首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The left hemisphere specialization for speech perception might arise from asymmetries at more basic levels of auditory processing. In particular, it has been suggested that differences in "temporal" and "spectral" processing exist between the hemispheres. Here we used functional magnetic resonance imaging to test this hypothesis further. Fourteen healthy volunteers listened to sequences of alternating pure tones that varied in the temporal and spectral domains. Increased temporal variation was associated with activation in Heschl's gyrus (HG) bilaterally, whereas increased spectral variation activated the superior temporal gyrus (STG) bilaterally and right posterior superior temporal sulcus (STS). Responses to increased temporal variation were lateralized to the left hemisphere; this left lateralization was greater in posteromedial HG, which is presumed to correspond to the primary auditory cortex. Responses to increased spectral variation were lateralized to the right hemisphere specifically in the anterior STG and posterior STS. These findings are consistent with the notion that the hemispheres are differentially specialized for processing auditory stimuli even in the absence of linguistic information.  相似文献   

2.
Anatomical physiology of spatial extinction   总被引:1,自引:0,他引:1  
Neurologically intact volunteers participated in a functional magnetic resonance imaging experiment that simulated the unilateral (focal) and bilateral (global) stimulations used to elicit extinction in patients with hemispatial neglect. In peristriate areas, attentional modulations were selectively sensitive to contralaterally directed attention. A higher level of mapping was observed in the intraparietal sulcus (IPS), inferior parietal lobule (IPL), and inferior frontal gyrus (IFG). In these areas, there was no distinction between contralateral and ipsilateral focal attention, and the need to distribute attention globally led to greater activity than either focal condition. These physiological characteristics were symmetrically distributed in the IPS and IFG, suggesting that the effects of unilateral lesions in these 2 areas can be compensated by the contralateral hemisphere. In the IPL, the greater activation by the bilateral attentional mode was seen only in the right hemisphere. Its contralateral counterpart displayed equivalent activations when attention was distributed to the right, to the left, or bilaterally. Within the context of this experiment, the IPL of the right hemisphere emerged as the one area where unilateral lesions can cause the most uncompensated and selective impairment of global attention (without interfering with unilateral attention to either side), giving rise to the phenomenon of extinction.  相似文献   

3.
Seeking and selectively attending to significant extrapersonal stimuli in a dynamic environment requires the updating of an attentional priority map. Using functional magnetic resonance imaging, we investigated the role of posterior parietal cortex in such remappings of attentional priorities where the configuration, location, and significance of stimuli were systematically varied. Our data revealed a functional dissociation between 2 juxtaposed posterior parietal regions: one in the superior parietal lobule (SPL) and another in the intraparietal sulcus (IPS). SPL was preferentially activated in all conditions where a spatial displacement occurred in the location of the target, the location of the distracter, or the focus of attention (exogenous and endogenous shifts of spatial attention). Shifts of the attentional focus also activated the IPS but principally if they were guided endogenously by internal rules of relevance rather than stimulus displacement per se (endogenous attention shifts). Only the IPS region was activated by transient resetting of target significance when the stimulus configuration changed but the attentional focus remained spatially fixed (feature attention shifts). These 2 components of the large-scale frontoparietal spatial attention network therefore have common and distinctive functions. In specific, the IPS component is more closely related to the compilation of an attentional priority map, including the endogenous recalibration of attentional weights. The SPL component, on the other hand, is more closely related to the modification of spatial coordinates linked to attentional priorities (spatial shifting). Collectively, these 2 areas allow posterior parietal cortex to dynamically encode extrapersonal events according to their spatial coordinates and valence.  相似文献   

4.
Valid expectations are known to improve target detection, but the preparatory attentional mechanisms underlying this perceptual facilitation remain an open issue. Using functional magnetic resonance imaging, we show here that expecting auditory, tactile, or visual targets, in the absence of stimulation, selectively increased baseline activity in corresponding sensory cortices and decreased activity in irrelevant ones. Regardless of sensory modality, expectancy activated bilateral premotor and posterior parietal areas, supplementary motor area as well as right anterior insula and right middle frontal gyrus. The bilateral putamen was sensitive to the modality specificity of expectations during the unexpected omission of targets. Thus, across modalities, detection improvement arising from selectively directing attention to a sensory modality appears mediated through transient changes in pretarget activity. This flexible advance modulation of baseline activity in sensory cortices resolves ambiguities among previous studies unable to discriminate modality-specific preparatory activity from attentional modulation of stimulus processing. Our results agree with predictive-coding models, which suggest that these expectancy-related changes reflect top-down biases--presumably originating from the observed supramodal frontoparietal network--that modulate signal-detection sensitivity by differentially modifying background activity (i.e., noise level) in different input channels. The putamen appears to code omission-related Bayesian "surprise" that depends on the specificity of predictions.  相似文献   

5.
We have recently shown that interference with repetitive transcranial magnetic stimulation (rTMS) of right posterior intraparietal sulcus (IPS) cortex during the allocation of spatial attention leads to abnormal desynchronization of anticipatory (pretarget) electroencephalographic alpha rhythms (8-12 Hz) in occipital-parietal cortex and the detection of subsequently presented visual targets (Capotosto et al. 2009). Since lesion data suggest that lesions of the right frontoparietal cortices produce more severe and long-lasting deficits of visual spatial attention than lesions of the left hemisphere, here, we used the mentioned rTMS-electroencephalographic procedure to test if the control of anticipatory alpha rhythms by IPS is asymmetrically organized in the 2 hemispheres. Results showed that interference with either left or right IPS during covert spatial attention equally disrupted the normally lateralized anticipatory modulation of occipital visual cortex, with stronger alpha desynchronization contralaterally to the attended visual field. In contrast, only interference with right IPS induced a paradoxical pretarget synchronization of alpha rhythms and bilateral deficits of target identification. These results suggest that the control of spatial topography of anticipatory alpha rhythms in occipital-parietal cortex is shared between left and right IPS cortex, but that right IPS uniquely contributes to a bilateral prestimulus activation of occipital visual cortex.  相似文献   

6.
We evaluated the neural substrates of cross-modal binding and divided attention during audio-visual speech integration using functional magnetic resonance imaging. The subjects (n = 17) were exposed to phonemically concordant or discordant auditory and visual speech stimuli. Three different matching tasks were performed: auditory-auditory (AA), visual-visual (VV) and auditory-visual (AV). Subjects were asked whether the prompted pair were congruent or not. We defined the neural substrates for the within-modal matching tasks by VV-AA and AA-VV. We defined the cross-modal area as the intersection of the loci defined by AV-AA and AV-VV. The auditory task activated the bilateral anterior superior temporal gyrus and superior temporal sulcus, the left planum temporale and left lingual gyrus. The visual task activated the bilateral middle and inferior frontal gyrus, right occipito-temporal junction, intraparietal sulcus and left cerebellum. The bilateral dorsal premotor cortex, posterior parietal cortex (including the bilateral superior parietal lobule and the left intraparietal sulcus) and right cerebellum showed more prominent activation during AV compared with AA and VV. Within these areas, the posterior parietal cortex showed more activation during concordant than discordant stimuli, and hence was related to cross-modal binding. Our results indicate a close relationship between cross-modal attentional control and cross-modal binding during speech reading.  相似文献   

7.
We investigated the neural correlates of idiomatic sentence processing using event-related functional magnetic resonance imaging. Twenty-two healthy subjects were presented with 62 literal sentences and 62 idiomatic sentences, each followed by a picture and were required to judge whether the sentence matched the picture or not. A common network of cortical activity was engaged by both conditions, with the nonliteral task eliciting overall greater activation, both in terms of magnitude and spatial extent. The network that was specifically activated by the nonliteral condition involved the left temporal cortex, the left superior medial frontal gyrus (Brodmann area 9), and the left inferior frontal gyrus (IFG). Activations were also present in the right superior and middle temporal gyri and temporal pole and in the right IFG. In contrast, literal sentences selectively activated the left inferior parietal lobule and the right supramarginal gyrus. An analysis of effective connectivity indicated that the medial prefrontal area significantly increased the connection between frontotemporal areas bilaterally during idiomatic processing. Overall, the present findings indicate a crucial role of the prefrontal cortex in idiom comprehension, which could reflect the selection between alternative sentence meanings.  相似文献   

8.
Neural substrates of phonemic perception   总被引:5,自引:2,他引:3  
The temporal lobe in the left hemisphere has long been implicated in the perception of speech sounds. Little is known, however, regarding the specific function of different temporal regions in the analysis of the speech signal. Here we show that an area extending along the left middle and anterior superior temporal sulcus (STS) is more responsive to familiar consonant-vowel syllables during an auditory discrimination task than to comparably complex auditory patterns that cannot be associated with learned phonemic categories. In contrast, areas in the dorsal superior temporal gyrus bilaterally, closer to primary auditory cortex, are activated to the same extent by the phonemic and nonphonemic sounds. Thus, the left middle/anterior STS appears to play a role in phonemic perception. It may represent an intermediate stage of processing in a functional pathway linking areas in the bilateral dorsal superior temporal gyrus, presumably involved in the analysis of physical features of speech and other complex non-speech sounds, to areas in the left anterior STS and middle temporal gyrus that are engaged in higher-level linguistic processes.  相似文献   

9.
Sentence comprehension (SC) studies in typical and impaired readers suggest that reading for meaning involves more extensive brain activation than reading isolated words. Thus far, no reading disability/dyslexia (RD) studies have directly controlled for the word recognition (WR) components of SC tasks, which is central for understanding comprehension processes beyond WR. This experiment compared SC to WR in 29, 9-14 year olds (15 typical and 14 impaired readers). The SC-WR contrast for each group showed activation in left inferior frontal and extrastriate regions, but the RD group showed significantly more activation than Controls in areas associated with linguistic processing (left middle/superior temporal gyri), and attention and response selection (bilateral insula, right cingulate gyrus, right superior frontal gyrus, and right parietal lobe). Further analyses revealed this overactivation was driven by the RD group's response to incongruous sentences. Correlations with out-of-scanner measures showed that better word- and text-level reading fluency was associated with greater left occipitotemporal activation, whereas worse performance on WR, fluency, and comprehension (reading and oral) were associated with greater right hemisphere activation in a variety of areas, including supramarginal and superior temporal gyri. Results provide initial foundations for understanding the neurobiological correlates of higher-level processes associated with reading comprehension.  相似文献   

10.
Maintaining and shifting attention within left or right hemifield   总被引:3,自引:2,他引:1  
Positron emission tomography (PET) was used to examine two questions: (i) which structures of the intact human brain change their activity with the direction of attention to left or right visual field; and (ii) how does activity in these structures, and in parietal cortex in particular, depend on the frequency of attentional shifts? Subjects were required to discriminate the orientation of peripheral gratings. The two main experimental variables were the attended hemifield (left or right) and the proportion of trials requiring a shift within that hemifield (20% or 80%). A detection control condition was also included. Behaviourally, subjects were less accurate and significantly slower when a trial required a shift than when it did not. Ventral and lateral occipital areas showed significantly higher blood flow levels contralateral to the direction of attention. Replicating previous work, there was also a significant main effect of the direction of attention in left lateral prefrontal cortex: blood flow levels were higher during leftward attention in comparison both to baseline and to rightward attention. This left frontal effect reached significance in single subjects in whom several activation sites could be distinguished within left middle and inferior frontal gyrus. Right and left parietal cortex were activated during both left- and right-field attention conditions, with a tendency for higher activity levels when attention was directed contralaterally. Contrary to the experimental hypothesis, however, parietal regions were not activated differentially by high versus low numbers of attentional shifts. The current experiment confirms that left frontal convexity is sensitive to manipulations of the direction of visuospatial attention. The results do not indicate a specific role of parietal cortex in attentional shifting.  相似文献   

11.
Human neuroimaging studies conducted during visuospatial working memory tasks have inconsistently detected activation in the prefrontal cortical areas depending presumably on the type of memory and control tasks employed. We used functional magnetic resonance imaging to study brain activation related to the performance of a visuospatial n-back task with different memory loads (0-back, 1-back and 2-back tasks). Comparison of the 2-back versus 0-back tasks revealed consistent, bilateral activation in the medial frontal gyrus (MFG), superior frontal sulcus and adjacent cortical tissue (SFS/SFG) in all subjects and in six out of seven subjects in the intraparietal sulcus (IPS). Activation was also detected in the inferior frontal gyrus, medially in the superior frontal gyrus, precentral gyrus, superior and inferior parietal lobuli, occipital visual association areas, anterior and posterior cingulate areas and in the insula. Comparison between the 1- back versus 0-back tasks revealed activation only in a few brain areas. Activation in the MFG, SFS/SFG and IPS appeared dependent on memory load. The results suggest that the performance of a visuospatial working memory task engages a network of distributed brain areas and that areas in the dorsal visual pathway are engaged in mnemonic processing of visuospatial information.   相似文献   

12.
We employed functional magnetic resonance imaging (fMRI) in 12 healthy subjects to measure cerebral activation related to a set of higher order manual sensorimotor tasks performed in the absence of visual guidance. Purposeless manipulation of meaningless plasticine lumps served as a reference against which we contrasted two tasks where manual manipulation served a meaningful purpose, either the perception and recognition of three-dimensional shapes or the construction of such shapes out of an amorphous plasticine lump. These tasks were compared with the corresponding mental imagery of the modelling process which evokes the constructive concept but lacks concomitant sensorimotor input and output. Neural overlap was found in a bilateral activity increase in the posterior and anterior intraparietal sulcus area (IPS and AIP). Differential activation was seen in the supplementary and cingulate motor areas, the left M1 and the superior parietal lobe for modelling and in the left angular and ventral premotor cortex for imagery. Our data thus point to a congruent neural substrate for both perceptive and constructive object-oriented sensorimotor cognition in the AIP and posterior IPS. The leftward asymmetry of the inferior parietal activations, including the angular gyrus, during imagery of modelling along with the ventral premotor activations emphasize the close vicinity of the circuitry for cognitive manipulative motor behaviour and language.  相似文献   

13.
Patients with lesions in posterior parietal cortex (PPC) are relatively unimpaired in voluntarily directing visual attention to different spatial locations, while many neuroimaging studies in healthy subjects suggest dorsal PPC involvement in this function. We used an offline repetitive transcranial magnetic stimulation (rTMS) protocol to study this issue further. Ten healthy participants performed a cue-target paradigm. Cues prompted covert orienting of spatial attention under voluntary control to either a left or right visual field position. Targets were flashed subsequently at the cued or uncued location, or bilaterally. Following rTMS over right dorsal PPC, (i) the benefit for target detection at cued versus uncued positions was preserved irrespective of cueing direction (left- or rightward), but (ii) leftward cueing was associated with a global impairment in target detection, at all target locations. This reveals that leftward orienting was still possible after right dorsal PPC stimulation, albeit at an increased overall cost for target detection. In addition, rTMS (iii) impaired left, but (iv) enhanced right target detection after rightward cueing. The finding of a global drop in target detection during leftward orienting with a spared, relative detection benefit at the cued (left) location (i-ii) suggests that right dorsal PPC plays a subsidiary rather than pivotal role in voluntary spatial orienting. This finding reconciles seemingly conflicting results from patients and neuroimaging studies. The finding of attentional inhibition and enhancement occurring contra- and ipsilaterally to the stimulation site (iii-iv) supports the view that spatial attention bias can be selectively modulated through rTMS, which has proven useful to transiently reduce visual hemispatial neglect.  相似文献   

14.
Three regions of the macaque inferior parietal lobule and adjacent lateral intraparietal sulcus (IPS) are distinguished by the relative strengths of their connections with the superior colliculus, parahippocampal gyrus, and ventral premotor cortex. It was hypothesized that connectivity information could therefore be used to identify similar areas in the human parietal cortex using diffusion-weighted imaging and probabilistic tractography. Unusually, the subcortical routes of the 3 projections have been reported in the macaque, so it was possible to compare not only the terminations of connections but also their course. The medial IPS had the highest probability of connection with the superior colliculus. The projection pathway resembled that connecting parietal cortex and superior colliculus in the macaque. The posterior angular gyrus and the adjacent superior occipital gyrus had a high probability of connection with the parahippocampal gyrus. The projection pathway resembled the macaque inferior longitudinal fascicle, which connects these areas. The ventral premotor cortex had a high probability of connection with the supramarginal gyrus and anterior IPS. The connection was mediated by the third branch of the superior longitudinal fascicle, which interconnects similar regions in the macaque. Human parietal areas have anatomical connections resembling those of functionally related macaque parietal areas.  相似文献   

15.
目的观察MR磁化传递对比(MTC)成像在轻度窒息新生儿中的应用价值。方法对15例轻度窒息新生儿(Apgar评分10分,病例组)及25名正常新生儿(对照组)采集脑常规T1WI、3D-T1WI和T1WI-MTC,计算脑磁化率(MTR),配准于标准新生儿脑模板后行统计分析。采用3dRegAna对病例组MTR与Apgar评分进行回归分析。结果相比对照组,病例组右颞极、左颞下回、左额上回、右缘上回、右眶额皮质、左额中叶、右额中回及左上额叶MTR显著降低;右梭状回、右顶叶下回、右枕中回、右颞中回、右颞下回、右颞上极、右楔叶、右角回、右舌回及右颞上回MTR显著增加。回归分析显示,病例组左中央后回、右颞下叶(前)、右额中回、右颞上极、左眶额皮质及右颞下叶(后)MTR与Apgar评分呈正相关,右壳核、右眶额皮质、左杏仁核、右颞下回、左舌回、右舌回、左颞中回、左枕中回、延髓及右梭状回呈负相关。组间MTR差异有统计学意义、且病例组MTR与Apgar评分呈正相关脑区为右额中叶、右颞极,呈负相关脑区则为右舌叶及右梭状回。结论 MR MTC成像能检出轻度窒息新生儿缺血缺氧脑区;缺血缺氧主要导致新生儿右侧脑损害。  相似文献   

16.
A model of normal attentional function, based on the concept of competitive parallel processing, is used to compare attentional deficits following parietal and frontal lobe lesions. Measurements are obtained for visual processing speed, capacity of visual short-term memory (VSTM), spatial bias (bias to left or right hemifield) and top-down control (selective attention based on task relevance). The results show important differences, but also surprising similarities, in parietal and frontal lobe patients. For processing speed and VSTM, deficits are selectively associated with parietal lesions, in particular lesions of the temporoparietal junction. We discuss explanations based on either grey matter or white matter lesions. In striking contrast, measures of attentional weighting (spatial bias and top-down control) are predicted by simple lesion volume. We suggest that attentional weights reflect competition between broadly distributed object representations. Parietal and frontal mechanisms work together, both in weighting by location and weighting by task context.  相似文献   

17.
The mechanisms underlying poststroke pain have not been clearly identified. Although motor cortex stimulation (MCS) sometimes reduces poststroke pain successfully, the exact mechanism is not yet known. For further investigation of the neural pathways involved in the processing of poststroke pain and in pain reduction by MCS, the authors used positron emission tomography (PET) scanning to determine significant changes in regional cerebral blood flow (rCBF). This 58-year-old right-handed man suffered from right-sided poststroke pain for which he underwent implantation of a stimulation electrode in the right motor cortex. After 30 minutes of stimulation, his pain was remarkably reduced (Visual Analog Scale scores decreased 8 to 1) and he felt warmth in his left arm. The rCBF was studied using PET scanning with 15O-labeled water when the patient was in the following states: before MCS (painful condition, no stimulation) and after successful MCS (painless condition, no stimulation). The images were analyzed using statistical parametric mapping software. State-dependent differences in global blood flow were covaried using analysis of covariance. Comparisons of the patient's rCBF in the painful condition with that in the painless condition revealed significant rCBF increases in the left rectus gyrus (BA11), left superior frontal lobe (BA9), left anterior cingulate gyms (BA32), and the left thalamus (p < 0.05, corrected). On the other hand, there were significant decreases in rCBF in the right superior temporal gyrus (BA22, p < 0.01, corrected) and the left middle occipital gyrus (BA19, p < 0.05, corrected). The efficacy of MCS was mainly related to increased synaptic activity in the thalamus, whereas the activations in the rectus gyrus, anterior cingulate gyrus, and superior frontal cortex as well as the inactivation of the superior temporal lobe may be related to emotional processes. This is the first report in which the contralateral thalamus was significantly activated and pain relief was achieved using MCS.  相似文献   

18.
An event-related functional magnetic resonance imaging (fMRI) paradigm was used to specify those brain areas supporting the processing of sentence-level semantic and syntactic information. Hemodynamic responses were recorded while participants listened to correct, semantically incorrect and syntactically incorrect sentences. Both anomalous conditions recruited larger portions of the superior temporal region than correct sentences. Processing of semantic violations relied primarily on the mid-portion of the superior temporal region bilaterally and the insular cortex bilaterally, whereas processing of syntactic violations specifically involved the anterior portion of the left superior temporal gyrus, the left posterior frontal operculum adjacent to Broca's area and the putamen in the left basal ganglia. A comparison of the two anomalous conditions revealed higher levels of activation for the syntactic over the semantic condition in the left basal ganglia and for the semantic over the syntactic condition in the mid-portion of the superior temporal gyrus, bilaterally. These data indicate that both semantic and syntactic processes are supported by a temporo-frontal network with distinct areas specialized for semantic and syntactic processes.  相似文献   

19.
Humans and other primates are adept at using the direction of another's gaze or head turn to infer where that individual is attending. Research in macaque neurophysiology suggests that anterior superior temporal sulcus (STS) contains a direction-sensitive code for such social attention cues. By contrast, most human functional Magnetic resonance imaging (fMRI) studies report that posterior STS is responsive to social attention cues. It is unclear whether this functional discrepancy is caused by a species difference or by experimental design differences. Furthermore, social attention cues are dynamic in naturalistic social interaction, but most studies to date have been restricted to static displays. In order to address these issues, we used multivariate pattern analysis of fMRI data to test whether response patterns in human right STS distinguish between leftward and rightward dynamic head turns. Such head turn discrimination was observed in right anterior STS/superior temporal gyrus (STG). Response patterns in this region were also significantly more discriminable for head turn direction than for rotation direction in physically matched ellipsoid control stimuli. Our findings suggest a role for right anterior STS/STG in coding the direction of motion in dynamic social attention cues.  相似文献   

20.
Objectives:   First desire to void (FDV) is defined as the first feeling that would lead the patient to pass urine. The aim of the present study is to identify the brain regions activated during FDV.
Methods:   Six healthy right-handed male volunteers, aged 31–40 years, agreed to participate in this study. Rather than inserting a urethral catheter, we used a urinary volume monitoring unit and a self-adhesive external condom catheter for this study. Positron emission tomography (PET) scans obtained in the FDV and post-voiding (absence of urge to void) (REST) states were analyzed and compared.
Results:   First desire to void state was associated with increased blood flow in the right and left cerebellum, right parahippocampal gyrus (Brodmann area [BA] 30), left superior frontal gyrus (BA9), and left cingulate gyrus (BA32). Rest state was associated with decreased blood flow in the right superior temporal gyrus (BA22), right uncus (BA28), right cingulate gyrus (BA32), left middle temporal gyrus (BA21), and left medial frontal gyrus (BA25). According to region of interest analysis, regional cerebral blood flow of the periaqueductal grey and pons was significantly increased at FDV as opposed to REST.
Conclusions:   We located possible brain activity associated with the FDV sensation. Combined activation of the right and left cerebellum, parahippocampal gyrus, superior frontal gyrus, and left cingulate gyrus could be associated with FDV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号