liver segment. Biopsy specimens were also evaluated regarding iron grade and fibrosis. Serum ferritin (SF) measurements were obtained in all patients. RESULTS: A statistically significant difference was found between patients and healthy controls in mean liver (P < 0.004) and myocardium (P < 0.004) R2 values. The R2 values correlated well with Gd DTPA concentration (r = 0.996, P < 0.0001) and LIC (r = 0.874, P < 0.0001). A less significant relationship (r = 0.791, P < 0.0001) was found between LIC measurements and SF levels. R2 measurements appear to be significantly affected (P = 0.04) by different degrees of hepatic fibrosis. The patients' liver R2 values did not correlate with myocardial R2 values (r = 0.038, P < 0.21). CONCLUSION: Tissue iron deposition in beta-thalassemic patients may be adequately quantified using R2 measurements obtained with a 16-echo MRI sequence with short ES (5 msec), even in patients with a relatively increased iron burden.  相似文献   

17.
The diagnostic value of magnetic resonance contrast between the renal cortex and renal medulla as an indicator of renal disease was retrospectively studied in 38 patients (ten patients with a variety of diseases affecting the renal parenchyma, nine with renal obstruction, four with diffusely infiltrating renal-cell carcinoma, one with renal hematoma, nine with normally functioning renal allograft, and five with renal allograft failure). Twelve normal volunteers served as controls. On spin-echo (SE) images (TR 0.5 sec, TE 28 msec), the cortex-to-medulla contrast was present in the kidneys of all the normal volunteers (19% contrast +/- 2% S.D.) and in all the normally functioning allografts (17% contrast +/- 2% S.D.). Decrease or absence of cortex-to-medulla contrast (SE image with TR 0.5 sec and TE 28 msec) was found to be a sensitive but nonspecific sign of renal disease. It occurred in renal diseases of various causes and was produced by different pathophysiologic mechanisms such as edema, scarring, and tissue replacement by neoplasm or hematoma. Of the calculated T1 and T2 relaxation times and spin density of the cortex and the medulla, the T1 changes most consistently reflected renal disease.  相似文献   

18.
The purpose of this study was to analyze the effect of several magnetization transfer (MT) pulse and T1-weighted spin-echo (SE) sequence parameters on lesion-to-background contrast, using a simple tissue phantom emulating the T1 relaxation and MT properties of gadolinium-enhanced brain lesions. Eggbeaters (Nabisco Inc., East Hanover, NJ) liquid egg product was doped with gadolinium in six concentrations from .0 to 1.0 mmol and cooked. The gadolinium-doped egg phantom and normal volunteer brains were studied using an SE sequence with TE = 20 msec and high power, pulsed, off-resonance MT saturation. The effects of MT pulse frequency offset (1,000–6,000 Hz), sequence repetition time (TR = 500–1,000 msec, with MT power held constant), and slice-select flip angle (60–120 degrees) on the magnetization transfer ratio (MTR) and the simulated lesion-to-background contrast were determined at the different “Intralesion” gadolinium concentrations. The MTR and lesion-to-background contrast of all materials were greatest at narrow MT pulse frequency offsets. There was an inverse relationship between gadolinium concentration and MTR and a positive correlation between the gadolinium concentration and lesion-to-background (L/B) contrast, a weak negative correlation between slice-select flip angle and L/B, and a negative correlation between TR and L/B. The relaxation properties and MT behavior of the egg phantom are close to that expected for enhancing brain lesions, allowing a rigorous analysis of several variables affecting lesion-to-background contrast for high MT power, T1-weighted SE sequences.  相似文献   

19.
OBJECTIVE: Our aim was to determine whether the contrast between white matter lesions and normal-appearing white matter in fast spin-echo fluid-attenuated inversion recovery (FLAIR) images can be improved by lengthening the effective TE and the echo train length. SUBJECTS AND METHODS: Thirty patients with various white matter lesions were imaged using fast spin-echo FLAIR sequences (TR = 10,002 msec; inversion time = 2200) on a 1.5-T MR imaging system. For 14 patients, fast spin-echo FLAIR sequences with a TE of 165 msec and echo train length of 32 (fast spin-echo FLAIR 165/32) were compared with fast spin-echo FLAIR sequences with a TE of 125 msec and echo train length of 24 (fast spin-echo FLAIR 125/24). For 16 other patients, fast spin-echo FLAIR 165/32 sequences were compared with fast spin-echo FLAIR sequences with a TE of 145 msec and echo train length of 28 (fast spin-echo FLAIR 145/28). Signal difference-to-noise ratios were calculated between the lesions and normal-appearing white matter for a typical lesion in each patient. RESULTS: In both groups, a small but statistically significant increase in the signal difference-to-noise ratio was found on the fast spin-echo FLAIR sequences using the longer TE and echo train length. In the first group, signal difference-to-noise ratio increased from 18.7 +/- 4.7 (mean +/- SD) for fast spin-echo FLAIR 125/24 to 20.1 +/- 4.5 for fast spin-echo FLAIR 165/32 (p < .05). In the second group, the signal difference-to-noise ratio increased from 15.4 +/- 4.0 for fast spin-echo FLAIR 145/28 to 16.8 +/- 4.6 for fast spin-echo FLAIR 165/32 (p <.01). In addition, fast spin-echo FLAIR sequences with a longer TE and echo train length were obtained more rapidly (6 min for fast spin-echo FLAIR 125/24, 5 min 20 sec for fast spin-echo FLAIR 145/28, and 4 min 41 sec for fast spin-echo FLAIR 165/32). CONCLUSION: Lengthening the TE to 165 msec and echo train length to 32 in fast spin-echo FLAIR imaging allows both a mild improvement in the contrast between white matter lesions and normal-appearing white matter and shorter imaging times.  相似文献   

20.
Forty-three patients with liver metastases were imaged using 14 different pulse sequences (average, 7.5 sequences per patient) to allow direct comparison of their performance. "T2-weighted" spin-echo (SE) images, "T1-weighted" inversion recovery (IR) images, and "T1-weighted" SE images were obtained using a wide range of timing parameters. Pulse sequence performance was quantitated by measuring liver signal-to-noise (S/N) ratios and cancer-liver signal difference-to-noise (SD/N) ratios. Data were standardized to reflect a constant imaging time of 9 minutes for all pulse sequences. The SE 2,000/120 (TR [repetition time]/TE [echo time]) sequence resulted in the greatest SD/N ratio of the T2-weighted SE sequences but also yielded the low S/N ratios, poor anatomic resolution, and motion artifacts common to all T2-weighted SE images. IR sequence images were also sensitive to motion artifacts because of the use of a long TR (1,500 msec). Short TR/TE T1-weighted SE sequences (SE 260/18) had the greatest SD/N ratio (P less than .05), S/N ratio, and anatomic resolution. Furthermore, extensive signal averaging appears to be a powerful solution to all types of motion artifacts in the abdomen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号