首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, the first aim was to investigate the swelling and relaxation properties of lipid matrix on diffusional exponent (n). The second aim was to determine the desired release profile of metronidazole lipid matrix tablets. We prepared metronidazole lipid matrix granules using Carnauba wax, Beeswax, Stearic acid, Cutina HR, Precirol ATO 5, and Compritol ATO 888 by hot fusion method and pressed the tablets of these granules. In vitro release test was performed using a standard USP dissolution apparatus I (basket method) with a stirring rate of 100 rpm at 37 degrees C in 900 ml of 0.1 N hydrochloric acid, adjusted to pH 1.2, as medium for the formulations' screening. Hardness, diameter-height ratio, friability, and swelling ratio were determined. Target release profile of metronidazole was also drawn. Stearic acid showed the highest and Carnauba wax showed the lowest release rates in all formulations used. Swelling ratios were calculated after the dissolution of tablets as 9.24%, 6.03%, 1.74%, and 1.07% for Cutina HR, Beeswax, Precirol ATO 5, and Compritol ATO 888, respectively. There was erosion in Stearic acid, but neither erosion nor swelling in Carnauba wax, was detected. According to the power law analysis, the diffusion mechanism was expressed as pure Fickian for Stearic acid and Carnauba wax and the coupling of Fickian and relaxation contributions for other Cutina HR, Beeswax, Compritol ATO 888, and Precirol ATO 5 tablets. It was found that Beeswax (kd=2.13) has a very close drug release rate with the target profile (kt=1.95). Our results suggested that swelling and relaxation properties of lipid matrices should be examined together for a correct evaluation on drug diffusion mechanism of insoluble matrices.  相似文献   

2.
Ibuprofen-wax (carnauba, paraffin, beeswax, and the semisynthetic glyceryl esters--Gelucire 64/02 and Precirol ATO5) microparticles were prepared without organic solvents as an alternative to polymeric microparticles. In the melt dispersion technique, the drug-wax melt was emulsified into a heated aqueous phase followed by cooling to form the microparticles. The microparticles were characterized with respect to their drug loading, and morphological and release properties. They were spherical and non-agglomerated and drug loading close to 60 per cent were achieved. The more hydrophilic waxes (Gelucire 64/02 or Precirol ATO5) could be prepared without the use of surfactants. With the other waxes, increasing amounts of sodium lauryl sulphate in the external aqueous phase decreased the drug loading because of drug solubilization when compared to the polymeric stabilizer, poly(vinyl alcohol). The type of wax, the rate of cooling, and the temperature of the aqueous phase had no significant effect on the drug loading because of the low solubility of the drug in the external aqueous phase. The drug release was controlled by the hydrophobicity of the wax. Besides ibuprofen, other water-soluble drugs (ketoprofen, indomethacin, hydrocortisone) were also encapsulated by this method. The wax microparticles could be formulated into an aqueous sustained-release oral suspension dosage form.  相似文献   

3.
The objective of this study was to investigate the potential of various formulation strategies to achieve sustained release of the peptide, from injectable poly(D,L-lactide-co-glycolide) (PLGA) and d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) microparticles. The microparticles were prepared by a solvent evaporation method. Peptide loaded PLGA microparticles exhibited a pronounced initial burst release (22.3% in 1 day) and lag phase in phosphate buffer of pH 7.0. In contrast, blending of 5.0% TPGS (8.6% release in 1 day) or 10.0% TPGS (5.5% release in 1 day) in PLGA microparticles reduced initial burst release and the lag-phase time. Incorporation of TPGS in PLGA microparticles further increased drug release, attributable to improved drug encapsulation, increased particle size, and exempt of pores. PLGA+ 10.0% TPGS composite microparticles exhibited the most desirable drug release among all the formulations tested, and demonstrated triphasic release after minimal initial burst.  相似文献   

4.
Pseudoephedrine HCl-carnauba wax microparticles were prepared by a multiple emulsion-melt dispersion technique. A heated aqueous drug solution was emulsified into the wax melt (W/O emulsion), followed by emulsification of this primary emulsion into a heated external aqueous phase (W/O/W emulsion). The drug-containing microparticles were formed after cooling and congealing of the wax phase. The encapsulation efficiencies were above 80 per cent and actual drug loadings close to 50 per cent were achieved. The surface of the microparticles had submicron pores and drug crystals were visible on cross-sections. The drug loading depended on the rate of cooling and the volume of the internal aqueous phase but was insensitive to the volume of the continuous phase. The drug release was much faster when compared to the release from polymeric microspheres.  相似文献   

5.
Vancomycin hydrochloride (VCM) is a glycopeptide antibiotic used for the treatment of infections caused by methicillin-resistant staphylococci. It is water soluble, having a high molecular weight, and poorly absorbed from the gastrointestinal tract. Mixtures of VCM with Labrasol and D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS) were prepared to improve oral absorption of VCM. Administration of VCM solution to rat ileum at a dose of 20 mg/kg did not result in detectable plasma VCM concentration. Formulation containing 50% of Labrasol resulted in a Cmax value of 5.86+/-0.97 microg/ml and an AUC(0-6h) value of 16.06+/-1.78 microgh/ml. Addition of TPGS to VCM solution at 12.5% concentration also increased the plasma VCM concentration with a Cmax value of 4.98+/-0.45 microg/ml. But the AUC(0-6 h) (9.87+/-1.90 microgh/ml) was significantly lower than that obtained with Labrasol. The addition of 5.0 and 25.0% TPGS to solutions of VCM containing 50% of Labrasol did not result in any significant increase either in Cmax or AUC(0-6 h) of VCM. Whereas the addition of 12.5% of TPGS has resulted in an increase in Cmax and AUC(0-6 h) by 2.2 and 2.4 times, respectively, suggesting that this concentration of 50% Labrasol and 12.5% TPGS (1:0.25) was optimum for improving intestinal absorption of VCM. A dose dependent decrease in the Cmax and AUC(0-6 h) values was observed when the dose of absorption enhancers was decreased by 50% with formulation containing Labrasol and TPGS in 1:0.25 ratio. The results of the study indicate that formulations containing Labrasol and TPGS improve intestinal absorption of hydrophilic macromolecular drug, VCM.  相似文献   

6.
Abstract

Pseudoephedrine HCl-carnauba wax microparticles were prepared by a multiple emulsion-melt dispersion technique. A heated aqueous drug solution was emulsified into the wax melt (W/O emulsion), followed by emulsification of this primary emulsion into a heated external aqueous phase (W/O/W emulsion). The drug-containing microparticles were formed after cooling and congealing of the wax phase. The encapsulation efficiencies were above 80 per cent and actual drug loadings close to 50 per cent were achieved. The surface of the microparticles had submicron pores and drug crystals were visible on cross-sections. The drug loading depended on the rate of cooling and the volume of the internal aqueous phase but was insensitive to the volume of the continuous phase. The drug release was much faster when compared to the release from polymeric microspheres.  相似文献   

7.
Curcumin (CRM) (CAS number 458-37-07), a naturally-occurring molecule, has diverse pharmacological actions. Recently our research group demonstrated that poor permeability also contributes to its poor oral bioavailability. A self nano-emulsifying drug delivery system (CRM SNEDDS) consisting of Labrasol, Gelucire 44/14, Vitamin E TPGS and PEG 400 was designed and provided 16 times improvement in oral bioavailability in rats, at a dose of 250?mg/kg body weight. Caco-2 cell transport studies were conducted for CRM SNEDDS and CRM in the presence of individual excipients, to determine the extent of improvement in permeability. Papp values for CRM, CRM SNEDDS and CRM in combination with 4 individual excipients were calculated. Transepithelial electrical resistance value was assessed to evaluate the cell morphology and the cellular tight junctions. Permeation of a transcellular marker, Lucifer Yellow was used as a marker to assess monolayer integrity. The tested excipient concentrations were found to be non-toxic to the cell monolayer in 2?h incubation. Results showed that the Papp increased 6.35 times for curcumin in CRM SNEDDS as compared to CRM. Individual excipients enhanced permeation from 1.97 to 6.35 times, with Labrasol showing the highest enhancement of 6.35 times.  相似文献   

8.
The properties of spray dried PLA microparticles were affected by the choice of solvents, amount of ciclosporin and TPGS added. Ethyl acetate formed microparticle with smooth surface when compared to those produced by dichloromethane. The results of FTIR have not shown chemical interaction amongst PLA, ciclosporin and TPGS while thermal analysis showed physical interactions amongst these components. TPGS was found to lower Tg value of PLA by exerting a plasticizing effect while ciclosporin reverted this effect. When the content of TPGS increased from 2% (w/w) to 10% (w/w), the microparticles tended to agglomerate due to the lowering of the polymer Tg values at the employed spray drying temperature. In addition, a lesser amount of ciclosporin was found at the surface of the microparticle and resulted in smaller initial release of ciclosporin. When 2% (w/w) TPGS was used, the initial release of ciclosporin was enhanced and the microparticles formed were not agglomerated.  相似文献   

9.
Abstract

The properties of spray dried PLA microparticles were affected by the choice of solvents, amount of ciclosporin and TPGS added. Ethyl acetate formed microparticle with smooth surface when compared to those produced by dichloromethane. The results of FTIR have not shown chemical interaction amongst PLA, ciclosporin and TPGS while thermal analysis showed physical interactions amongst these components. TPGS was found to lower Tg value of PLA by exerting a plasticizing effect while ciclosporin reverted this effect. When the content of TPGS increased from 2% (w/w) to 10% (w/w), the microparticles tended to agglomerate due to the lowering of the polymer Tg values at the employed spray drying temperature. In addition, a lesser amount of ciclosporin was found at the surface of the microparticle and resulted in smaller initial release of ciclosporin. When 2% (w/w) TPGS was used, the initial release of ciclosporin was enhanced and the microparticles formed were not agglomerated.  相似文献   

10.
Solid dispersions of carbamazepine (CBZ) were formulated by supercritical fluid processing (SCP) and conventional solvent evaporation in polyethylene glycol (PEG) 8000 with either Gelucire 44/14 or vitamin E TPGS NF (d-alpha-tocopheryl PEG 1000 succinate). Formulations were evaluated by dissolution, scanning electron microscopy, powder X-ray diffraction, and differential scanning calorimetry, and excipient cytotoxicity in Caco-2 cells by MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt] assay. CBZ release was enhanced from supercritical fluid-treated CBZ and the CBZ/PEG 8000 (1:5), CBZ/PEG 8000/TPGS or Gelucire 44/14 (1:4:1) solid dispersions. The radically altered morphologies of SCP samples seen by scanning electron microscopy suggested polymorphic change that was confirmed by the X-ray diffraction and differential scanning calorimetry. Disappearance of the characteristic CBZ melting peak indicated that CBZ was dissolved inside the carrier system. Polymorphic change of CBZ during SCP led to faster dissolution. Therefore, SCP provides advantages over solid dispersions prepared by conventional processes.  相似文献   

11.
A new atomizer that operates with ultrasonic energy is described. This apparatus is intended to obtain microparticulate drug delivery systems through spray-congealing or spray-drying technologies. In this work, some experimental results are reported on model systems submitted to spray-congealing. The formulations under examination contained theophylline and fenbufen as model drugs and stearic acid, carnauba wax, Cutina HR(R) and Compritol 888 ATO(R) as low melting excipients. Non-aggregate and spherical-shaped microparticles were obtained with all the materials tested; moreover, they had smooth surface and good flowability. The particle sizes depend on the amount of drug present and in each case the maximum size value of the distribution frequency was found to be 375 mu. In vitro release of the drug depends on its solubility and on the excipient lipophilicity. The results suggest that the ultrasound-assisted atomizer could be proposed as a possible alternative to traditional atomizers used for spray-congealing in the pharmaceutical field.  相似文献   

12.
In this study improvement in the bioavailability of carbamazepine (CBZ) prepared as solid dispersions by conventional solvent evaporation and supercritical fluid (SCF) processing methods was assessed, along with the elucidation of the mechanism of improved absorption. Solid dispersions of CBZ in polyethylene glycol (PEG) with either Gelucire 44/14 or vitamin E-TPGS (TPGS) were evaluated by intrinsic dissolution. Directional transport through Caco-2 cell monolayers was determined in the presence and absence of TPGS. Cell viability in presence of various concentrations of amphiphilic carriers was seen. In vivo oral bioavailability was determined in rats. The apparent intrinsic dissolution rates (IDR) of both conventional- and SCF-CBZ/PEG 8000/TPGS solid dispersions were increased by 13- and 10.6-fold, respectively, relative to neat CBZ. CBZ was not a substrate of P-glycoprotein. Higher CBZ permeability was seen in presence of 0.1% TPGS. Cell viability studies showed significant cytotoxicity only at or above 0.1% amphiphilic carrier. Supercritical treated formulation (without amphiphilic carrier) displayed oral bioavailability on par with those conventional solid dispersions augmented with amphiphilic carriers. An in vitro-in vivo correlation was seen between IDR and the AUC of the various CBZ solid dispersions. Bioavailability of CBZ was more a function of dissolution as opposed to membrane effects. Although bioavailability from SCF processed dispersions was better than conventionally processed counterparts (except for one formulation containing Gelucire 44/14), an interaction of processing method and inclusion of an amphiphilic carrier, rather by one factor alone contributed to optimal absorption, thus giving contradictory results for Gelucire 44/14 and TPGS formulations.  相似文献   

13.
Biocompatible microparticles prepared by lyophilization were developed for intranasal protein delivery. To test for the feasibility of this formulation, stability of the incorporated protein and enhancement of in vitro permeation across the nasal epithelium were evaluated. Lyophilization was processed with hydroxypropylmethylcellulose (HPMC) or water soluble chitosan (WCS) as biocompatible polymers, hydroxypropyl-β-cyclodextrin (HP-β-CD) and d-alpha-tocopheryl poly(ethylene glycol 1000) succinate (TPGS 1000) as permeation enhancers, sugars as cryoprotectants and lysozyme as the model protein. As a result, microparticles ranging from 6 to 12 μm were developed where the maintenance of the protein conformation was verified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), circular dichroism and fluorescence intensity detection. Moreover, in vitro bioassay showed that the lysozyme activity was preserved during the preparation process while exhibiting less cytotoxicity in primary human nasal epithelial (HNE) cells. Results of the in vitro release study revealed slower release rate in these microparticles compared to that of the lysozyme itself. On the other hand, the in vitro permeation study exhibited a 9-fold increase in absorption of lysozyme when prepared in lyophilized microparticles with HPMC, HP-β-CD and TPGS 1000 (F4-2). These microparticles could serve as efficient intranasal delivery systems for therapeutic proteins.  相似文献   

14.
Interferon alpha (IFN-alpha), patch preparations composed of three layers, water-insoluble backing layer, drug containing layer with absorption enhancer and surface layer containing pH-dependent polymer were prepared. As absorption enhancer, three surfactants, Gelucire44/14 (Lauroyl macrogol-32 glycerides), Labrasol (Caprylocaproyl macrogol-8 glycerides) and HCO-60 (polyoxyethylated hydrogenerated castor oil) were used in preparing IFN-alpha patch preparations. The intestinal absorption of IFN-alpha was studied after the administration of test patch preparations into the rat jejunum, 50,000 IU/kg. The serum IFN-alpha levels were measured by an ELISA method and both C(max) and AUC were determined as the index of absorption of IFN-alpha. Gelucire44/14 preparation including Pharmasol for the stable solidification showed the higher C(max), 7.66 +/- 0.82 IU/ml, and AUC, 12.85 +/- 1.49 IU h/ml, than Labrasol (6.51 +/- 0.89 and 8.30 +/- 1.34 IU h/ml) and HCO-60 (6.02 +/- 1.14, 7.53 +/- 1.84 IU h/ml) preparations, respectively. By comparing to the AUC obtained after s.c. injection of the same dose of IFN-alpha to rats, bioavailability (BA) was estimated to be 7.8% in Gelucire44/14 preparation. In vitro release study showed that the T50%s, the time when half of the formulated IFN-alpha is released from the patches, were 3.4 +/- 0.1 min for HCO-60, 7.8 +/- 0.1 min for Gelucire44/14 and 11.4 +/- 0.1 min for Labrasol preparations. To study the effect of absorption site, Gelucire44/14 preparation was administered into the rat duodenum and ileum. However, there were not significant differences on AUC among the three absorption sites. By reducing the IFN-alpha dose from 50,000 to 25,000 IU/kg, the serum IFN-alpha levels vs time profile showed a tendency of dose-dependency. When the histological examination of small intestinal mucosa was carried out in this study, the small intestinal mucosa after the Gelucire44/14 patches administered and before it was administered, could not recognize impaired. From these results, the usefulness of oral patch system for the oral delivery of IFN-alpha has been proved in rats.  相似文献   

15.
Abstract

The aim of this study was to investigate the permeability of unique dispersion systems prepared by supercritical fluid (SCF) processing, to deliver bioidentical progesterone (PGN) across mouse skin. Semisolid dispersions of PGN were made up of either polyethylene glycol (PEG) 400/4000, Gelucire 44/14, d-α-tocopheryl PEG 1000 succinate (TPGS), tanscutol P or myritol 318. SCF dispersion systems were compared with various control formulations; a market cream, aqueous suspension, and three conventionally prepared dispersions comelted, cosolvent and physically mixed systems. The permeability coefficient in the absence or presence of a permeation enhancer was evaluated using ex vivo mouse skin. The permeation study results for the TPGS/myritol/transcutol P dispersion system prepared using supercritical carbon dioxide (SC-CO2) had a two-fold improvement in transdermal permeation over 24?h compared to the control formulation, 245.7 and 126?µg?cm?2, respectively (p value?<?0.05). In this study, the skin integrity and morphology was also investigated for changes due to the formulation constituents using histological examination and Fourier transform infrared spectroscopy. The particles from the gas-saturated suspension method and SC-CO2 together with TPGS/myritol/transcutol P may offer potential advantages over the available cream on the market based on the vastly improved lag time and flux of PGN across the skin.  相似文献   

16.
Interferon alpha (IFN-α), patch preparations composed of three layers, water-insoluble backing layer, drug containing layer with absorption enhancer and surface layer containing pH-dependent polymer were prepared. As absorption enhancer, three surfactants, Gelucire44/14 (Lauroyl macrogol-32 glycerides), Labrasol (Caprylocaproyl macrogol-8 glycerides) and HCO-60 (polyoxyethylated hydrogenerated castor oil) were used in preparing IFN-α patch preparations. The intestinal absorption of IFN-α was studied after the administration of test patch preparations into the rat jejunum, 50,000 IU/kg. The serum IFN-α levels were measured by an ELISA method and both C max and AUC were determined as the index of absorption of IFN-α. Gelucire44/14 preparation including Pharmasol for the stable solidification showed the higher C max, 7.66 ± 0.82 IU/ml, and AUC, 12.85 ± 1.49 IU h/ml, than Labrasol (6.51 ± 0.89 and 8.30 ± 1.34 IU h/ml) and HCO-60 (6.02 ± 1.14, 7.53 ± 1.84 IU h/ml) preparations, respectively. By comparing to the AUC obtained after s.c. injection of the same dose of IFN-α to rats, bioavailability (BA) was estimated to be 7.8% in Gelucire44/14 preparation. In vitro release study showed that the T50%s, the time when half of the formulated IFN-α is released from the patches, were 3.4 ± 0.1 min for HCO-60, 7.8 ± 0.1 min for Gelucire44/14 and 11.4 ± 0.1 min for Labrasol preparations. To study the effect of absorption site, Gelucire44/14 preparation was administered into the rat duodenum and ileum. However, there were not significant differences on AUC among the three absorption sites. By reducing the IFN-α dose from 50,000 to 25,000 IU/kg, the serum IFN-α levels vs time profile showed a tendency of dose-dependency. When the histological examination of small intestinal mucosa was carried out in this study, the small intestinal mucosa after the Gelucire44/14 patches administered and before it was administered, could not recognize impaired. From these results, the usefulness of oral patch system for the oral delivery of IFN-α has been proved in rats.  相似文献   

17.
The use of solubilizing agents to improve the solubility of poorly water-soluble drugs often results in an alteration of intestinal membrane barrier function and intestinal membrane damage. In this study, 5(6)-carboxyfluorescein (CF) and fluorescein isothiocyanate-labeled dextran (MW 4400, FD4) were used as model compounds to examine the effects of twelve common solubilizing agents, sodium taurocholate (NaTC), Labrasol, polyethylene glycol 400 (PEG 400), Transcutol P, propylene glycol, Gelucire 44/14, HCO-60, ethanol, Cremophor EL, Tween 80, 2 hydroxypropyl-β-cyclodextrin (2HP-β-CyD) and dimethylsulfoxide (DMSO), on intestinal membrane barrier function and membrane toxicity in rats. Intestinal transport and absorption of CF were examined using an in vitro diffusion chamber and an in situ closed-loop technique. The in vitro diffusion chamber study showed that only 5 and 10% (w/v) NaTC significantly increased the transport of CF across the intestinal membrane. The in situ closed-loop study showed a remarkable increase in the absorption of CF and a bioavailability of more than 30% in the presence of 5 and 10% (v/v) Labrasol, 5 and 10% (w/v) NaTC and 10% (v/v) Transcutol P. Furthermore, we evaluated the effect of NaTC and Labrasol on the intestinal absorption of FD4, a high molecular weight compound. The results indicated that the absorption of FD4 also increased in the presence of 5 and 10% (w/v) NaTC and 10% (v/v) Labrasol, suggesting that these concentrations of NaTC and Labrasol may alter the intestinal membrane barrier functions in rats. We measured the release of protein and lactate dehydrogenase (LDH) from the intestinal membrane to examine the safety of solubilizing agents in the intestine. 5 and 10% (w/v) NaTC and 5 and 10% (v/v) Gelucire 44/14 significantly increased the presence of these toxicity markers compared to the control. The LDH level was also increased in the presence of 10% (v/v) of Cremophor EL. These findings suggest that the solubilizing agents at these concentrations except for NaTC, Gelucire 44/14 and Cremophor EL are considered safe and do not cause intestinal membrane damage. In conclusion, this study provides a basic approach in screening and predicting the effects of solubilizing agents for intestinal absorption studies using drugs poorly soluble in water.  相似文献   

18.
Kanamycin sulphate (KS) is a Mycobacterium tuberculosis protein synthesis inhibitor. KS is polycationic, a property responsible for KS poor oral absorption half-life (2.5?h) and rapid renal clearance, which results in serious nephrotoxicity/ototoxicity. The current study aimed to develop KS-loaded PLGA vitamin-E-TPGS microparticles (MPs) and nanoparticles (NPs) to reduce the dosing frequency and dose-related adverse effect. In vitro release was sustained up to 10 days for KS PLGA–TPGS MPs and 13 days for KS PLGA–TPGS NPs in phosphate-buffered saline (PBS) pH 7.4. The in vivo pharmacokinetic test in Wistar rats showed that the AUC0–∞ of KS PLGA–TPGS NPs (280.58?μg/mL*min) was about 1.62-fold higher than that of KS PLGA–TPGS MPs (172.30?μg/mL*min). Further, in vivo protein-binding assay ascribed 1.20-fold increase in the uptake of KS PLGA–TPGS NPs through the alveolar macrophage (AM). The studies, therefore, could provide another useful tool for successful development of KS MPs and NPs.  相似文献   

19.
The nasal mucosa has many advantages as a potential site for drug and vaccine delivery. The present study has sought to exploit this route of delivery using microparticles composed of D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS) as a matrix material blended with poly(caprolactone) for nasal immunisation with diphtheria toxoid. Particles were prepared by a double emulsion method, followed by spray drying and the effect of TPGS on size, zeta potential, loading and release of antigen was assessed. Particles composed of TPGS-PCL blends were spherical, smooth and monodisperse, displaying increasing yields after spray drying with increasing concentrations of TPGS. The immune response to diphtheria toxoid loaded PCL-TPGS microspheres after nasal administration was shown to be higher than that achieved using PCL microspheres alone. We conclude that TPGS shows significant potential as a novel adjuvant either alone or in combination with an appropriate delivery system.  相似文献   

20.
The objective of the present study was to investigate the influence of formulation factors on the physical properties of hot-melt extruded granules and compressed tablets containing wax as a thermal binder/retarding agent, and to compare the properties of granules and tablets with those prepared by a high-shear melt granulation (MG) method. Powder blends containing phenylpropanolamine hydrochloride, Precirol and various excipients were extruded in a single-screw extruder at open-end discharge conditions. The extrudates were then passed through a 14-mesh screen to form granules. The extrusion conditions and the optimum amount of wax to function as the thermal binder were dependent on the properties of the filler excipients. At the same wax level, drug release from tablets decreased in the order of using microcrystalline cellulose (MCC), lactose and Emcompress as the filler excipient. The observed differences in the dissolution properties of the tablets were due to the differences in the solubility, swellability and density of the filler excipients. Replacing Precirol with Sterotex K, a higher melting point wax, resulted in slightly increased dissolution rates, when the extrusion was performed at the same temperature conditions. Hot-melt extruded granules were observed to be less spherical than high-shear melt granules and showed lower values of bulk/tap densities. However, tablets containing MCC or lactose granules prepared by hot-melt extrusion (HME) exhibited higher hardness values. Slower drug release rates were found for tablets containing MCC by HME compared with MG. Analysis of the hot-melt extruded granules showed better drug content uniformity among granules of different size ranges compared with high-shear melt granules, resulting in a more reproducible drug release from the corresponding tablets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号