首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Schwann cells and neurotrophin-3 play an important role in neural regeneration,but the secretion of neurotrophin-3 from Schwann cells is limited,and exogenous neurotrophin-3 is inactived easily in vivo.In this study,we have transfected neurotrophin-3 into Schwann cells cultured in vitro using nanoparticle liposomes.Results showed that neurotrophin-3 was successfully transfected into Schwann cells,where it was expressed effectively and steadily.A composite of Schwann cells transfected with neurotrophin-3 and poly(lactic-co-glycolic acid) biodegradable conduits was transplanted into rats to repair 10-mm sciatic nerve defects.Transplantation of the composite scaffold could restore the myoelectricity and wave amplitude of the sciatic nerve by electrophysiological examination,promote nerve axonal and myelin regeneration,and delay apoptosis of spinal motor neurons.Experimental findings indicate that neurotrophin-3 transfected Schwann cells combined with bridge grafting can promote neural regeneration and functional recovery after nerve injury.  相似文献   

2.
《中国神经再生研究》2016,(12):1981-1989
Several studies have investigated the protective functions of brain-derived neurotrophic factor(BDNF) in retinitis pigmentosa. However, a BDNF-based therapy for retinitis pigmentosa is not yet available. To develop an efficient treatment for fundus disease, an eukaryotic expression plasmid was generated and used to transfect human 293 T cells to assess the expression and bioactivity of BDNF on acute retinal pigment epithelial-19(ARPE-19) cells, a human retinal epithelial cell line. After 96 hours of co-culture in a Transwell chamber, ARPE-19 cells exposed to BDNF secreted by 293 T cells were more viable than ARPE-19 cells not exposed to secreted BDNF. Western blot assay showed that Bax levels were downregulated and that Bcl-2 levels were upregulated in human ARPE-19 cells exposed to BDNF. Furthermore, 293 T cells transfected with the BDNF gene steadily secreted the protein. The powerful anti-apoptotic function of this BDNF may be useful for the treatment of retinitis pigmentosa and other retinal degenerative diseases.  相似文献   

3.
High-grade glioma is the most common malignant primary brain tumor in adults.The poor prognosis of glioma,combined with a resistance to currently available treatments,necessitates the development of more effective tumor-selective therapies.Stem cell-based therapies are emerging as novel cell-based delivery vehicle for therapeutic agents.In the present study,we successfully isolated human umbilical cord mesenchymal stem cells by explant culture.The human umbilical cord mesenchymal stem cells were adherent to plastic surfaces,expressed specific surface phenotypes of mesenchymal stem cells as demonstrated by flow cytometry,and possessed multi-differentiation potentials in permissive induction media in vitro.Furthermore,human umbilical cord mesenchymal stem cells demonstrated excellent glioma-specific targeting capacity in established rat glioma models after intratumoral injection or contralateral ventricular administration in vivo.The excellent glioma-specific targeting ability and extensive intratumoral distribution of human umbilical cord mesenchymal stem cells indicate that they may serve as a novel cellular vehicle for delivering therapeutic molecules in glioma therapy.  相似文献   

4.
Ischemic stroke induces a series of complex pathophysiological events including blood-brain barrier disruption, inflammatory response and neuronal apoptosis. Previous studies demonstrate that ischemic preconditioning attenuates ischemic brain damage via inhibiting blood-brain barrier disruption and the inflammatory response. Rats underwent transient (15 minutes) occlusion of the bilateral common carotid artery with 48 hours of reperfusion, and were subjected to permanent middle cerebral artery occlusion. This study explored whether ischemic preconditioning could reduce ischemic brain injury and relevant molecular mechanisms by inhibiting neuronal apoptosis. Results found that at 72 hours following cerebral ischemia, myeloperoxidase activity was enhanced, malondialdehyde levels increased, and neurological function was obviously damaged. Simultaneously, neuronal apoptosis increased, and nuclear factor-κB and cleaved caspase-3 expression was significantly increased in ischemic brain tissues. Ischemic preconditioning reduced the cerebral ischemia-induced inflammatory response, lipid peroxidation, and neurological function injury. In addition, ischemic preconditioning decreased nuclear factor-κB p65 and cleaved caspase-3 expression. These results suggested that ischemic preconditioning plays a protective effect against ischemic brain injury by suppressing the inflammatory response, reducing lipid peroxidation, and neuronal apoptosis via inhibition of nuclear factor-κB and cleaved caspase-3 expression.  相似文献   

5.
6.
Bone marrow mesenchymal stem cell transplantation has been shown to be therapeutic in the repair of spinal cord injury. However, the low survival rate of transplanted bone marrow mesen- chymal stem cells in vivo remains a problem. Neurotrophin-3 promotes motor neuron survival and it is hypothesized that its transfection can enhance the therapeutic effect. We show that in vitro transfection of neurotrophin-3 gene increases the number of bone marrow mesenchymal stem cells in the region of spinal cord injury. These results indicate that neurotrophin-3 can promote the survival of bone marrow mesenchymal stem cells transplanted into the region of spinal cord injury and potentially enhance the therapeutic effect in the repair of spinal cord injury.  相似文献   

7.
目的 克隆人野生型parkin基因并构建真核表达载体pCDNA3.1—parkin,将重组质粒转染PC12细胞获得高表达人野生型parkin基因的PC12细胞克隆。方法 从胎脑组织中提取总RNA,用RT—PCR方法获得人野生型parkin基因的全长cDNA,插入pCR2.1—TA克隆载体中进行序列测定,测序正确后将其亚克隆至表达载体pCD—NA3.1,利用脂质体将重组质粒转染PC12细胞,经G418筛选获得抗性细胞克隆,采用RT—PCR和Western Blot方法鉴定人野生型parkin基因在PC12细胞中的过表达。结果 经限制性内切酶酶切图谱分析和DNA序列测定证实目的基因已插入重组质粒,RT—PCR和Western Blot证明经G418筛选得到的转基因PC12细胞克隆中存在人野生型parkin基因的表达。结论 成功构建了人野生型parkin基因的真核表达载体,获得了稳定表达人野生型parkin基因的PC12细胞克隆,为进一步研究parkin的生物学功能以及parkin在帕金森病发病机制中的作用奠定了良好的基础。  相似文献   

8.
BACKGROUND: Many methods have been attempted to repair nerves following spinal cord injury, including peripheral nerve transplantation, Schwann cell transplantation, olfactory ensheathing cell transplantation, and embryonic neural tissue transplantation. However, there is a need for improved outcomes.
OBJECTIVE: To investigate the repair feasibility for rat spinal cord injury using human neural stem cells (hNSCs) genetically modified by lentivirus to express neurotrophin-3.
DESIGN, TIME AND SETTING: In vitro cell biological experiment and in vivo randomized, controlled genetic engineering experiment were performed at the Third Military Medical University of Chinese PLA and First People's Hospital of Yibin, China from March 2006 to December 2007.
MATERIALS: A total of 64 adult, female, Wistar rats were used for the in vivo study. Of them, 48 rats were used to establish models of spinal cord hemisection, and were subsequently equally and randomly assigned to model, genetically modified hNSC, and normal hNSC groups. The remaining 16 rats served as normal controls.
METHODS: hNSCs were in vitro genetically modified by lentivirus to secrete both green fluorescence protein and neurotrophin-3. Neurotrophin-3 expression was measured by Western blot. Genetically modified hNSC or normal hNSC suspension (5 × 10^5) was injected into the rat spinal cord following T10 spinal cord hemisection. A total of 5μL Dulbecco's-modified Eagle's medium was infused into the rat spinal cord in the model grop. Transgene expression and survival of transplanted hNSCs were determined by immunohistochemistry. Motor function was evaluated using the Basso, Beattie, and Bresnahan (BBB) scale.
MAIN OUTCOME MEASURES: The following parameters were measured: expression of neurotrophin-3 produced by genetically modified hNSCs, transgene expression and survival of hNSCs in rats, motor function in rats.
RESULTS: hNSCs were successfully genetically modified by lentivirus to stably express neurotrophin-3. The transplanted hNSCs primarily gathered at, or around, the injection site two weeks following transplantation, and gradually migrated towards the surrounding tissue. Transplanted hNSCs were observed 7.0-8.0 mm away from the injection site. In addition, hNSCs were observed 10 weeks after transplantation. At week 4, BBB locomotor scores were significantly greater in the genetically modified hNSC and normal hNSC groups, compared with the model group (P 〈 0.05), and scores were significantly greater in the genetically modified hNSC group compared with the normal hNSC group (P 〈 0.05).
CONCLUSION: hNSCs were genetically modified with lentivirus to stably secrete neurotrophin-3. hNSCs improved motor function recovery in rats following spinal cord injury.  相似文献   

9.
10.
This study aimed to identify the optimal neural progenitor cell transplantation time for spinal cord injury in rats via the subarachnoid space. Cultured neural progenitor cells from 14-day embryonic rats, constitutively expressing enhanced green fluorescence protein, or media alone, were injected into the subarachnoid space of adult rats at 1 hour (acute stage), 7 days (subacute stage) and 28 days (chronic stage) after contusive spinal cord injury. Results showed that grafted neural progenitor cells migrated and aggregated around the blood vessels of the injured region, and infiltrated the spinal cord parenchyma along the tissue spaces in the acute stage transplantation group. However, this was not observed in subacute and chronic stage transplantation groups. O4- and glial fibrillary acidic protein-positive cells, representing oligodendrocytes and astrocytes respectively, were detected in the core of the grafted cluster attached to the cauda equina pia surface in the chronic stage transplantation group 8 weeks after transplantation. Both acute and subacute stage transplantation groups were negative for O4 and glial fibrillary acidic protein cells. Basso, Beattie and Bresnahan scale score comparisons indicated that rat hind limb locomotor activity showed better recovery after acute stage transplantation than after subacute and chronic transplantation. Our experimental findings suggest that the subarachnoid route could be useful for transplantation of neural progenitor cells at the acute stage of spinal cord injury. Although grafted cells survived only for a short time and did not differentiate into astrocytes or neurons, they were able to reach the parenchyma of the injured spinal cord and improve neurological function in rats. Transplantation efficacy was enhanced at the acute stage in comparison with subacute and chronic stages.  相似文献   

11.
One reason that the central nervous system of adult mammals does not regenerate after injury is that neurotrophic factors are present only in low concentrations in these tissues. Recent studies have shown that the application of brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) acts to encourage the regrowth of motor and sensory fibers after spinal cord injury. Other studies have reported that the regrowth of axons after injury was enhanced by the implantation of Schwann cells, which normally secrete BDNF and NT-3. The purpose of the present study was to genetically modify Schwann cells to secrete increased amounts of BDNF or NT-3 by infection with a retroviral vector. Retroviral vectors were constructed by the ligation of BDNF or NT-3 cDNA to the LXSN vector. Viruses were generated from the plasmid forms of the vectors by transient transfection of PA317 amphotrophic retroviral packaging cells. Viruses were harvested and used to infect the human Schwann cell line designated NF-1T. Northern blot analysis of poly (A+) RNA prepared from Schwann cells that were infected with BDNF- or NT-3-containing virus showed the presence of BDNF or NT-3 mRNA. An enzyme-linked immunosorbent assay (ELISA) for BDNF and NT-3 was performed on media the cells were grown in, and on cellular extracts prepared from the BDNF- and NT-3-infected Schwann cells. The ELISA results demonstrated that the Schwann cells were secreting increased levels of immunologically active BDNF or NT-3. Immunocytochemical staining of these cells revealed the presence of these two neurotrophic factors located in perinuclear granules. These neurotrophic factor-secreting Schwann cells are currently being evaluated for their efficacy in the treatment of spinal cord injury.  相似文献   

12.
C677T polymorphism in the methylenetetrahydrofolate reductase (MTHFR) gene is a risk factor for stroke, suggesting that widespread detection could help to prevent stroke. DNA from 70 stroke pa- tients and 70 healthy controls was extracted from saliva using a magnetic nanoparticles-based method and from blood using conventional methods. Real-time PCR results revealed that the C677T polymorphism was genotyped by PCR using DNA extracted from both saliva and blood samples. The genotype results were confirmed by gene sequencing, and results for saliva and blood samples were consistent. The mutation TT genotype frequency was significantly higher in the stroke group than in controls. Homocysteine levels were significantly higher than controls in both TT genotype groups. Therefore, this noninvasive magnetic nanoparticles-based method using saliva samples could be used to screen for the MTHFR C677T polymorphism in target populations.  相似文献   

13.
Spinal cord ischemia/reperfusion injury is a stress injury to the spinal cord. Our previous studies using differential proteomics identified 21 differentially expressed proteins (n > 2) in rabbits with spinal cord ischemia/reperfusion injury. Of these proteins, stress-related proteins included protein disulfide isomerase A3, stress-induced-phosphoprotein 1 and heat shock cognate protein 70. In this study, we established New Zealand rabbit models of spinal cord ischemia/reperfusion injury by abdominal aorta occlusion. Results demonstrated that hind limb function initially improved after spinal cord ischemia/reperfusion injury, but then deteriorated. The pathological morphology of the spinal cord became aggravated, but lessened 24 hours after reperfusion. However, the numbers of motor neurons and interneurons in the spinal cord gradually decreased. The expression of protein disulfide isomerase A3, stress-induced-phosphoprotein 1 and heat shock cognate protein 70 was induced by ischemia/reperfusion injury. The expression of these proteins increased within 12 hours after reperfusion, and then decreased, reached a minimum at 24 hours, but subsequently increased again to similar levels seen at 6-12 hours, showing a characterization of induction-inhibition-induction. These three proteins were expressed only in cytoplasm but not in the nuclei. Moreover, the expression was higher in interneurons than in motor neurons, and the survival rate of interneurons was greater than that of motor neurons. It is assumed that the expression of stress-related proteins exhibited a protective effect on neurons.  相似文献   

14.
From pregnancy to parturition, Sprague-Dawley rats were daily administered a low protein diet to establish a model of intrauterine growth restriction. From the 12 th day of pregnancy, 300 mg/kg taurine was daily added to food until spontaneous delivery occurred. Brain tissues from normal neonatal rats at 6 hours after delivery, neonatal rats with intrauterine growth restriction, and neo-natal rats with intrauterine growth restriction undergoing taurine supplement were obtained for fur-ther experiments. The terminal deoxyribonucleotidyl transferase (TdT)-mediated biotin-16-dUTP nick-end labeling assay revealed that the number of apoptotic cells in the brain tissue of neonatal rats with intrauterine growth restriction significantly increased. Taurine supplement in pregnant rats reduced cell apoptosis in brain tissue from neonatal rats with intrauterine growth restriction. Immu-nohistochemical staining revealed that taurine supplement increased glial cell line-derived neuro-trophic factor expression and decreased caspase-3 expression in the cerebral cortex of intrauterine growth-restricted fetal rats. These results indicate that taurine supplement reduces cell apoptosis through the glial cell line-derived neurotrophic factor-caspase-3 signaling pathway, resulting in a protective effect on the intrauterine growth-restricted fetal rat brain.  相似文献   

15.
The human immunodeficiency virus (HIV) lentiviral vector is an ideal vector for gene therapy. In the present study, the wild-type HIV-1 genome was segregated into four plasmids, and an optimized novel HIV-1 lentiviral vector containing green fluorescent protein and vesicular stomatitis virus G pseudo-capsule was constructed. The plasmids were pHR-CMV-EGFP, pCMVΔ8.9, pRSV-Rev, pCMV-VSV-G. The four plasmid system was co-transfected into 293T cells, and green fluorescent protein expression was observed. The present study obtained lentiviral particles by high-speed centrifugation, and the lentiviral particle titer was 4 × 108 TU/mL after centrifugation. Thus, an optimized novel HIV-1 lentiviral vector was successfully constructed.  相似文献   

16.
17.
Baicalin, a type of flavonoid extracted from the dried root of Scutellaria baicalensis georgi, has been shown to effectively inhibit cell apoptosis. Therefore, we assumed that baicalin would suppress colistin sulfate-induced neuronal apoptosis. PC12 cells exposed to colistin sulfate (62.5-500 μg/mL) for 24 hours resulted in PCl2 cell apoptosis. In addition, caspase-3 activity, lactate dehydrogenase level and free radical content increased in a dose-dependent manner. Subsequently, PC12 cells were pretreated with baicalin (25, 50 and 100 pg/mL), and exposed to 125 pg/mL colistin sulfate. Cell morphology markedly changed, and cell viability increased. Moreover, caspase-3 activity, lac- tate dehydrogenase level and free radical content decreased. Results indicated that baicalin inhib- ited colistin sulfate-induced PC12 cell apoptosis by suppressing free radical injury, and reducing caspase-3 activity and lactate dehydrogenase activity.  相似文献   

18.
Emerging studies of treating spinal cord injury (SCI) with adult stem cells led us to evaluate the effects of transplantation of hair follicle stem cells in rats with a compression-induced spinal cord lesion. Here, we proposed a hypothesis that rat hair follicle stem cell transplantation can promote the recovery of injured spinal cord. Compression-induced spinal cord injury was induced in Wistar rats in this study. The bulge area of the rat vibdssa follicles was isolated, cultivated and characterized with nestin as a stem cell marker. 5-Bromo-2'-deoxyuridine (BrdU) labeled bulge stem cells were transplanted into rats with spinal cord injury. Immunohistochemical staining results showed that some of the grafted cells could survive and differentiate into oligodendrocytes (receptor-interacting protein positive cells) and neuronal-like cells (~lll-tubulin positive cells) at 3 weeks after transplantation. In addition, recovery of hind limb locomotor function in spinal cord injury rats at 8 weeks following cell transplantation was assessed using the Basso, Beattie and Bresnahan (BBB) locomotor rating scale. The results demon- strate that the grafted hair follicle stem cells can survive for a long time period in vivo and differentiate into neuronal- and glial-like cells. These results suggest that hair follicle stem cells can promote the recovery of spinal cord injury.  相似文献   

19.
Screening humanized antibodies from a human Fab phage display library is an effective and quick method to obtain beta-amyloid oligomers. Thus, the present study prepared amyloid-beta 42 oli- gomers and constructed a have human Fab phage display library based on blood samples from six healthy people. After three rounds of biopanning in vitro, a human single-domain antibody that spe- cifically recognized amyloid-beta 42 oligomers was identified. Western blot and enzyme-linked im- munosorbent assay demonstrated this antibody bound specifically to human amyloid-beta 42 tetramer and nonamer, but not the monomer or high molecular weight oligomers. This study suc- cessfully constructed a human phage display library and screened a single-domain antibody that specifically recognized amyloid-beta 42 oligomers.  相似文献   

20.
The extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor signal transduction pathway plays an important role in the mechanism of action of antidepressant drugs and has dominated recent studies on the pathogenesis of depression. In the present review we summarize the known roles of extracellular signal-regulated kinase, cAMP response element-binding protein and brain-derived neurotrophic factor in the pathogenesis of depression and in the mechanism of action of antidepressant medicines. The extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor pathway has potential to be used as a biological index to help diagnose depression, and as such it is considered as an important new target in the treatment of depression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号