首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hologic和Norland骨密度仪的精确度比较和数据换算   总被引:2,自引:0,他引:2       下载免费PDF全文
目的应用Hologic椎体体模和欧洲体模对不同骨密度仪进行横向及纵向评估,并应用 Shewhart规则进行仪器质量控制,同时比较Hologic及Norland骨密度仪活体精确度差异,探讨两者的数据换算关系。方法 Norland XR-36和Hologic Delphi A骨密度仪分别用欧洲体模连续扫描10次,每次扫描均应重新放置体模,用Shewhart规则对两台机器每日校准值进行质控。另外分别采用两套系统对30名志愿者的脊椎骨和左股骨的骨密度进行了两次重定位测量,计算精确度误差,通过F-检验比较差异。两台骨密度仪分别用Hologic腰椎体模每天测5 次,连续8 d,建立两仪器之间的数据换算关系。结果①Norland XR-36和Hologic Delphi A 骨密度仪用Shewhart规则监控均符合,Norhand XR-36连续3 m变异系数百分比为0.38%~ 0.53%,Hologic Delphi A连续3 m变异系数百分比为0.37%~0.41%,Norland-XR-36所测欧洲体模高、中、低为1.355,0.944,0.582,与真值相差9.6%,5.6%,16.4%;Hologic Delphi A高、中、低均值为1.423,0.940,0.534,与真值相差5.1%,6%,6.8%。②Hologic Delphi A的活体精密度高于Norland XR-36骨密度仪。③两仪器间BMD,BMC,Brea绝对值差异明显,但可用线性回归方程进行数据换算:BMD Hologic=0.970 Norland 0.026(r= 0.980;P<0.01);BMC Hologic=1.005 Norland 0.128(r=0.989;P<0.01);Brea Hologic=1.056 Norland-0.592(r=0.978;P<0.01)。结论以欧洲体模评估Norland XR-36和 Hologic Delphi A骨密度仪均有良好的精确度,但两仪器之间的数据不能直接互用,可用回归方程进行数据校正。质量控制是确保骨密度仪理想的精确度的必要措施。  相似文献   

2.
Dual photon absorptiometry of the proximal tibia   总被引:2,自引:0,他引:2  
Summary Bone mineral content (BMC) and bone mineral density (BMD) of the proximal tibia were determined by dual photon absorptiometry on 44 women, aged 23–87 years. The area of the tibia measured was a 2.01 cm region immediately distal to the medial and lateral tuberosities. Values of BMC ranged between 5.09 and 14.57 g and BMD between 0.380 and 1.180 g/cm2. Both tibial BMC and BMD declined with age and tibial BMD was significantly correlated with lumbar spine (r=0.70), femoral neck (r=0.73), and femoral trochanter (r=0.74). However, the large standard errors of estimate (SEE) (0.08–0.14 g/cm2) do not allow for reliable prediction in an individual of other skeletal sites by the tibia. Repeated measurements demonstrated that dual photon absorptiometry of the proximal tibia is a reliable measurement and may be a useful tool in the monitoring of therapeutic or intervention modalities in those individuals with skeletal diseases in whom measurement of the lumbar spine or proximal femur may not be possible.  相似文献   

3.
Summary Precision of dual-photon absorptiometry (DPA) measurements was determined in a lumbar spine phantom and in humans. Approximately half of the measurements were made before and half after a153gadolinium source change. The phantom was measured with different amounts of acrylic, which simulates human soft tissue, in order to evaluate the influence of body thickness on bone mineral density (BMD). Results of scans analyzed with two software versions from Lunar Radiation Corp., the widely used 08B and a prototype 08C, are compared. DPA with a cold source significantly overestimated BMD in the phantom in the presence of large amounts (more than 25 cm) of soft tissue equivalent with version 08B but not with the newer version 08C. Similiarly, in nine subjects, there was a significant decrease in spine BMD after a source change when scans were analyzed with version 08B (mean difference 0.026 g/cm2,P=0.002) but not with 08C (0.01 g/cm2,P=0.234). No systematic effect of source change on femoral BMD measurements was observed. The SD of the mean difference of two measurements of the nine subjects was 0.019 g/cm2 (1.6% of the mean value) for the spine with software version 08B and 0.024 g/cm2 (2.0%) with version 08C, 0.03 g/cm2 (3.3%) for the femur neck, 0.03 g/cm2 (4.0%) for the greater trochanter, and 0.04 g/cm2 (4.9%) for Ward's triangle region of the proximal femur. The spine phanton was scanned on two other commercial bone densitometers in order to assess inter-instrument variation. Phantom measurements of L2-4 BMD made on two Lunar Radiation Corp model DP3 scanners which differed by 2% were 10 and 12% higher than those with a Norland Corp. model 2600 scanner.  相似文献   

4.
The performance of a single X-ray absorptiometry (SXA) device incorporating an X-ray tube as a photon source was evaluated with respect to precision in vivo and in vitro, scan time, image quality, and correlation with an existing dual energy X-ray absorptiometry (DXA) device. SXA precision in vivo, expressed as a coefficient of variation (CV), was 0.66% for bone mineral content (BMC) and 1.05% for bone mineral density (BMD). Precision in vitro, based on 78 BMC measurements of a forearm phantom over 195 days, was 0.53%. Correlation with DXA at the 8 mm distal forearm site was high (r=0.97 for BMC and r=0.96 for BMD). A preliminary SXA reference database composed of 151 healthy Caucasian American women was developed to facilitate the interpretation of patient measurements. SXA scan time was 4 minutes and delivered a radiation exposure of 1.68 mrem. SXA image quality and spatial resolution were superior to SPA and comparable to DXA.  相似文献   

5.
A system in vitro consisting of a femur from a cadaver and soft-tissue equivalent material was used to test the agreement between several techniques for measuring bone mineral. Calcium values measured by delayed gamma neutron activation (DGNA) and bone mineral content (BMC) by Lunar, Hologic and Norland dual-energy X-ray absorptiometers (DXA) were compared with calcium and ash content determined by direct chemical analysis. To assess the effect of soft-tissue thickness on measurements of bone mineral, we had three phantom configurations ranging from 15.0 to 26.0 cm in thickness, achieved by using soft-tissue equivalent overlays. Chemical analysis of the femur gave calcium and ash content values of 61.83 g ± 0.51g and 154.120 ± 0.004 g, respectively. Calcium measured by DGNA did not differ from the ashed amount of calcium at any of the phantom configurations. The BMC measured by DXA was significantly higher, by 3–5%, than the amount determined by chemical analysis for the Lunar densitometer and significantly lower, by 3–6%, for the Norland densitometer (p<0.001–0.024), but only 1% lower (not significant) for the Hologic densitometer. DXA instruments showed a decreasing trend in BMC as the thickness increased from 20.5 to 26.0 cm (p<0.05). However, within the entire thickness range (15.0–26.0 cm), the overall influence of thickness on BMC by DXA was very small. These findings offer insight into the differences in these currently available methods for bone mineral measurement and challenge the comparability of different methods. Received: 27 July 1998 / Accepted: 9 January 1999  相似文献   

6.
Dual-energy X-ray absorptiometry (DXA) of the lumbar spine provides an estimation of the bone mineral content (BMC) corrected by the projected area of the spine and expressed in g/cm2. This two-dimensional estimate of the bone mineral density (BMD) is influenced by the skeletal size, assessed by the subject's height. In order to obtain an estimate of the volumetric BMD, we measured BMC with a new DXA device (Sophos L-XRA) equipped with 24 detectors and a rotating arm, thus allowing scanning of the lumbar spine in both an anteroposterior (AP) projection and a lateral (LAT) projection with the patient in a supine position. Comparison between the results obtained on the third (L3) and fourth (L4) lumbar vertebrae with automatic or manual analysis showed that the best precision was obtained with the lateral measurement of L3 alone with an automatic soft tissue baseline determination. Results were expressed in g/cm2 and in g/cm3 (by dividing the g/cm2 value by the width (AP area divided by the height of the vertebra) of L3), and were compared with those obtained by conventional AP scanning of L2–4 (g/cm2). The in vivo precision error evaluated by triplicate measurements on 10 controls was 17 mg/cm2 (1.96%) and 5.2 mg/cm3 (2.31%) for LAT L3 as compared with 13 mg/cm2 (1.15%) for AP L2–4. Volumetric BMD (g/cm3) measurement, assessed in vitro on a calibrated hydroxyapatite phantom, and the absolute values obtained in normal women were similar to those obtained by quantitative computed tomography (QCT). In 39 healthy adults (27±4 years) BMD expressed in g/cm2 was correlated with height (r=0.36 for AP L2–4 andr=0.39 for LAT L3;p<0.05 for both) but not with LAT L3 BMD expressed in g/cm3 (r=0.02; NS). The age-related bone loss between 30 and 80 years of age, derived from the normal values for 101 healthy women (age range 19–73 years) was 36% for AP L2–4, 52% for LAT L3 (g/cm2) and 60% for LAT L3 (g/cm3). In a group of 22 women with untreated postmenopausal vertebral osteoporosis (one or more non-traumatic vertebral crush fractures) the mean decrease in BMD, expressed as a percentage of the age-adjusted normal value, was more pronounced (p<0.001) for LAT L3 BMD (–21% in g/cm2,Z-score –1.08; –22% in g/cm3,Z-score –0.94) than for AP L2–4 BMD (–9%,Z-score –0.66). We conclude that: 1) BMD measurement restricted to the vertebral body of L3 can be achieved with a low precision error with this new DXA device; 2) it allows an estimate of the volumetric density (g/cm3) which does not seem to be influenced by skeletal size; 3) lateral BMD appears to be more sensitive than conventional AP scanning for assessing age-related bone loss and should be useful in the investigation of trabecular osteoporosis.  相似文献   

7.
The effects of nandrolone decanoate (ND) treatment on bone mass and metabolism were studied in ovariectomized (OVX) rats with osteopenia. The 6-month-old rats were divided into Sham (n = 12) and OVX (n = 24). The OVX rats were allowed to lose bone for 6 weeks. At 6 weeks post ovariectomy, the OVX rats were divided into two groups: (1) OVX + Vehicle and (2) OVX + ND. The effects of ND on bone mineral density (BMD), bone mineral content (BMC), and bone metabolism were studied by dual-energy X-ray absorptiometry (DXA) and biochemical markers including urinary pyridinoline (Pyr), deoxypyridinoline (Dpyr), and serum osteocalcin. After 24 weeks of treatment, histomorphometry of the right tibiae and the wet weight of the gastrocnemius and soleus skeletal muscles were also examined. Ovariectomy resulted in a significant increase in biochemical markers and a significant decrease in spine BMD (0.221 ± 0.016 g/cm2 in OVX group vs 0.239 ± 0.008 g/cm2 in Sham group) and BMC (0.550 ± 0.055 g in OVX group vs 0.605 ± 0.042 g in Sham group) at 6 weeks post ovariectomy. Spine BMD (0.227 ± 0.017 g/cm2), femoral BMD (0.263 ± 0.012 g/cm2), and bone density of femur (1.035 ± 0.036 g/cm3) in the OVX + ND group were significantly greater than those in the OVX + Vehicle group (0.204 ± 0.013 g/cm2 for spine BMD, 0.243 ± 0.009 g/cm2 for femoral BMD, 0.938 ± 0.06 g/cm3 for bone density of femur) after 24 weeks of treatment. ND treatment decreased urinary Pyr and Dpyr significantly in OVX rats. Histomorphometric findings indicated that ND-treated rats had greater cancellous bone volume, greater trabecular number, greater trabecular thickness, and less trabecular separation than vehicle-treated OVX rats. OVX rats had greater wet weight of the gastrocnemius and soleus muscles than rats treated with ND. The data suggest that the effect of ND on bone mass is not influenced by the condition of the muscles in OVX rats. Our findings indicate that ND blocks further bone loss by inhibition of bone resorption in OVX rats with osteopenia. Received: August 25, 1999 / Accepted: January 28, 2000  相似文献   

8.
The feasibility of dual energy X-ray absorptiometry (DXA) using the Norland XR-26 Mark II bone densitometer for measurements of bone mineral content (BMC) and bone mineral density (BMD) in small rats was evaluated. Thirty-two young, isogenic, Lewis rats (weights from 119 g to 227 g) were used; normal rats (n = 7) and rats with low BMD obtained from three different vitamin D-depleted models (n = 25). DXA measurements were performed using the special software for small animals. Duplicate scans of excised femurs performed at 2 mm/second (pixel size of 0.5 mm × 0.5 mm) were very precise measurements with a coefficient of variation (CV) below 1.6% in animals with normal BMD; in rats with low BMD, the CV was significantly higher (P= 0.02–0.04), 7.8% and 4.4% for BMC and BMD, respectively. Regression analysis demonstrated that these measurements were related to the ash weight (R2 > 98.6%). The CV for measurements of the lumbar spine at 10 mm/second (pixel size 0.5 mm × 0.5 mm) was 2.6% and 2.2% for BMC and BMD, respectively in rats with normal BMD, and again higher (P= 0.03–0.14) in rats with low BMD, 7.3% and 4.7%, respectively, for BMC and BMD. Even though low CVs were obtained for total body duplicate scans (scan speed of 20 mm/second and a pixel size of 1.5 mm × 1.5 mm), the measurements were problematic for accuracy because of an overestimation of both BMC and the area of bone. Using these scan parameters the measurements of total body bone mineral could not be recommended in small rats with low BMD. Received: 21 May 1999 / Accepted: 3 August 2000 / Online publication: 22 December 2000  相似文献   

9.
The performance of the Hologic QDR-2000 DXA osteodensitometer was critically evaluated at four centers, using at all four centers one bone equivalent humanoid spine phantom supplied by the manufacturer. Results were compared with results from Hologic QDR-1000/W using that phantom tested at the same centers.

It appears that the concept of fan-beam scanning—as used in the QDR-2000: a fan-beam, a linear array detector above the phantom, and an x-ray tube located rather close to the spine below the phantom—creates problems due to the magnification effect of the fan beam. The effect of decreasing the distance between the “vertebrae” of the phantom and the couch are: bone mineral content (BMC) increases by 2.8% per cm, projected area (Area) by 2.8% per cm, and bone mineral density (BMD) is unchanged.

When QDR-1000/W is upgraded to QDR-2000, BMD is relatively constant, but there are shifts of BMC and Area which are partly due to the magnification effect of the fanbeam. Replacement of a QDR-1000/W with a QDR-2000 can invalidate longitudinal measurements, even for BMD, unless the proportionality factors of the QDR-2000 are checked and, if necessary, changed. This is true for switching from QDR-1000/W to pencil-beam mode of QDR-2000 or to fanbeam mode of QDR-2000.

Even with pencil-beam mode, the long-term precision error with phantoms is higher for QDR-2000 than for QDR-1000/W (for BMD, 0.47% versus 0.35%).  相似文献   


10.
Summary Six Hologic QDR-1000 DEXA bone densitometers at different centers across the USA were compared to determine the intermachine variability. Nine scans in succession were acquired on each machine using a single anthropomorphic lumbar spine phantom (manufactured by Hologic). Values for BMC, area, and BMD were recorded for each measurement. Means, standard deviations (SD), and coefficients of variation (CV) were calculated for each machine. All the CVs (BMC, area, BMD) were less than 1% (range 0.3%–0.6%). The CV of the means at the six sites were 0.4%, 0.6%, and 0.5% for BMC, area, and BMD, respectively. Although several significant differences for BMC, area, and BMD were noted by ANOVA between machines at different sites, the difference between the highest and lowest means of the individual machines was only 1.1%, 1.31%, and 1.07% for BMC, area, and BMD. The small variations between the DEXA systems are encouraging for researchers involved in multicenter trials in which data are pooled.  相似文献   

11.
Summary Population-based reference values for peak bone mass density in Danish men. BMD of total hip (1.078 ± 0,14 g/cm2) differed significantly from values from National Health and Nutrition Examination Survey III and of total lumbar spine ((1.073 ± 0.125 g/cm2) differed significantly from Hologic values. Introduction Geographic, ethnic, and socio-economic factors are known to affect bone mineral density (BMD) and peak bone mass significantly. Reference values for male peak bone mass are scarce, and the diagnosis of male osteoporosis often relies on values provided by producers of dual-energy X-ray absorptiometry (DXA) equipment. Methods The aim of the present study was 1) to establish population-based reference values for BMD in young men and 2) to study subgroups based on variables with suspected impact on bone metabolism. We included 783 young Caucasian men aged 20 to 30 years in the Odense Androgen Study (OAS). Results Peak BMD was attained within the third decade. Obesity (BMI > 30 kg/m2) was associated with higher BMD. Abuse of anabolic steroids as well as chronic illness was associated with lower BMD. Our population-based reference values for BMD of the total hip (1.078 ± 0.14 g/cm2) differed significantly from published values from National Health and Nutrition Examination Survey III for non-Hispanic white men, while BMD of total lumbar spine (1.073 ± 0.125 g/cm2) differed significantly from Hologic reference values. Conclusions Locally derived reference values are important to avoid false positive or false negative findings during work-up in patients evaluated for osteoporosis.  相似文献   

12.
The aim of this study was to evaluate the precision and accuracy of dual-energy X-ray absorptiometry (DXA) for measuring bone mineral content at different sites of the skeleton in rats. In vitro the reproducibility error was very small (<1%), but in vivo the intra-observer variability ranged from 0.9% to 6.0%. Several factors have been shown to affect in vivo reproducibility: the reproducibility was better when the results were expressed as bone mineral density (BMD) rather than bone mineral content (BMC), intra-observer variability was better than the inter-observer variability, and a higher error was observed for the tibia compared with that for vertebrae and femur. The accuracy of measurement at the femur and tibia was assessed by comparing the values with ash weight and with biochemically determined calcium content. The correlation coefficients (R) between the in vitro BMC and the dry weight or the calcium content were higher than 0.99 for both the femur and the tibia. SEE ranged between 0.0 g (ash weight) and 2.0 mg (Ca content). Using in vitro BMC, ash weight could be estimated with an accuracy error close to 0 and calcium content with an error ranging between 0.82% and 6.80%. TheR values obtained between the in vivo and in vitro BMC were 0.98 and 0.97 respectively for femur and tibia, with SEE of 0.04 and 0.02 g respectively. In conclusion, the in vivo precision of the technique was found to be too low. To be of practical use it is important in the design of experimentation to try to reduce the measurement error. This can be achieved by performing measurements in the same position, by repeating measurements several times and by using the mean values of several BMD calculations performed by the same observer on each BMD measurement. Furthermore, better reproducibility can be obtained on the vertebra or the femur than on the tibia.  相似文献   

13.
Dual‐energy x‐ray absorptiometry (DXA) is used to assess bone mineral density (BMD) and body composition, but measurements vary among instruments from different manufacturers. We sought to develop cross‐calibration equations for whole‐body bone density and composition derived using GE Healthcare Lunar and Hologic DXA systems. This multinational study recruited 199 adult and pediatric participants from a site in the US (n = 40, ages 6 through 16 years) and one in China (n = 159, ages 5 through 81 years). The mean age of the participants was 44.2 years. Each participant was scanned on both GE Healthcare Lunar and Hologic Discovery or Delphi DXA systems on the same day (US) or within 1 week (China) and all scans were centrally analyzed by a single technologist using GE Healthcare Lunar Encore version 14.0 and Hologic Apex version 3.0. Paired t‐tests were used to test the results differences between the systems. Multiple regression and Deming regressions were used to derive the cross‐conversion equations between the GE Healthcare Lunar and Hologic whole‐body scans. Bone and soft tissue measures were highly correlated between the GE Healthcare Lunar and Hologic and systems, with r ranging from 0.96 percent fat [PFAT] to 0.98 (BMC). Significant differences were found between the two systems, with average absolute differences for PFAT, BMC, and BMD of 1.4%, 176.8 g and 0.013 g/cm2, respectively. After cross‐calibration, no significant differences remained between GE Healthcare Lunar measured results and the results converted from Hologic. The equations we derived reduce differences between BMD and body composition as determined by GE Healthcare Lunar and Hologic systems and will facilitate combining study results in clinical or epidemiological studies. © 2012 American Society for Bone and Mineral Research.  相似文献   

14.
This study aimed to evaluate the association between objectively measured habitual physical activity and calcaneal and forearm bone mineral density (BMD, g/cm2), one mechanically more loaded and one less loaded skeletal region, in children aged 6–8 years. BMD was measured in 297 boys and 265 girls by peripheral dual-energy X-ray absorptiometry in the forearm and calcaneus. An accelerometer registered the level of physical activity during 4 days (2 weekdays and the weekend). Weight, height, and skinfold thickness were measured. In order to establish thresholds (count · min−1) for bone-stimulating physical activity, we evaluated different definitions of vigorous physical activity. The boys had 3.2% higher distal forearm bone mineral content (BMC, P < 0.001) and 4.5% higher distal forearm BMD (P < 0.001) than the girls. They also carried out 9.7% more daily physical activity and spent 14.6–19.0% more time in vigorous physical activity (all P < 0.05) compared to the girls. In contrast, the girls had 3.8% higher calcaneal BMC (P < 0.01) and 2.5% higher calcaneal BMD (P < 0.05) than the boys. Both calcaneal and forearm BMD were significantly related to total time of daily physical activity as well as with intense physical activity above all the chosen cut-off points (all P < 0.05). The β value for mean count · min−1 physical activity was significantly lower than that for all the chosen cut-off points of vigorous activity both for calcaneal and distal forearm BMD. This study suggests that both habitual daily physical activity and amount of vigorous physical activity in children aged 6–8 years are associated with appendicular BMD.  相似文献   

15.
The vertebral bone mineral density (BMD), bone mineral content (BMC) and bone area of the lumbar spine were measured using a bone densitometer in 8789 women aged 33–73 years who had had no previous hormone replacement therapy (HRT). The overall relationship between BMD and age was analyzed on a year-by-year basis, and comprised three separate regions that could each be described by a straight line: 33–46 years (gradient = 0.00166 g cm−2/year), 47–63 years (gradient = 0.0121 g cm−2/year) and 64–73 years (gradient = 0.0045 g cm−2/year). Above the age of 50 years our results were higher than the BMD in most previous reports. In those 3198 women who knew the time of their last menstrual period (mean age 49.25 years, SD 4.83) bone loss was most rapid in the first 10 menopausal years. In the whole group, the relationship between BMC and age was found to be similar to that of BMD, with three distinct regions, including a rapid drop between the ages of 47 and 63 years (gradient 0.781 g/year). Bone area showed a much more gradual (though significant) decrease with age. Based on WHO definitions and using BMD as an indicator, the percentage of women with osteoporosis varied from zero in the younger age group to about 30% of women aged over 70 years; in contrast, where BMC was used, although the trend with age had a similar shape, the percentages at each year were about half those derived from the corresponding BMD values. Osteopenia derived in the same way occurred in about 50% of women over 70 years using either BMD or BMC. The results presented here provide a reliable local reference range for lumbar spine bone densitometry measurements. They also show that for this site BMD and BMC cannot be used interchangeably to define osteoporosis. Received: 13 March 1998 / Accepted: 23 September 1998  相似文献   

16.
The purpose of this study was to examine the difference in lifestyle and morphometric factors that affect bone mineral and the attainment of peak bone mass in 168 healthy Asian (n = 58) and Caucasian (n = 110) Canadian, prepubertal girls and boys (mean age 8.9 ± 0.7) living in close geographical proximity. DXA (Hologic 4500) scans of the proximal femur (with regions), lumbar spine, and total body (TB) were acquired. We report areal bone mineral densities (aBMD g/cm2) at all sites and estimated volumetric density (νBMD, g/cm3) at the femoral neck. Dietary calcium, physical activity, and maturity were estimated by questionnaire. Of these prepubertal children, all of the boys and 89% of the girls were Tanner stage 1. A 2 × 2 ANOVA demonstrated no difference between ethnicities for height, weight, body fat, or bone mineral free lean mass. Asian children consumed significantly less dietary calcium (35%) on average and were significantly less active (15%) than their Caucasian counterparts (P < 0.001). There were significant ethnicity main effects for femoral neck bone mineral content (BMC) and αBMD (both P < 0.001) and significant sex by ethnicity interactions (P < 0.01). The Asian boys had significantly lower femoral neck BMC (11%), aBMD (8%), and νBMD (4.4%). At the femoral neck, BMFL mass, sex, and physical activity explained 37% of the total variance in aBMD (P < 0.05). In summary, this study demonstrated differences in modifiable lifestyle factors and femoral neck bone mineral between Asian and Caucasian boys. Received: 21 July 1998 / Accepted: 30 September 1999  相似文献   

17.
The symmetry and effect of side dominance on the bone mineral density (BMD) of proximal femur was evaluated in 266 normal Chinese women with a dual photon absorptiometer (DPA, Norland 2600). The BMDs of the femoral neck, trochanter, and Ward's triangle at the proximal femur in the dominant leg (BMDd) were compared with those of the nondominant side (BMDn). The linear regression of BMDd and BMDn of the corresponding regions at the proximal femur showed a good correlation (r = 0.893–0.941, SEE = 0.052–0.062 g/cm2). The paired difference of proximal femoral BMD was −0.002 ± 0.062 g/cm2 for the femoral neck, 0.003 ± 0.054 g/cm2 for the trochanter, and 0.008 ± 0.062 g/cm2 for the Ward's triangle. The ratio of asymmetry for femoral neck BMD was mean ± SD =−0.4 ± 7.8%, for trochanter 0.6 ± 8.1%, and for the Ward's triangle 1.3 ± 9.7%. Both paired difference and ratio of asymmetry between BMDd and BMDn were approximately normally distributed, with a mean ± 2 SD ranging from −0.126 to 0.122 g/cm2 for paired difference and −16.0% to 15.2% for the ratio of asymmetry in the femoral neck. These data revealed that dominance had little effect on the proximal femur BMDs. However, the wide range of paired difference and ratio of asymmetry of the proximal femur BMD in the normal individuals should be considered in the interpretation of the proximal femoral BMD. Received: 26 July 1996 / Accepted: 23 April 1997  相似文献   

18.
A cross-sectional, population-based study of 238 randomly selected females and 224 males with German ethnic background (aged 20–80 years) was carried out to establish lumbar spine bone mineral density (BMD) values, using dual X-ray absorptiometry (DXA), for a German population. Comparison was made to the reference range provided by the manufacturer of the DXA equipment. No sex difference in peak spine BMD was found in our study (1.091±0.114 g/cm2 for males versus 1.070±0.113 g/cm2 for females, n.s.). Different patterns of bone loss could be detected in both sexes. In premenopausal women there was no significant correlation between age and BMD (y = 1.044 + 0.00047x, r=0.03, P=0.73) whereas reduction of female BMD at the spine was demonstrated in postmenopausal women (y = 1.189–0.0041x, r=-0.28, P=0.01), underscoring the important role of the menopause for later manifestation of spinal osteoporosis in women. In contrast, in males we found no significant change of BMD with aging (y = 1.071–0.0007x, r=-0.08, P=0.25). Employing commonly used exclusion criteria, BMD values of the study subjects were found mostly within the normal range of BMD. The major finding of our study was good concordance between female data of our study population and the reference data provided by the manufacturer. Clinically significant discrepancies between our data and the Hologic reference range for males could be detected. Our data on males (30–39 years of age) were up to 7% lower than those provided by the manufacturer, probably due to differences in sampling procedures.  相似文献   

19.
Dual-energy X-ray absorptiometry (DXA) is frequently used for longitudinal studies of bone mineral status because of the high precision obtained, but evidence is emerging that the accuracy of measurements of changes may be a limitation because of artefacts of the analysis procedure, in particular, a dependence of the measured bone area (BA) on the bone mineral content (BMC). Results of spine bone mineral measurements taken at intervals with two DXA scanners, a Hologic QDR 1000W, and a Norland XR 26 HS, were examined. There was a consistent correlation between changes in BA and in BMC, with a slope of approximately 0.25 when expressed as percentages. A real change of BA of the magnitude observed is not feasible. There were no differences among the correlations for different instruments, genders, ages, or weight changes. There would appear to be an underestimation of changes in bone mineral density (BMD), but there is a possibility that some of the anomaly is manifested as an overestimation of a change in BMC. Phantom measurements were undertaken with the DXA scanners mentioned above and with a Lunar DPX. The phantoms consisted of simulations of the spine cut from aluminium sheet, so that the effective BMD could be varied. The dependence of the measured BA on BMC varied with the phantom outline, particularly the thickness of the transverse processes. Evidence was obtained of both an underestimate of BMD changes and an overestimate of BMC changes. There are errors in measuring spine changes, but these do not seem to be as serious as a previous report suggests for the Hologic scanner and are not likely to lead to misinterpretation of results. Received: 17 June 1997 / Accepted: 23 January 1998  相似文献   

20.
Summary Dual energy X-ray absorptiometry (DXA; Hologic QDR-1000W) in an ultrahigh-resolution mode, was used to examine the changes in tibial/fibula and vertebral L4 +L5 bone mineral content (BMC) and bone mineral density (BMD) in each 14-month-old female rat at 0, 9, and 16 weeks of study. Twenty rats were randomized by a stratified weight method into two groups, control and exercised. Exercise consisted of running on a flat-bed treadmill, 17 m/minute, 1 hour/day and 5 days/week. As compared with the control group, a significant increase in tibia/fibula BMC and vertebral BMD was apparent at 9 weeks after exercise training (P=0.014 by 2-way analysis of variance). The slope of the gain of the tibia/fibula BMC and BMD by 16 weeks of training was ninefold and fivefold higher than that of the control group (P<0.01 and P<0.05, respectively, by Mann-Whitney test). The correlation coefficient (r) between the final dry weight of excised bone and the final BMC of the intact rat was 0.843 and 0.71 for tibia/fibula and vertebrae, respectively. In summary, we found that in the aged rat, by 9 weeks, exercise increases BMC and BMD in the tibia, whereas in the vertebrae, only increases in the BMD were found. This study demonstrates that this precise and accurate DXA technique is useful in a longitudinal study of in vivo bone mineral changes in the rat over time by taking into account the individual variation between animals as well as changes between groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号