首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
CD45 is known to regulate signalling through many different surface receptors in diverse haemopoietic cell types. Here we report for the first time that CD45-/- bone marrow dendritic cells (BMDC) are more activated than CD45+/+ cells and that tumour necrosis factor (TNF) and interleukin-6 (IL-6) production by BMDC and splenic dendritic cells (sDC), is increased following stimulation via Toll-like receptor (TLR)3 and TLR9. Nuclear factor-kappaB activation, an important downstream consequence of TLR3 and TLR9 signalling, is also increased in CD45-/- BMDC. BMDC of CD45-/- mice also produce more TNF and IL-6 following stimulation with the cytokines TNF and interferon-alpha. These results show that TLR signalling is increased in CD45-/- dendritic cells and imply that CD45 is a negative regulator of TLR and cytokine receptor signalling in dendritic cells.  相似文献   

2.
Natural killer T (NKT) cells are capable of subserving apparently opposite functions, the interferon-gamma (IFN-gamma)-mediated enhancement of host defence and interleukin-4 (IL-4) -mediated immune regulation. Although dendritic cells (DCs) potently activate NKT cells, DC regulation of the IL-4-IFN-gamma balance via NKT-cell activation is not well characterized. In the present study, we examined the effect of DC treatment with CpG oligodeoxynucleotide (ODN), a Toll-like receptor 9 ligand, on the induction of NKT-cell cytokine production. CpG-ODN-conditioned and alpha-galactosylceramide (alpha-GalCer)-loaded myeloid DCs (CpG-DCs) from BALB/c mice showed enhanced ability to induce NKT-cell production of IL-4, but not IFN-gamma, compared to alpha-GalCer-loaded control DCs (not treated with CpG-ODN). The CpG-DCs expressed significantly higher levels of H2-D(d) than control DCs, and blocking of the H2-D(d) and Ly49 receptor interaction during antigen presentation completely abolished the enhanced ability of the CpG-DCs to induce NKT-cell production of IL-4. These findings demonstrate that DC recognition of the CpG motif leads to induction of enhanced IL-4 production by NKT cells via interaction of the augmented H2-D(d) with Ly49 receptors on NKT cells.  相似文献   

3.
Interleukin-4 (IL-4) is considered the key cytokine for inducing T helper type 2 (Th2) cell differentiation, while interferon-gamma and IL-12 are pivotal cytokines for Th1 immune responses. Paradoxically, IL-4 has also been demonstrated to enhance IL-12 production by dendritic cells, suggesting an IL-4-dependent regulatory feedback of the Th1/Th2 system. In addition, prostaglandin E(2) (PGE(2)), a lipid mediator of inflammation, has been implicated in the enhancement of Th2-type responses acting directly on T and B lymphocytes. PGE(2) synthesis is dependent on the serial engagement of various enzymes, among which the inducible cyclo-oxygenase-2 (COX-2) exerts a critical role in monocytes and dendritic cells. In this study we demonstrate that IL-4 inhibits COX-2 gene expression and consequently prevents secretion of PGE(2) by mature human dendritic cells. We also show that PGE(2) does not regulate IL-12 and IL-10 production by dendritic cells in an autocrine fashion. Hence, we suggest that IL-4 may exploit an IL-12-independent regulatory feedback of the Th1/Th2 system through PGE(2) inhibition.  相似文献   

4.
Pathogen‐derived entities force the tissue‐resident dendritic cells (DCs) towards a mature state, followed by migration to the draining lymph node to present antigens to T cells. Bone marrow mesenchymal stem cells (MSCs) modulate the differentiation, maturation and function of DCs. In umbilical cord blood an immature MSC population was identified. Remarkably, these immature stem cells modulated DCs in a different way. Marker expression was unchanged during the differentiation of monocytes towards immature DCs (iDCs) when cocultured with cord blood MSC [unrestricted somatic stem cells (USSCs)]. The maturation to mature DCs (mDCs) was enhanced when DCs were co‐cultured with USSC, as evidenced by the up‐regulation of costimulatory molecules. Endocytosis of dextran by iDCs was hampered in the presence of USSCs, which is indicative for the maturation of iDCs. Despite this maturation, the migration of iDCs cocultured with USSCs appeared to be identical to iDCs cultured alone. However, USSCs increased the migration of mDCs towards CCL21 and boosted interleukin‐12 production. So, USSCs mature iDCs, thereby redirecting the antigen‐uptake phenotype towards a mature phenotype. Furthermore, DC maturation by lipopolysaccharide (LPS) or USSCs reflects two distinct pathways because migration was unaffected when iDCs were matured by coculture with USSCs, while it was strongly enhanced in the presence of LPS. DCs are able to discriminate the different MSC subtypes, resulting in diverse differentiation programmes.  相似文献   

5.
Toll-like receptor (TLR) signaling activates dendritic cells (DC) to secrete proinflammatory cytokines and up-regulate co-stimulatory molecule expression, thereby linking innate and adaptive immunity. A TLR-associated adapter protein, MyD88, is essential for cytokine production induced by TLR. However, in response to a TLR4 ligand, lipopolysaccharide (LPS), MyD88-deficient (MyD88(-/-)) DC can up-regulate co-stimulatory molecule expression and enhance their T cell stimulatory activity, indicating that the MyD88-independent pathway through TLR4 can induce some features of DC maturation. In this study, we have further characterized function of LPS-stimulated, MyD88(-/-) DC. In response to LPS, wild-type DC could enhance their ability to induce IFN-gamma production in allogeneic mixed lymphocyte reaction (alloMLR). In contrast, in response to LPS, MyD88(-/-) DC augmented their ability to induce IL-4 instead of IFN-gamma in alloMLR. Impaired production of T(h)1-inducing cytokines in MyD88(-/-) DC cannot fully account for their increased T(h)2 cell-supporting ability, because absence of T(h)1-inducing cytokines in DC caused impairment of IFN-gamma, but did not lead to augmentation of IL-4 production in alloMLR. In vivo experiments with adjuvants also revealed T(h)2-skewed immune responses in MyD88(-/-) mice. These results demonstrate that the MyD88-independent pathway through TLR4 can confer on DC the ability to support T(h)2 immune responses.  相似文献   

6.
Myeloid dendritic cells (MDC) play an important role in antigen-specific immunity and tolerance. In transplantation setting donor-derived MDC are a promising tool to realize donor-specific tolerance. Current protocols enable generation of tolerogenic donor MDC from human monocytes during 1-week cultures. However, for clinical application in transplantation medicine, a rapidly available source of tolerogenic MDC is desired. In this study we investigated whether primary human blood MDC could be transformed into tolerogenic MDC using dexamethasone (dex) and lipopolysaccharide (LPS). Human blood MDC were cultured with dex and subsequently matured with LPS in the presence or absence of dex. Activation of MDC with LPS after pretreatment with dex did not prevent maturation into immunostimulatory MDC. In contrast, simultaneous treatment with dex and LPS yielded tolerogenic MDC, that had a reduced expression of CD86 and CD83, that poorly stimulated allogeneic T-cell proliferation and production of T helper 1 (Th1) cytokines, and primed production of the immunoregulatory cytokine interleukin-10 (IL-10) in T cells. In vitro, however, these tolerogenic MDC did not induce permanent donor-specific hyporesponsiveness in T cells. Importantly, tolerogenic MDC obtained by LPS stimulation in the presence of dex did not convert into immunostimulatory MDC after subsequent activation with different maturation stimuli. In conclusion, these findings demonstrate that combined treatment with dex and LPS transforms primary human blood MDC into tolerogenic MDC that are impaired to stimulate Th1 cytokines, but strongly prime the production of the immunoregulatory cytokine IL-10 in T cells, and are resistant to maturation stimuli. This strategy enables rapid generation of tolerogenic donor-derived MDC for immunotherapy in clinical transplantation.  相似文献   

7.
There is growing interest in the in vitro generation of dendritic cells (DC) from peripheral blood monocytes, but the effect of the method chosen to isolate CD14+ monocytes for subsequent DC generation is poorly documented. The method used to isolate monocytes may have an impact on the subsequent function of DC by affecting their ability to express costimulatory molecules (CD80/86), maturation marker (CD83) and/or to produce important immunomodulatory cytokines. In this study, we show that the positive selection of monocytes by anti-CD14-coated microbeads inhibits the lipopolysaccharide (LPS)-induced production of interleukin (IL)-12, IL-10 and tumour necrosis factor-alpha (TNF-alpha) from human DC. However, when DC were grown from monocytes isolated by plastic adherence, LPS induced the production of much higher levels of these cytokines. DC derived from adherence-isolated monocytes induced the development of potent cytotoxic T lymphocytes of the Tc1 subset specific for influenza matrix protein, as confirmed by interferon-gamma (IFN-gamma) enzyme-linked immunosorbent spot-forming cell assay (ELISPOT), cytotoxicity assay, major histocompatibility complex (MHC)-peptide tetrameric complexes and T helper 1/T helper 2 (Th1/Th2) cytokine production assays.  相似文献   

8.
Dendritic cells are not only the master regulators of adaptive immunity, but also participate profoundly in innate immune responses. Much has been learned about their basic immunological functions and their roles in various diseases. Comparatively little is still known about their role in renal disease, despite their obvious potential to affect immune responses in the kidney, and immune responses that are directed against renal components. Kidney dendritic cells form an abundant network in the renal tubulointerstitium and constantly survey the environment for signs of injury or infection, in order to alert the immune system to the need to initiate defensive action. Recent studies have identified a role for dendritic cells in several murine models of acute renal injury and chronic nephritis. Here we summarize the current knowledge on the role of kidney dendritic cells that has been obtained from the study of murine models of renal disease.  相似文献   

9.
10.
Changes in the pattern of cytokines found in CD4 and CD8 T cells during the growth of Mycobacterium tuberculosis that resulted in the establishment of a latent infection were monitored. Subsets of T cells were identified based on their differential expression of CD45 and CD44 which allowed them to be classified as naive, activated or memory. We found that the T cells in the lung produced a predominantly type 1 cytokine response. The appearance of large numbers of Th1 cells coincided with the establishment of latency. In contrast, the predominant response in the mediastinal lymph node and spleen was a Th2-type response.  相似文献   

11.
We have considered the possibility that antigen-presenting cells of the dendritic cell lineage may be infected in vivo and spread HIV-1 at the time dendritic cells initiate the clonal expansion of antigen-specific T cells. Dendritic cells were isolated from 25 HIV-1-infected subjects (CDC stages II-IV). Fewer dendritic cells were recovered from most infected subjects. Reduced numbers of total non-T cells were also found in these patients, so that preferential loss of dendritic cells did not occur. Dendritic cell function was assessed by stimulatory capacity for allogeneic CD4+ T cells in the mixed leucocyte reaction (MLR). Potent MLR stimulator activity was retained in the dendritic cell-enriched populations from HIV-infected patients. Seven out of nine patients without AIDS (asymptomatic, lymphadenopathy or ARC) and three out of six patients with AIDS had proliferative responses equivalent to those induced by dendritic cells from controls. Dendritic cells from HIV+ subjects were able to initiate the expansion of allogeneic CD4+ T cell clones with cloning efficiency not different from controls and without evidence of cytopathic effect in the expanding CD4+ clones. In situ hybridization of the different mononuclear cell populations with a gag-specific riboprobe demonstrated positive cells in the T cell fractions of 12 of the 15 patients tested. None of the asymptomatic or ARC patients had riboprobe-positive cells in the dendritic cell-enriched populations. Four out of nine patients with AIDS had cells positive for HIV-1 expression in the dendritic cell-enriched fraction. However, the positive cells had the nuclear profile of lymphocytes, and by cytofluorography some residual low-density T cells were present. By limiting dilution and polymerase chain reaction (PCR), CD4+ lymphocytes carried HIV provirus in inocula of 500-5000 cells, while provirus could only be detected in 50,000 cells from the dendritic cell-enriched fraction. The latter signal may be due to the demonstrated levels of T cell contamination. Our data indicate that productive or latent HIV-1 infection of blood dendritic cells in vivo is rare, certainly no greater than in T lymphocytes, and that in vitro dendritic cell preparations from patients can expand CD4+ T cells efficiently and therefore may be able to expand T cells with immunotherapeutic activity.  相似文献   

12.
Expression and function of 4-1BB and 4-1BB ligand on murine dendritic cells   总被引:14,自引:0,他引:14  
4-1BB (CDw137) and its ligand (4-1BBL) have been implicated in cellular immune responses. To further characterize the expression and function of 4-1BBL, we newly generated an anti-mouse 4-1BBL mAb (TKS-1), which can inhibit the interaction of 4-1BBL with 4-1BB. Flow cytometric analyses using TKS-1 and an anti-mouse 4-1BB mAb indicated that 4-1BB was inducible on both CD4(+) and CD8(+) splenic T cells by stimulation with immobilized anti-CD3 mAb, but 4-1BBL was not expressed on resting or activated T cells. 4-1BBL expression was inducible on splenic B cells by stimulation with anti-IgM antibody plus anti-CD40 mAb, on peritoneal macrophages by stimulation with lipopolysaccharide (LPS) and on splenic dendritic cells (DC) by stimulation with anti-CD40 mAb or LPS. Interestingly, splenic DC expressed 4-1BB constitutively, which was down-regulated by anti-CD40 stimulation. Co-culture of splenic DC with 4-1BBL-transfected cells or 4-1BBL-expressing tumor cell lines led to cytokine (IL-6 and IL-12) production and co-stimulatory molecule up-regulation by splenic DC, indicating that 4-1BBL can directly activate DC. Moreover, IL-12 production by anti-CD40-stimulated DC was partially inhibited by TKS-1. These results suggest that 4-1BB expressed on DC may be involved in DC activation through DC--tumor interaction and DC--DC interaction.  相似文献   

13.
14.
15.
16.
Dendritic cells (DCs) are the most potent professional antigen-presenting cells which can activate T cells to induce the primary immune response. For clinical studies, DCs are often differentiated in vitro from peripheral blood mononuclear cells (PBMCs) through treatment with granulocyte macrophage colony-stimulating factor (GM-CSF) and IL-4. However, IL-13, a cytokine closely related to IL-4, has also been reported to induce differentiation equally or more efficiently when used with GM-CSF. For the present study, we compared the DC characteristics exhibited by iDCs and LPS-matured DCs differentiated from PBMCs using GM-CSF and IL-4 or IL-13. Physical characteristics examined include cellular morphology and surface phenotype. Functional traits investigated include FITC-dextran uptake, IL-10 and IL-12 production, allostimulation and cytokine production by stimulated T cells and antigen-specific T cell stimulation. Compared with IL-13-derived DCs, IL-4 treatment yielded more differentiated DCs, with extensive dendrites and higher expression of DC-SIGN, DEC-205, CD86 and HLA-DR. In addition, IL-4 DCs were more efficient at inducing allogeneic T cell proliferation and immature IL-4 DCs had higher endocytic activity at low FITC-dextran concentrations (1 microg ml(-1)). Although IL-13 was capable of generating DCs from PBMCs, it was not as effective as IL-4 in generating DC phenotype and functionality. Thus, the use of GM-CSF and IL-4 is the more efficient treatment for inducing DC differentiation from PBMCs.  相似文献   

17.
Previous studies have shown that human Th2 cells, unlike theirmurine counterparts, retain the ability to produce IFN- uponactivation in the presence of exogenous IL-12. Here we firstextended this notion by showing that Th2-like cell clones (Th2C)are also capable of inducing IL-12 production by physiologicalantigen-presenting cells (APC); we next showed that these cellsmay express several distinct cytokine profiles depending uponthe activation signal and the type of APC with which they interact.We have analyzed the production of IL-4, IL-5 and IFN- by Th2Cstimulated by either anti-CD3 mAb or exogenous IL-2, using peripheralblood monocytes or dendritic cells (DC) as accessory cells.We found that: (i) DC but not monocytes released IL-12 and promotedIL-12-dependent IFN- production upon interaction with anti-CD3-or IL-2-stimulated Th2C and (ii) ligation of CD3 was requiredfor the production of IL-4 but not of IL-5 or IFN-. Thus, dependingupon the type of APC with which they interacted and the modeof activation, Th2C, expressed four distinct cytokine profiles:(i) IL-4 + IL-5, in response to anti-CD3 + monocytes; (ii) IL-4,IL-5 + IFN-, in response to anti-CD3 + DC; (iii) IL-5 + IFN-,in response IL-2 + DC; and (iv) IL-5 alone, in response to IL-2+ monocytes. The ability of human Th2-like cells to induce IL-12production and to release the proinflammatory cytokines IFN-yandIL-5 upon IL-2-driven interactions with APC may contribute toexplain how local infection exacerbates Th2-mediated diseases,like bronchial asthma and atopic dermatitis.  相似文献   

18.
Dendritic cells (DCs) are potent antigen-presenting cells and can induce tumour- or pathogen-specific T cell responses. For adoptive immunotherapy purposes, immature DCs can be generated from adherent monocytes using granulocyte macrophage colony stimulating factor (GM-CSF) and interleukin (IL)-4, and further maturation is usually achieved by incubation with tumour necrosis factor (TNF)-alpha. However, TNF-alpha-stimulated DCs produce low levels of IL-12. In this study, we compared the effects of TNF-alpha, interferon (IFN)-gamma, IL-1beta or IFN-gamma + IL-1beta on the phenotypic and functional maturation of DCs. Our results show that IFN-gamma, but not IL-1beta, augmented the surface expression of CD80, CD83 and CD86 molecules without inducing IL-12 production from DCs. However, IL-1beta, but not IFN-gamma, induced IL-12 p40 production by DCs without enhancing phenotypic maturation. When combined, IFN-gamma + IL-1beta treatment profoundly up-regulated the expression of CD80, CD83, CD86 and major histocompatibility complex (MHC) class II antigens. Furthermore, IFN-gamma + IL-1beta-treated DCs produced larger amounts of IL-12 and induced stronger T cell proliferation and IFN-gamma secretion in primary allogeneic mixed lymphocyte reaction (MLR) than did TNF-alpha-treated DCs. Our results show that IFN-gamma + IL-1beta induced human monocyte-derived DCs to differentiate into Th1-prone mature DCs.  相似文献   

19.
The functional capability of human neonatal CD4 T cells to respond to vaccine antigens is frequently described as Th2 biased, but whether this is due to defective T-cell or antigen-presenting cell (APC) function is unclear. In this study, we used purified T cells and autologous monocyte-derived dendritic cells (MDDCs) as APCs to model primary and secondary neonatal CD4 T-cell responses in vitro to BBG2Na, a recombinant protein subunit vaccine candidate against respiratory syncytial virus (RSV). Neonatal MDDCs were phenotypically and functionally comparable to adult-derived MDDCs in terms of stimulatory capacity, longevity and ability to direct Th1 differentiation. When pulsed with BBG2Na, they induced antigen-specific neonatal CD4 T-cell proliferation. Analysis of cytokine production by quantitative real-time PCR showed significant production of IFN-gamma and IL-13 mRNA, analogous to the non-polarized primary cytokine mRNA response exhibited by both neonatal and adult naive CD4 T cells when primed by keyhole limpet haemocyanin. This contrasts with BBG2Na-activated adult CD45R0+ve memory CD4 T-cell responses, originally primed by natural RSV infection, which demonstrated a polarized Th1 cytokine profile. Importantly, on secondary stimulation, BBG2Na-primed neonatal CD4 T cells exhibited a 4-fold increase in antigen-specific proliferation and a 5-fold increase in IFN-gamma production. These data suggest that early life human CD4 T cells in vitro are intrinsically functionally capable of being primed by subunit vaccine candidate antigens such as BBG2Na, and differentiate into non-polarized rather than Th2 effectors.  相似文献   

20.
Cytokines are key modulators of the immune responses that take place in the inflamed synovium of arthritis patients. Consequently, substances that can reverse the inflammatory profile of the inflamed joint are potential tools for clinical management of the disease. Mycobacterial heat shock protein 70 (MTBHSP70) has been found to protect rats from experimentally induced arthritis through the induction of interleukin (IL)-10-producing T cells. In this study, we have demonstrated that MTBHSP70 induces IL-10 production in synoviocytes from arthritis patients and peripheral blood monoculear cells (PBMCs) from both patients and healthy controls. IL-10 production was accompanied by a decrease in tumour necrosis factor (TNF)-alpha production by synovial cells. Separation studies showed that the target cells were mainly monocytes. Accordingly, we observed that MTBHSP70 delayed maturation of murine bone marrow-derived dendritic cells. Our results suggest that MTBHSP may act on antigen-presenting cells (APCs) to modulate the cytokine response in arthritis and support an anti-inflammatory role for this protein, suggesting that it may be of therapeutic use in the modulation of arthritis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号