首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methamphetamine (METH) causes partial depletion of central monoamine systems and cognitive dysfunction in rats and humans. We have previously shown and now further show that the positive correlation between expression of the immediate-early gene Arc (activity-regulated, cytoskeleton-associated) in the dorsomedial (DM) striatum and learning on a response reversal task is lost in rats with METH-induced striatal dopamine loss, despite normal behavioral performance and unaltered N-methyl-D-aspartate (NMDA) receptor-mediated excitatory post-synaptic currents, suggesting intact excitatory transmission. This discrepancy suggests that METH-pretreated rats may no longer be using the dorsal striatum to solve the reversal task. To test this hypothesis, male Sprague-Dawley rats were pretreated with a neurotoxic regimen of METH or saline. Guide cannulae were surgically implanted bilaterally into the DM striatum. Three weeks after METH treatment, rats were trained on a motor response version of a T-maze task, and then underwent reversal training. Before reversal training, the NMDA receptor antagonist DL-2-amino-5-phosphonopentanoic acid (AP5) or an Arc antisense oligonucleotide was infused into the DM striatum. Acute disruption of DM striatal function by infusion of AP5 impaired reversal learning in saline-, but not METH-, pretreated rats. Likewise, acute disruption of Arc, which is implicated in consolidation of long-term memory, disrupted retention of reversal learning 24?h later in saline-, but not METH-, pretreated rats. These results highlight the critical importance of Arc in the striatum in consolidation of basal ganglia-mediated learning and suggest that long-term toxicity induced by METH alters the cognitive strategies/neural circuits used to solve tasks normally mediated by dorsal striatal function.  相似文献   

2.
Decreased neural plasticity is observed with healthy ageing in the primary sensorimotor (SM1) cortex thought to participate in motor learning and memory consolidation processes. In the present magnetoencephalography study, the post‐training reorganization of resting‐state functional connectivity (rsFC) and its relation with motor learning and early consolidation in 14 young (19–30 years) and 14 old (66–70 years) healthy participants were investigated. At the behavioral level, participants were trained on a motor sequence learning task then retested 20–30 min later for transient offline gains in performance. Using a sensorimotor seed‐based approach, rsFC relying on beta band power envelope correlation was estimated immediately before and 10 min after the learning episode. Post‐training changes in rsFC (from before to after learning) were correlated with motor learning performance and with the offline improvement in performance within the hour after learning. Young and old participants exhibited differential patterns of sensorimotor‐related rsFC, bearing specific relationships with motor learning and consolidation. Our findings suggest that rsFC changes following learning reflect the offline processing of the new motor skill and contribute to the early memory consolidation within the hour after learning. Furthermore, differences in post‐training changes in rsFC between young and old participants support the hypothesis that ageing modulates the neural circuits underlying the learning of a new motor skill and the early subsequent consolidation stages. Hum Brain Mapp 38:923–937, 2017. © 2016 Wiley Periodicals, Inc.  相似文献   

3.
Cocaine is believed to exert its psychostimulant effects through activation of the mesocorticolimbic system. Although the nucleus accumbens, in particular, has been hypothesized as the site of action of cocaine's stimulating effects, there is no direct evidence that microinjection of cocaine into this region produces behavioral activation. The present experiments investigated the locomotor response to microinjection of cocaine (0, 10, 30, 100 micrograms/0.5 microliter) into the nucleus accumbens in rats. Cocaine elicited a pronounced, dose-dependent motor activation of approximately 60 min duration. This stimulant effect was blocked by prior administration of a dopamine (DA) receptor antagonist, cis-flupenthixol. The response to cocaine was differentiated from nucleus accumbens microinjections of procaine and lidocaine, compounds that have potent local anesthetic effects but little affinity for the dopamine-uptake site. Neither procaine nor lidocaine (0, 10, 30, 100 micrograms/0.5 microliter) had any overall effect, although activity was somewhat decreased in the initial part of the test session and increased at the end, relative to control activity. Cocaine injected into the anterior dorsal or ventrolateral striatum (100 micrograms) also increased motor activity; procaine and lidocaine had no effect. Cocaine injected into the ventrolateral striatum significantly increased stereotypy. The amplitude of motor activation following cocaine injection into nucleus accumbens was much greater than that elicited at the other striatal sites. Further, observation of the time course of motor activation following cocaine injection into the anterior dorsal and ventrolateral striatum suggested that the motor effect was due to diffusion, most likely to the nucleus accumbens.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Interactions between the basal ganglia and the cerebral cortex are critical for normal goal-directed behavior. In the present study, we used immediate-early genes (c-fos, zif 268) as functional markers to investigated how basal ganglia output altered by stimulation/blockade of D1 dopamine receptors in the striatum affects cortical function. Systemic administration of the mixed D1/D2 receptor agonist apomorphine (3 mg/kg) increased immediate-early gene expression in the striatum and throughout most of the cortex. Unilateral intrastriatal infusion of the selective D1 receptor antagonist SCH-23390 (0.5-10 microg) blocked this response bilaterally in striatum and cortex in a dose-dependent manner. Even apparently regionally restricted blockade of striatal D1 receptors attenuated gene expression throughout striatum and cortex in both hemispheres. Intrastriatal administration of the D1 antagonist inhibited apomorphine-induced sniffing/whisking, whereas other motor behaviors were unaffected. To determine whether such changes in cortical gene expression could reflect altered cortical function, we examined the effects of blocking striatal D1 receptors on whisker stimulation-evoked immediate-early gene expression in the sensorimotor cortex. Apomorphine increased sensory stimulation-evoked gene expression in the barrel cortex, and intrastriatal infusion of SCH-23390 attenuated this effect. These results suggest that stimulation of D1 dopamine receptors in the striatum exerts a widespread facilitatory effect on cortical function.  相似文献   

5.
Neurons in the striatum that project to the substantia nigra contain the opioid peptide dynorphin. Stimulation of D1 dopamine receptors results in increased expression of mRNA encoding dynorphin as well as expression of immediate-early genes such as c-fos in these neurons. Levels of dynorphin vary in different regions of the normal rat striatum, being highest in ventral and medial striatum. In a prior study, we have shown that both regional and temporal patterns of c-fos induction following treatment with the indirect dopamine receptor agonist cocaine are inversely related to those of dynorphin expression. These results suggested that dynorphin is involved in regulating the responsiveness of these neurons to dopamine input. In the present experiments, we examined such a potential role for dynorphin by analyzing the influence of the dynorphin (kappa opioid receptor) agonist spiradoline on immediate-early gene induction by cocaine, and we determined that this immediate-early gene response is mediated by D1 dopamine receptors located in the striatum. As a marker of neuron activation, expression of c-fos and zif 268 immediate-early genes was assessed with quantitative in situ hybridization histochemistry. Results showed that (1) intrastriatal infusion of the D1 dopamine receptor antagonist SCH-23390 (2.5–250 pmol) resulted in a dose-dependent blockade of immediate-early gene induction by cocaine (30 mg/kg); (2) systemic administration of the kappa opioid receptor agonist spiradoline (0.5–10.0 mg/kg) decreased cocaine-induced expression of c-fos and zif 268 mRNAs in striatum in a dose-dependent manner; (3) intrastriatal infusion of spiradoline (1–50 nmol) also suppressed immediate-early gene induction by cocaine, demonstrating that kappa opioid receptors located in the striatum mediate such an effect; and (4) systemic and intrastriatal administration of spiradoline also affected immediate-early gene expression in cortex. These results demonstrate that, in striatum, immediate-early gene induction by cocaine is a D1 dopamine receptor-mediated process that is inhibited by activation of kappa opioid receptors. Therefore, these findings suggest that the striatal dynorphin opioid system acts directly and/or indirectly to inhibit dopamine input to striatonigral neurons through kappa opioid receptor-mediated processes in the striatum. © 1995 Wiley-Liss, Inc.  相似文献   

6.
The consolidation of cue-cocaine associations and extinction learning (i.e. cue-no cocaine associations) into long-term memory probably regulates the long-lasting control of conditioned stimuli (CS) over cocaine-seeking behaviour, and the basolateral amygdala (BLA) may play a role in this phenomenon. To test this hypothesis, rats previously trained to self-administer cocaine underwent a single classical conditioning (CC) session, during which they received passive pairings of cocaine infusions and a novel light + tone stimulus complex. After additional self-administration sessions in the absence of CS presentation and subsequent extinction training sessions, the ability of the CS to reinstate cocaine-seeking on five test days was assessed. Rats received intra-BLA microinfusions of vehicle or the Na+-channel blocker tetrodotoxin (TTX) immediately after CC (consolidation of CS-cocaine associations) or immediately after reinstatement testing (consolidation of extinction learning). TTX administered immediately after CC attenuated subsequent CS-induced reinstatement. In contrast, TTX administered after the first reinstatement test impaired the extinction of cocaine-seeking behaviour during a second reinstatement test by disrupting extinction memory. Overall, these findings suggest that Na+ channel-mediated mechanisms within the BLA mediate the consolidation of both cocaine-stimulus association and extinction learning, two processes that have opposite effects on subsequent cue-induced cocaine-seeking behaviour.  相似文献   

7.
Continued instrumental drug seeking despite contingent punishment is a core phenotype of drug addiction. Although the neuroanatomical basis of punished drug seeking is unclear, we hypothesize that the sensorimotor striatum, a structure that mediates habitual drug seeking, also mediates punished cocaine seeking. Forelimb sensorimotor projections into the striatum of the rat extend from the dorsolateral to midlateral striatum. Here, we selectively inactivated the dorsolateral and midlateral striatum in rats responding for cocaine in a seeking-taking task. We inactivated both regions after the acquisition of cocaine seeking, after extended cocaine self-administration and finally after the introduction of intermittent, seeking-contingent foot shock. The results show that inactivation of the dorsolateral striatum selectively disrupted punished drug seeking but did not affect unpunished drug seeking, even after extended training. Inactivation of the midlateral striatum, on the other hand, disrupted drug seeking at all stages of training. The effect of inactivating the dorsolateral striatum under punishment conditions was present before delivery of the first shock in the session, and responding reverted to baseline the next day. Thus, inactivation of the dorsolateral striatum seems to enhance the influence of recalled threat of negative consequences of cocaine seeking. The proportional reduction in responding after inactivation of the dorsolateral striatum did not vary with the individual level of compulsivity. Together, these results suggest a novel differentiation of function in the sensorimotor striatum, where the dorsolateral striatum selectively mediates the rigidity of responding after overtraining, while the midlateral striatum mediates responding itself at all stages of training.  相似文献   

8.
The effects of cocaine on memory are controversial. Furthermore, the psychostimulant action of cocaine can be a critical issue in the interpretation of its effects on learning/memory models. The effects of a single administration of cocaine on memory were investigated during the presence of its motor stimulating effect or just after its termination. The plus-maze discriminative avoidance task (PM-DAT) was used because it provides simultaneous information about memory, anxiety and motor activity. In Experiment I, mice received saline, 7.5, 10, 15 or 30 mg/kg cocaine 5 min before the training session. In Experiment II, mice were trained 30 min after the injection of saline, 7.5, 10, 15 or 30 mg/kg cocaine. In Experiment III, mice received 30 mg/kg cocaine 30 min pre-training and pre-test. In Experiment IV, mice received 30 mg/kg cocaine immediately post-training. Tests were always conduced 24 h following the training session. Given 5 min before training, cocaine promoted a motor stimulant effect at the highest dose during the training session but did not impair memory. When cocaine was injected 30 min pre-training, the drug did not modify motor activity, but produced marked amnestic effects at all doses tested. This amnesia induced by cocaine given 30 min pre-training was not related to a state-dependent learning because it was not abolished by pre-test administration of the drug. Post-training cocaine administration did not induce memory deficits either. Our results suggest that the post-stimulant phase is the critical moment for cocaine-induced memory deficit in a discriminative task in mice.  相似文献   

9.
We investigated the acquisition and long-term retention of new skills in patients with cortical (Alzheimer's disease, AD) and subcortical (progressive supranuclear palsy, PSP; Parkinson's disease, PD) degeneration. The motor skill task performance of the PD and PSP patients improved with training, but the improvement disappeared within a few months, whereas AD patients retained learned skills for 3-18 months. The results of our experiments show that subcortical dysfunction induces a retention deficit for newly learned motor skills. Our present study suggests that a normal striatum is necessary for the formation of long-lasting motor skills, and that the striatum plays an important role as a motor skill consolidation system.  相似文献   

10.
Motor stereotypy is a key symptom of various neurological or neuropsychiatric disorders. Neuroleptics or the promising treatment using deep brain stimulation stops stereotypies but the mechanisms underlying their actions are unclear. In rat, motor stereotypies are linked to an imbalance between prefrontal and sensorimotor cortico‐basal ganglia circuits. Indeed, cortico‐nigral transmission was reduced in the prefrontal but not sensorimotor basal ganglia circuits and dopamine and acetylcholine release was altered in the prefrontal but not sensorimotor territory of the dorsal striatum. Furthermore, cholinergic transmission in the prefrontal territory of the dorsal striatum plays a crucial role in the arrest of motor stereotypy. Here we found that, as previously observed for raclopride, high‐frequency stimulation of the subthalamic nucleus (HFS STN) rapidly stopped cocaine‐induced motor stereotypies in rat. Importantly, raclopride and HFS STN exerted a strong effect on cocaine‐induced alterations in prefrontal basal ganglia circuits. Raclopride restored the cholinergic transmission in the prefrontal territory of the dorsal striatum and the cortico‐nigral information transmissions in the prefrontal basal ganglia circuits. HFS STN also restored the N‐methyl‐d ‐aspartic‐acid‐evoked release of acetylcholine and dopamine in the prefrontal territory of the dorsal striatum. However, in contrast to raclopride, HFS STN did not restore the cortico‐substantia nigra pars reticulata transmissions but exerted strong inhibitory and excitatory effects on neuronal activity in the prefrontal subdivision of the substantia nigra pars reticulata. Thus, both raclopride and HFS STN stop cocaine‐induced motor stereotypy, but exert different effects on the related alterations in the prefrontal basal ganglia circuits.  相似文献   

11.
Defects in energy metabolism have been detected in patients with Parkinson's disease and have been proposed as a contributing factor in the disease. Previous in vitro studies showed that NMDA receptors contribute to the loss of dopamine neurons caused by the metabolic inhibitor malonate. In vivo, it is not known whether this interaction occurs through a postsynaptic action on the cell body in the substantia nigra or through a presynaptic action at the dopamine terminal in the striatum. So we could discern the anatomical level of NMDA receptor involvement, rats were infused with malonate, either into the left striatum or into the left substantia nigra. NMDA receptors were locally blocked by an intranigral or intrastriatal coinfusion of malonate plus MK-801 followed by a second infusion of MK-801 3 h later. Animals were examined at 1 week for striatal and nigral dopamine and GABA levels. Intranigral infusion of malonate (0.5 micromol) produced an approximate 50% loss of both nigral dopamine and GABA. MK-801 (0.1 micromol) provided significant protection against both nigral dopamine and GABA loss and against anterograde damage to dopamine terminals in the striatum. Intrastriatal administration of malonate (2 micromol) produced a 68 and 35% loss of striatal dopamine and GABA, respectively. In contrast to intranigral administration, intrastriatal blockade of NMDA receptors did not protect against striatal dopamine loss, although GABA loss was significantly attenuated. Core body temperature monitored several hours throughout the experiment was unchanged. Consistent with a lack of effect of NMDA antagonists on malonate-induced toxicity to dopamine neurons in striatum, intrastriatal infusion of NMDA had a pronounced effect on long-term GABA toxicity with little effect of dopamine loss. These findings are consistent with a postsynaptic action of NMDA receptors on mediating toxicity to dopamine neurons during impaired energy metabolism.  相似文献   

12.
The dysfunction of basal ganglia circuits related to stereotyped motor activity was analysed using the well-established model of cocaine-induced stereotypy in the rat. We examined and compared the neurochemical and electrophysiological effects occurring in medial prefrontal and sensorimotor basal ganglia circuits of the dorsal striatum after cocaine injection in sensitized and non-sensitized rats. Acute injections of cocaine (25 mg/kg), not inducing stereotyped behaviour, affected both medial prefrontal and sensorimotor circuits in a similar way: (i) a mild and delayed increase and decrease of N-methyl-D-aspartate-evoked dopamine and acetylcholine release, respectively and (ii) a marked decrease of cortically evoked inhibition of substantia nigra pars reticulata neurons revealing an imbalance of information transmission between the direct and indirect trans-striatal pathways. In contrast, following sensitization to cocaine, a challenge injection of the same dose of cocaine, generating strong stereotyped behaviour, provoked neurochemical and electrophysiological effects only in the medial prefrontal but not in the sensorimotor circuits: (i) a strong increase of dopamine and decrease of acetylcholine release in the medial prefrontal territory of the dorsal striatum and (ii) a reduction of all inhibitory and excitatory components of the responses evoked in substantia nigra pars reticulata by medial prefrontal stimulation. Therefore, these data disclose distinct reactivity of the medial prefrontal and sensorimotor circuits of the basal ganglia to repeated cocaine administration leading to stereotyped behaviour induced by subsequent cocaine challenge. Thus, we suggest that stereotyped behaviour is correlated to an imbalance between the medial prefrontal and sensorimotor circuits of the basal ganglia resulting in a loss of control of motor behaviour.  相似文献   

13.
In Mongolian gerbils, the auditory cortex is critical for discriminating rising vs. falling frequency-modulated tones. Based on our previous studies, we hypothesized that dopaminergic inputs to the auditory cortex during and shortly after acquisition of the discrimination strategy control long-term memory formation. To test this hypothesis, we studied frequency-modulated tone discrimination learning of gerbils in a shuttle box GO/NO-GO procedure following differential treatments. (i) Pre-exposure of gerbils to the frequency-modulated tones at 1 day before the first discrimination training session severely impaired the accuracy of the discrimination acquired in that session during the initial trials of a second training session, performed 1 day later. (ii) Local injection of the D1/D5 dopamine receptor antagonist SCH-23390 into the auditory cortex after task acquisition caused a discrimination deficit of similar extent and time course as with pre-exposure. This effect was dependent on the dose and time point of injection. (iii) Injection of the D1/D5 dopamine receptor agonist SKF-38393 into the auditory cortex after retraining caused a further discrimination improvement at the beginning of subsequent sessions. All three treatments, which supposedly interfered with dopamine signalling during conditioning and/or retraining, had a substantial impact on the dynamics of the discrimination performance particularly at the beginning of subsequent training sessions. These findings suggest that auditory-cortical dopamine activity after acquisition of a discrimination of complex sounds and after retrieval of weak frequency-modulated tone discrimination memory further improves memory consolidation, i.e. the correct association of two sounds with their respective GO/NO-GO meaning, in support of future memory recall.  相似文献   

14.
Fibroblast growth factors (FGFs) are important for dopamine neurons in health and disease. Acidic (aFGF) and basic (bFGF) fibroblast growth factors increase the survival and growth of dopamine cells. Nigrostriatal dopamine neurons, the target cells for degeneration in Parkinson's disease, display receptors for basic fibroblast growth factor and these receptors are decreased in the brain of parkinsonian patients. We have investigated the effects of long-term intrastriatal infusion of FGFs in hemiparkinsonian monkeys. All animals were lesioned with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 0.4mgkg(-1), into the left internal carotid artery. The monkeys that had persistent asymmetric akinesia and contralateral rotation induced by apomorphine, were selected for chronic, unilateral, intracerebral infusion of neurotrophic factors or vehicle into the striatum ipsilateral to the lesion. Two animals received intrastriatal aFGF or bFGF, 2mugweek(-1), for 6 months. The controls received intrastriatal saline or intraventricular epidermal growth factor (EGF). F-DOPA positron emission tomography scans were performed in each animal before and after the intracerebral infusion of neurotrophic factors. We measured the tyrosine hydroxylase (TH) immunoreactive neurons in the substantia nigra and terminals in the striatum and evaluated the pathological complications related to the treatment or the delivery system. All four animals had, after the lesion with MPTP, a transient but incomplete recovery of akinesia. This period of spontaneous improvement was followed by a progressive deterioration of motor behaviour during the following months. The monkeys treated with FGFs, however, recovered quickly and persistently during the intracerebral infusion. F-DOPA uptake, prior to the intracerebral infusion, was greatly reduced in the lesioned striatum. The post-infusion F-DOPA scans revealed a 60% reduction respect to baseline in the lesioned striatum of the saline and EGF-infused animals. In the animals infused with FGFs, the post-infusion F-DOPA uptake increased more than 400% in the lesioned (and infused) striatum and around 200-300% in the contralateral side, with respect to the pre-infusion scan. The number of TH-positive cells in the substantia nigra correlated well with the uptake of F-DOPA in the post-infusion scan. No severe side-effects were present. Intrastriatal infusion of FGFs restores motor behaviour and increases F-DOPA striatal uptake in hemiparkinsonian monkeys.  相似文献   

15.
Periodic limb movements (PLMs) during sleep increase with age and are associated with striatal neurodegeneration and dopamine deficiency. Limb movements are often associated with disruptions to non-rapid eye movement (NREM) sleep. Motor skill memory consolidation recruits the striatum, and learning-dependent striatal activation is associated with NREM sleep. Therefore, we investigated whether de novo individuals who significantly experience elevated levels of PLMs but have not been formally diagnosed with periodic limb movement disorder had learning and sleep-related memory deficits and whether these deficits were related to sleep quality and symptom severity.In total, 14 adults with significantly elevated PLMs (PLM condition), 15 age-matched controls (CTRL), and 14 age-matched “disturbed” sleep (through induced leg movements) controls (CTRL-ES) participated. The participants were trained (PM) and retested (AM) on procedural motor sequence learning (MSL) and declarative paired associates memory tasks.Baseline sleep quality was significantly worse in PLM than in CTRL. Despite the continued presence of PLMs in the PLM condition on the experimental night, remarkably, sleep quality improved and arousals decreased, vs. baseline, and did not differ from CTRL. MSL was significantly slower in the PLM condition than in CTRL at training but surprisingly exhibited overnight performance gains, which correlated with reduced arousals. As predicted, CTRL but not CTRL-ES had overnight gains in MSL. Taken together, this suggests that in the PLM condition, sleep quality was normalized following MSL, where they derived the same benefit of sleep to procedural memory consolidation as in CTRL. Sleep did not benefit declarative memory.Although preliminary, these results suggest that MSL in individuals with PLMs may provide a benefit to sleep, which in turn may benefit memory consolidation.  相似文献   

16.
The present study examined the role of graft placement and behavioural task complexity in determining the functional efficacy of intrastriatal grafts of dopamine-rich fetal ventral mesencephalon (VM) placed in the dopamine (DA) depleted striatum. The functional effects of two different striatal placements of VM grafts were evaluated using tests of drug-induced motor asymmetry, simple sensorimotor orienting response, and a more complex sensorimotor integrative task (disengage behaviour), in which the rat has to perform the orienting response while in the act of eating. Rats with complete unilateral 6-hydroxydopamine (6-OHDA) lesions of the mesostriatal DA pathway, received either implants of dissociated fetal VM in the central or ventrolateral portions of the denervated striatum. Nongrafted lesioned rats served as controls. Nine weeks after grafting, the rats were tested on separate days for disengage behaviour, sensorimotor orientation, and amphetamine-induced rotational behaviour. Consistent with previous findings, the two graft placements had differential effects on drug-induced motor asymmetry and sensorimotor responses: the centrally placed VM grafts reversed amphetamine-induced rotational asymmetry but had little effect on the sensorimotor deficit, whereas the ventrolaterally placed grafts reversed the sensorimotor orientation deficits without any effect on the drug-induced rotation. In contrast, fetal VM grafts, regardless of their placement, did not ameliorate the observed deficits in disengage behaviour; that is the grafted rats that had recovered their sensorimotor response in the absence of food were unable to perform the same orienting response while eating. These results provide evidence that functional intrastriatal VM grafts which are capable of restoring sensorimotor responses or motor asymmetry fail to affect lesion-induced deficits in a task that requires more complex sensorimotor integration. It is suggested that the degree of anatomical integration of the grafted DA neurons into the host circuitry will determine the efficacy of the grafts to influence more complex sensorimotor integrative deficits in the DA lesion model.  相似文献   

17.
Recent evidence suggests that striatal neurokinin receptors modulate dopamine (DA)-induced motor behaviors. To further examine this, we studied the effects of intrastriatal neurokinin 1 receptor (NK1R) antagonism on motor behaviors induced by direct infusion of the full DA D1 receptor agonist SKF 82958. Adult male Sprague-Dawley rats received bilateral intrastriatal 0.8-mul infusions of the NK1R receptor antagonist LY 306,740 (0, 27, or 54 nmol/side) followed by intrastriatal infusions of SKF 82958 (0 or 24 nmol/side) into the dorsal striatum. Following each infusion, rats were placed into automated activity monitors for the quantification of horizontal activity, total distance traveled, movement bouts, and stereotypy counts. As expected, SKF 82958 increased motor activity on all behavioral measures. More importantly, whereas 27 nmol was without effect, prior infusion of 54 nmol LY 306,740 significantly reduced most aspects of behavior. The results of this study suggest that functional NK1Rs within the striatum play a permissive role in the motor behaviors induced by D1R stimulation.  相似文献   

18.
OBJECTIVES: Motor skill learning involves both practice and a latent, sleep-dependent process of consolidation that develops after training ("off-line" learning). Sleep consolidation is linked to reduced brain activation in prefrontal areas, along with strong involvement of parietal regions. The objective in this study was to investigate the influence of sleep on the consolidation process of a motor task in patients with prefrontal damage. PATIENTS AND METHODS: For that purpose 14 patients with acquired focal prefrontal lesions, 15 age-matched healthy controls, and five patients with parietal lesions were evaluated on a serial reaction time task, SRTT, before and after a night of monitored sleep. Verbal and working memory was also tested. We anticipated that patients with prefrontal lesions, who are impaired in the acquisition of motor tasks, would benefit greater from sleep than the other two groups, since consolidation does not depend on prefrontal regions. RESULTS: Prefrontal patients showed an erratic learning curve at night, with great inter- and intrasubject variability that normalized after sleep. They also showed higher overnight learning of the motor skill and improvement on speed performance on the SRTT. No differences in the other memory tests were found between sessions. CONCLUSION: Prefrontal-injured patients benefit from night sleep in terms of motor task learning and performance, likely related to an advantageous off-line learning. Sleep could play a role in motor rehabilitation programs in prefrontal patients.  相似文献   

19.
Despite vast literature on catecholaminergic neuromodulation of auditory cortex functioning in general, knowledge about its role for long‐term memory formation is scarce. Our previous pharmacological studies on cortex‐dependent frequency‐modulated tone‐sweep discrimination learning of Mongolian gerbils showed that auditory‐cortical D1/5‐dopamine receptor activity facilitates memory consolidation and anterograde memory formation. Considering overlapping functions of D1/5‐dopamine receptors and β‐adrenoceptors, we hypothesised a role of β‐adrenergic signalling in the auditory cortex for sweep discrimination learning and memory. Supporting this hypothesis, the β1/2‐adrenoceptor antagonist propranolol bilaterally applied to the gerbil auditory cortex after task acquisition prevented the discrimination increment that was normally monitored 1 day later. The increment in the total number of hurdle crossings performed in response to the sweeps per se was normal. Propranolol infusion after the seventh training session suppressed the previously established sweep discrimination. The suppressive effect required antagonist injection in a narrow post‐session time window. When applied to the auditory cortex 1 day before initial conditioning, β1‐adrenoceptor‐antagonising and β1‐adrenoceptor‐stimulating agents retarded and facilitated, respectively, sweep discrimination learning, whereas β2‐selective drugs were ineffective. In contrast, single‐sweep detection learning was normal after propranolol infusion. By immunohistochemistry, β1‐ and β2‐adrenoceptors were identified on the neuropil and somata of pyramidal and non‐pyramidal neurons of the gerbil auditory cortex. The present findings suggest that β‐adrenergic signalling in the auditory cortex has task‐related importance for discrimination learning of complex sounds: as previously shown for D1/5‐dopamine receptor signalling, β‐adrenoceptor activity supports long‐term memory consolidation and reconsolidation; additionally, tonic input through β1‐adrenoceptors may control mechanisms permissive for memory acquisition.  相似文献   

20.
Practice-induced improvements in skilled performance reflect "offline " consolidation processes extending beyond daily training sessions. According to visual learning theories, an early, fast learning phase driven by high-level areas is followed by a late, asymptotic learning phase driven by low-level, retinotopic areas when higher resolution is required. Thus, low-level areas would not contribute to learning and offline consolidation until late learning. Recent studies have challenged this notion, demonstrating modified responses to trained stimuli in primary visual cortex (V1) and offline activity after very limited training. However, the behavioral relevance of modified V1 activity for offline consolidation of visual skill memory in V1 after early training sessions remains unclear. Here, we used neuronavigated transcranial magnetic stimulation (TMS) directed to a trained retinotopic V1 location to test for behaviorally relevant consolidation in human low-level visual cortex. Applying TMS to the trained V1 location within 45 min of the first or second training session strongly interfered with learning, as measured by impaired performance the next day. The interference was conditional on task context and occurred only when training in the location targeted by TMS was followed by training in a second location before TMS. In this condition, high-level areas may become coupled to the second location and uncoupled from the previously trained low-level representation, thereby rendering consolidation vulnerable to interference. Our data show that, during the earliest phases of skill learning in the lowest-level visual areas, a behaviorally relevant form of consolidation exists of which the robustness is controlled by high-level, contextual factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号