首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVES: The drug K201 (JTV-519) increases inotropy and suppresses arrhythmias in failing hearts, but the effects of K201 on normal hearts is unknown. METHODS: The effect of K201 on excitation-contraction (E-C) coupling in normal myocardium was studied by using voltage-clamp and intracellular Ca(2+) measurements in intact cells. Sarcoplasmic reticulum (SR) function was assessed using permeabilised cardiomyocytes. RESULTS: Acute application of <1 micromol/L K201 had no significant effect on E-C coupling. K201 at 1 micromol/L decreased Ca(2+) transient amplitude (to 83+/-7%) without affecting I(Ca,L) or the SR Ca(2+) content. At 3 micromol/L K201 caused a larger reduction of Ca(2+) transient amplitude (to 60+/-7%) with accompanying reductions in I(Ca,L) amplitude (to 66+/-8%) and SR Ca(2+) content (74+/-9%). Spontaneous SR Ca(2+) release during diastole was induced by increasing intracellular [Ca(2+)]. At 1 micromol/L K201 reduced the frequency of spontaneous Ca(2+) release. The effect of K201 on SR-mediated Ca(2+) waves and Ca(2+) sparks was examined in beta-escin-permeabilised cardiomyocytes by confocal microscopy. K201 (1 micromol/L) reduced the frequency and velocity of SR Ca(2+) waves despite no change in SR Ca(2+) content. At 3 micromol/L K201 completely abolished Ca(2+) waves and reduced the SR Ca(2+) content (to approximately 73%). K201 at 1 micromol/L reduced Ca(2+) spark amplitude and frequency. Assays specific to SR Ca(2+)-ATPase and RyR2 activity indicated that K201 inhibited both SR Ca(2+) uptake and release. CONCLUSIONS: K201 modifies E-C coupling in normal cardiomyocytes. A dual inhibitory action on SERCA and RyR2 explains the ability of K201 to suppress spontaneous diastolic Ca(2+) release during Ca(2+) overload without significantly affecting Ca(2+) transient amplitude.  相似文献   

2.
OBJECTIVE: This study investigated the role of calsequestrin (CSQ) in the control of excitation-contraction (E-C) coupling in the heart. METHODS: CSQ over-expression was induced in isolated rabbit ventricular cardiomyocytes using an adenovirus coding for rabbit CSQ (Ad-CSQ). After 24 h of culture, CSQ protein expression was increased by 58+/-18% (n=10). An adenovirus coding for beta-galactosidase (Ad-LacZ) was used as a control. RESULTS: In voltage-clamped, Fura-2-loaded cardiomyocytes, L-type Ca2+ current (I(Ca,L)) and Ca2+ transient amplitude were both increased in the Ad-CSQ group by approximately 78%. Doubling the external Ca2+ concentration in the control group (Ad-LacZ) increased the LTCC amplitude to a similar degree (85+/-6%), but increased the Ca2+ transient amplitude by 149+/-13%. This suggests that SR Ca2+ release may be inhibited upon CSQ over-expression. Alternatively, nifedipine (0.5 microM) was used to reduce I(Ca,L) in Ad-CSQ-transfected cells to values comparable to control (Ad-LacZ). Under these conditions, Ca2+ transient amplitude was not different from Ad-LacZ, but the SR Ca2+ content was approximately 60% higher as assessed by both the caffeine-induced Ca2+ release and the accompanying Na+/Ca2+ exchanger current (I(NCX)). The cause of the increased I(Ca,L) is unknown. No change in the expression level of the alpha1-subunit of the L-type Ca channel was observed. beta-Escin-permeabilized cardiomyocytes were used to study Ca2+ sparks imaged with Fluo-3 at 145-155 nmol/L [Ca2+]. Spontaneous Ca2+ spark frequency, duration, width, and amplitude were unchanged in the Ad-CSQ group, but SR Ca2+ content was 48% higher than Ad-LacZ. CONCLUSIONS: CSQ over-expression increased SR Ca2+ content but reduced the gain of E-C coupling in rabbit cardiomyocytes.  相似文献   

3.
OBJECTIVE: Cellular Ca(2+) waves are understood as reaction-diffusion systems sustained by Ca(2+)-induced Ca(2+) release (CICR) from Ca(2+) stores. Given the recently discovered sensitization of Ca(2+) release channels (ryanodine receptors; RyRs) of the sarcoplasmic reticulum (SR) by luminal SR Ca(2+), waves could also be driven by RyR sensitization, mediated by SR overloading via Ca(2+) pump (SERCA), acting in tandem with CICR. METHODS: Confocal imaging of the Ca(2+) indicator fluo-3 was combined with UV-flash photolysis of caged compounds and the whole-cell configuration of the patch clamp technique to carry out these experiments in isolated guinea pig ventricular cardiomyocytes. RESULTS: Upon sudden slowing of the SERCA in cardiomyocytes with a photoreleased inhibitor, waves indeed decelerated immediately. No secondary changes of Ca(2+) signaling or SR Ca(2+) content due to SERCA inhibition were observed in the short time-frame of these experiments. CONCLUSIONS: Our findings are consistent with Ca(2+) loading resulting in a zone of RyR 'sensitization' traveling within the SR, but inconsistent with CICR as the predominant mechanism driving the Ca(2+) waves. This alternative mode of RyR activation is essential to fully conceptualize cardiac arrhythmias triggered by spontaneous Ca(2+) release.  相似文献   

4.
Spontaneous, localized, rhythmic ryanodine receptor (RyRs) Ca(2+) releases occur beneath the cell membrane during late diastolic depolarization in cardiac sinoatrial nodal cells (SANCs). These activate the Na(+)/Ca(2+) exchanger (NCX1) to generate inward current and membrane excitation that drives normal spontaneous beating. The morphological background for the proposed functional of RyR and NCX crosstalk, however, has not been demonstrated. Here we show that the average isolated SANC whole cell labeling density of RyRs and SERCA2 is similar to atrial and ventricle myocytes, and is similar among SANCs of all sizes. Labeling of NCX1 is also similar among SANCs of all sizes and exceeds that in atrial and ventricle myocytes. Submembrane colocalization of NCX1 and cardiac RyR (cRyR) in all SANCs exceeds that in the other cell types. Further, the Cx43 negative primary pacemaker area of the intact rabbit sinoatrial node (SAN) exhibits robust positive labeling for cRyR, NCX1, and SERCA2. Functional studies in isolated SANCs show that neither the average action potential (AP) characteristics, nor those of intracellular Ca(2+) releases, nor the spontaneous cycle length vary with cell size. Chelation of intracellular [Ca(2+)], or disabling RyRs or NCX1, markedly attenuates or abolishes spontaneous SANC beating in all SANCs. Thus, there is dense labeling of SERCA2, RyRs, and NCX1 in small-sized SANCs, thought to reside within the SAN center, the site of impulse initiation. Because normal automaticity of these cells requires intact Ca(2+) cycling, interactions of SERCA, RyR2 and NCX molecules are implicated in the initiation of the SAN impulse.  相似文献   

5.
Sorcin is a 21.6-kDa Ca(2+) binding protein of the penta-EF hand family. Several studies have shown that sorcin modulates multiple proteins involved in excitation-contraction (E-C) coupling in the heart, such as the cardiac ryanodine receptor (RyR2), L-type Ca(2+) channel, and Na(+)-Ca(2+) exchanger, while it has also been shown to be phosphorylated by cAMP-dependent protein kinase (PKA). To elucidate the effects of sorcin and its PKA-dependent regulation on E-C coupling in the heart, we identified the PKA-phosphorylation site of sorcin, and found that serine178 was preferentially phosphorylated by PKA and dephosphorylated by protein phosphatase-1. Isoproterenol allowed sorcin to translocate to the sarcoplasmic reticulum (SR). In addition, adenovirus-mediated overexpression of sorcin in adult rat cardiomyocytes significantly increased both the rate of decay of the Ca(2+) transient and the SR Ca(2+) load. An assay of oxalate-facilitated Ca(2+) uptake showed that recombinant sorcin increased Ca(2+) uptake in a dose-dependent manner. These data suggest that sorcin activates the Ca(2+)-uptake function in the SR. In UM-X7. 1 cardiomyopathic hamster hearts, the relative amount of sorcin was significantly increased in the SR fraction, whereas it was significantly decreased in whole-heart homogenates. In failing hearts, PKA-phosphorylated sorcin was markedly increased, as assessed using a back-phosphorylation assay with immunoprecipitated sorcin. Our results suggest that sorcin activates Ca(2+)-ATPase-mediated Ca(2+) uptake and restores SR Ca(2+) content, and may play critical roles in compensatory mechanisms in both Ca(2+) homeostasis and cardiac dysfunction in failing hearts.  相似文献   

6.
The cardiac Na(+)-Ca(2+) exchanger (NCX1) is the main mechanism for Ca(2+) efflux in the heart and is thought to serve an essential role in cardiac excitation-contraction (E-C) coupling. The demonstration that an NCX1 gene knock-out is embryonic lethal provides further support for this essential role. However, a recent report employing the Cre/loxP technique for cardiac specific knock-out of NCX1 has revealed that cardiac function is remarkably preserved in these mice, which survived to adulthood. This controversy highlights the necessity for further investigation of NCX1 function in the heart. In this study, we report on a novel approach for depletion of NCX1 in postnatal rat myocytes that utilizes RNA interference (RNAi), administered with high efficiency via adenoviral transfection. Depletion of NCX1 was confirmed by immunocytochemical detection, Western blots and radioisotopic assays of Na(+)-Ca(2+) exchange activity. Exchanger expression was inhibited by up to approximately 94%. Surprisingly, spontaneous beating of these cardiomyocytes was still maintained, although at a lower frequency. Electrical stimulation could elicit a normal beating rhythm, although NCX depleted cells exhibited a depressed Ca(2+) transient amplitude, a depressed rate of Ca(2+) rise and decline, elevated diastolic [Ca(2+)], and shorter action potentials. We also observed a compensatory increase in sarcolemmal Ca(2+) pump expression. Our data support an important, though non-essential, role for the NCX1 in E-C coupling in these neonatal heart cells. Furthermore, this approach provides a valuable means for assessing the role of NCX1 and could be utilized to examine other cardiac proteins in physiological and pathological studies.  相似文献   

7.
Cardiac Na/Ca exchange (NCX, NCX1.1) is critical in cardiac myocyte Ca regulation, and its altered function contributes to inotropic state, systolic dysfunction in heart failure and arrhythmogenesis. Regulation of NCX is multifaceted, but protein kinase A (PKA) effects on NCX function are controversial. Here, we use three different and complementary approaches to compare NCX function +/-1 microM isoproterenol (ISO) in intact rabbit cardiac myocytes (in paired comparisons). First, in field-stimulated intact cells we inferred the cytosolic [Ca] ([Ca](i)) dependence of NCX function from the decay rate of caffeine-induced [Ca](i) transients. Second, we measured caffeine-induced [Ca](i) and inward I(NCX) simultaneously (perforated patch voltage clamp), to measure directly the [Ca](i) dependence of NCX rate. Third, using whole cell ruptured patch with [Ca](i) heavily buffered to 100 nM, [Na](i)=10 mM, and I(Ca), SR Ca release and Na/K pump all blocked, we recorded I(NCX) ramps at 37 degrees C. We find that NCX function is not altered by PKA activation under any of these three protocols, where intracellular conditions ranged from near-physiological to highly controlled. This does not rule out NCX modulation by PKA under all conditions, or in species other than rabbit. However, such effects are likely to be either minor (vs. other PKA actions on myocyte Ca handling) or indirect, such as secondary effects dependent on altered local [Ca](i) and [Na](i).  相似文献   

8.
AIMS: This study was designed to evaluate the effects of the Na(+)/Ca(2+) exchange (NCX) inhibitor SEA0400 on Ca(2+) handling in isolated canine ventricular myocytes. METHODS AND RESULTS: Intracellular Ca(2+) ([Ca(2+)](i)) transients, induced by either field stimulation or caffeine flush, were monitored using Ca(2+) indicator dyes. [Ca(2+)](i)-dependent modulation of the inhibitory effect of SEA0400 on NCX was characterized by the changes in Ni(2+)-sensitive current in voltage-clamped myocytes. Sarcoplasmic reticulum (SR) Ca(2+) release and uptake were studied in SR membrane vesicles. Gating properties of single-ryanodine receptors were analysed in lipid bilayers. Ca(2+) sensitivity of the contractile machinery was evaluated in chemically skinned myocytes. In myocytes paced at 1 Hz, neither diastolic [Ca(2+)](i) nor the amplitude of [Ca(2+)](i) transients was significantly altered by SEA0400 up to the concentration of 1 microM, which was shown to inhibit the exchange current. The blocking effect of SEA0400 on NCX decreased with increasing [Ca(2+)](i), and it was more pronounced in reverse than in forward mode operation at every [Ca(2+)](i) examined. The rate of decay of the caffeine-induced [Ca(2+)](i) transients was decreased significantly by 1 microM SEA0400; however, this effect was only a fraction of that observed with 10 mM NiCl(2). Neither SR Ca(2+) release and uptake nor cell shortening and Ca(2+) sensitivity of the contractile proteins were influenced by SEA0400. CONCLUSION: The lack of any major SEA0400-induced shift in Ca(2+) transients or contractility of myocytes can well be explained by its limited inhibitory effect on NCX (further attenuated by elevated [Ca(2+)](i) levels) and a concomitant reduction in Ca(2+) influx due to the predominantly reverse mode blockade of NCX and suppression of L-type Ca(2+) current.  相似文献   

9.
Using biochemical/pharmacological approaches, we previously showed that type 2 ryanodine receptors (RyR2) become dysfunctional in hearts of streptozotocin-induced type 1 diabetic rats. However, the functional consequence of this observation remains incompletely understood. Here we use laser confocal microscopy to investigate whether RyR2 dysfunction during diabetes alters evoked and spontaneous Ca(2+) release from the sarcoplasmic reticulum (SR). After 7-8 weeks of diabetes, steady-state levels of RyR2 remain unchanged in hearts of male Sprague-Dawley rats, but the number of functional receptors decreased by >37%. Interestingly, residual functional RyR2 from diabetic rat hearts exhibited increased sensitivity to Ca(2+) activation (EC(50activation) decreased from 80 microM to 40 microM, peak Ca(2+) activation decreased from 425 microM to 160 microM). When field stimulated, intracellular Ca(2+) release in diabetic ventricular myocytes was dyssynchronous (non-uniform) and this was independent of L-type Ca(2+) currents. Time to peak Ca(2+) increased 3.7-fold. Diabetic myocytes also exhibited diastolic Ca(2+) release and 2-fold higher frequency of spontaneous Ca(2+) sparks, albeit at a lower amplitude. The amplitude of caffeine-releasable Ca(2+) was also lower in diabetic myocytes. RyR2 from diabetic rat hearts exhibited increased phosphorylation at Ser2809 and contained reduced levels of FKBP12.6 (calstablin2). Collectively, these data suggest that RyR2 becomes leaky during diabetes and this defect may be responsible to the reduced SR Ca(2+) load. Diastolic Ca(2+) release could also serve as a substrate for delayed after-depolarizations, contributing to the increased incidence of arrhythmias and sudden cardiac death in type 1 diabetes.  相似文献   

10.
Signaling between cell membrane-bound L-type Ca(2+) channels (LTCC) and ryanodine receptor Ca(2+) release channels (RyR) on sarcoplasmic reticulum (SR) stores grades excitation-contraction coupling (ECC) in striated muscle. A physical connection regulates LTCC and RyR in skeletal muscle, but the molecular mechanism for coordinating LTCC and RyR in cardiomyocytes, where this physical link is absent, is unknown. Calmodulin kinase (CaMK) has characteristics suitable for an ECC coordinating molecule: it is activated by Ca(2+)/calmodulin, it regulates LTCC and RyR, and it is enriched in the vicinity of LTCC and RyR. Intact cardiomyocytes were studied under conditions where CaMK activity could be controlled independently of intracellular Ca(2+) by using an engineered Ca(2+)-independent form of CaMK and a highly specific CaMK inhibitory peptide. CaMK reciprocally enhanced L-type Ca(2+) current and reduced release of Ca(2+) from the SR while increasing SR Ca(2+) content. These findings support the hypothesis that CaMK is required to functionally couple LTCC and RyR during cardiac ECC.  相似文献   

11.
To evaluate the effect of sorcin on cardiac excitation-contraction coupling, adult rabbit ventricular myocytes were transfected with a recombinant adenovirus coding for human sorcin (Ad-sorcin). A beta-galactosidase adenovirus (Ad-LacZ) was used as a control. Fractional shortening in response to 1-Hz field stimulation (at 37 degrees C) was significantly reduced in Ad-sorcin-transfected myocytes compared with control myocytes (2.10+/-0.05% [n=311] versus 2.42+/-0.06% [n=312], respectively; P<0.001). Action potential duration (at 20 degrees C) was significantly less in the Ad-sorcin group (458+/-22 ms, n=11) compared with the control group (520+/-19 ms, n=10; P<0.05). In voltage-clamped, fura 2-loaded myocytes (20 degrees C), a reduced peak-systolic and end-diastolic [Ca2+]i was observed after Ad-sorcin transfection. L-type Ca2+ current amplitude and time course were unaffected. Caffeine-induced Ca2+ release from the sarcoplasmic reticulum (SR) and the accompanying inward Na+-Ca2+ exchanger (NCX) current revealed a significantly lower SR Ca2+ content and faster Ca2+-extrusion kinetics in Ad-sorcin-transfected cells. Higher NCX activity after Ad-sorcin transfection was confirmed by measuring the NCX current-voltage relationship. beta-Escin-permeabilized rabbit cardiomyocytes were used to study the effects of sorcin overexpression on Ca2+ sparks imaged with fluo 3 at 145 to 160 nmol/L [Ca2+] using a confocal microscope. Under these conditions, caffeine-mediated SR Ca2+ release was not different between the two groups. Spontaneous spark frequency, duration, width, and amplitude were lower in sorcin-overexpressing myocytes. In summary, sorcin overexpression in rabbit cardiomyocytes decreased Ca2+-transient amplitude predominantly by lowering SR Ca2+ content via increased NCX activity. The effect of sorcin overexpression on Ca2+ sparks indicates an effect on the ryanodine receptor that may also influence excitation-contraction coupling.  相似文献   

12.
S100A1, a Ca(2+) binding protein of the EF-hand type, is preferentially expressed in myocardial tissue and has been found to colocalize with the sarcoplasmic reticulum (SR) and the contractile filaments in cardiac tissue. Because S100A1 is known to modulate SR Ca(2+) handling in skeletal muscle, we sought to investigate the specific role of S100A1 in the regulation of myocardial contractility. To address this issue, we investigated contractile properties of adult cardiomyocytes as well as of engineered heart tissue after S100A1 adenoviral gene transfer. S100A1 gene transfer resulted in a significant increase of unloaded shortening and isometric contraction in isolated cardiomyocytes and engineered heart tissues, respectively. Analysis of intracellular Ca(2+) cycling in S100A1-overexpressing cardiomyocytes revealed a significant increase in cytosolic Ca(2+) transients, whereas in functional studies on saponin-permeabilized adult cardiomyocytes, the addition of S100A1 protein significantly enhanced SR Ca(2+) uptake. Moreover, in Triton-skinned ventricular trabeculae, S100A1 protein significantly decreased myofibrillar Ca(2+) sensitivity ([EC(50%)]) and Ca(2+) cooperativity, whereas maximal isometric force remained unchanged. Our data suggest that S100A1 effects are cAMP independent because cellular cAMP levels and protein kinase A-dependent phosphorylation of phospholamban were not altered, and carbachol failed to suppress S100A1 actions. These results show that S100A1 overexpression enhances cardiac contractile performance and establish the concept of S100A1 as a regulator of myocardial contractility. S100A1 thus improves cardiac contractile performance both by regulating SR Ca(2+) handling and myofibrillar Ca(2+) responsiveness.  相似文献   

13.
Since the role of sarcoplasmic reticulum (SR) in the E-C coupling of mammalian atrial cells has long been a subject of debate, biochemical, electrophysiological and immunological assays were performed in order to define and compare the properties of the Ca(2+)-release channel-ryanodine receptor (RyR)-from atrial and ventricular tissues. Cardiac SR preparations from human, canine and ovine tissues were compared using [(3)H]ryanodine binding, channel reconstitution into planar lipid bilayers and Western blot analysis involving RyR antibodies. [(3)H]ryanodine binding assays revealed a K(d)value of; 2.5 n M for all investigated cardiac tissues. Bound [(3)H]ryanodine was Ca(2+)-dependent with similar EC(50)values of 0.43, 0.49 and 0.79 microM for human atrium, canine ventricle and ovine atrium, respectively. However the density of binding sites was 4.5 times lower in atrial than in ventricular tissues. Beyond the presence of selective K(+)channels (gamma=188 pS) recorded in the SR enriched fraction of human atrium, the activity of a large conducting (gamma=671 pS) cationic channel was also observed. The latter displayed typical characteristics of Ca(2+)-release channels which were activated by 10 microM free [Ca(2+)] and 2 m M ATP. Western blot analysis revealed the presence of the RyR2 isoform in atrial and ventricular samples whereas no immunoreactivity was detected with specific RyR1 and RyR3 antibodies. Our results, obtained at the molecular level, are consistent with the presence of functional SR in human atrial cells. The human atrial Ca(2+)-release channel displays binding and regulating properties typical of the RyR2 isoform.  相似文献   

14.
In heart failure (HF) a main factor in reduced contractility is reduced SR Ca2+ content and reversed force-frequency response (FFR), ie, from positive to negative. Our arrhythmogenic rabbit HF model exhibits decreased contractility mainly due to an increase in Na/Ca exchange (NCX) activity (with only modest decrease in SR Ca2+-ATPase (SERCA) function), similar to many end-stage HF patients. Here we test whether phospholamban (PLB) inhibition using a dominant-negative mutant PLB adenovirus (K3E/R14E, AdPLB-dn, with beta-galactosidase adenovirus as control) could enhance SERCA function and restore Ca2+ transients and positive FFR in ventricular myocytes from these HF rabbits. HF myocytes infected with AdPLB-dn (versus control) had enhanced Ca2+ transient amplitude (2.0+/-0.1 versus 1.6+/-0.05 F/Fo at 0.5 Hz, P<0.05) and had a positive FFR, whereas acutely isolated HF myocytes or those infected with Adbetagal had negative FFR. Ca2+ transients declined faster in AdPLB-dn versus Adbetagal myocytes (RT50%: 317+/-29 versus 551+/-90 ms at 0.5 Hz, P<0.05) and had an increased SR Ca2+ load (3.5+/-0.3 versus 2.6+/-0.2 F/Fo at 0.5 Hz, P<0.05), indicative of increased SERCA function. Furthermore, this restoration of function was not due to changes in NCX or SERCA expression. Thus, increasing SERCA activity in failing myocytes by AdPLB-dn gene transfer reversed the contractile dysfunction (and restored positive FFR) by increasing SR Ca2+ load. This approach could enhance contractile function in failing hearts of various etiologies, even here where reduced SERCA activity is not the main dysfunction.  相似文献   

15.
OBJECTIVE: Dietary intake of omega-3 polyunsaturated fatty acids (PUFA) like alpha-linolenic acid (ALA) is antiarrhythmic and cardioprotective. PUFA may also be beneficial in hypertension. Altered Na(+)-Ca(2+) exchanger (NCX) activity has been implicated in arrhythmias, hypertension and heart failure and may be a target for PUFA. Thus, we tested the effects of ALA and other distinct fatty acids on the cardiac (NCX1.1) and vascular (NCX1.3) NCX isoforms. METHODS: HEK293 cells stably expressing NCX isoforms were ramped from +60 to -100 mV (over 1600 ms) in the absence and presence of 25 microM oleic acid (OA, omega-9), linoleic acid (LA, omega-6), ALA (omega-3), or eicosapentaenoic acid (EPA, omega-3). NiCl(2) (5 mM) was used to inhibit and therefore identify the NCX current. The effect of 25 microM ALA on NCX1.1 and NCX1.3 activity was also assessed in adult rat ventricular cardiomyocytes and rabbit aortic vascular smooth muscle cells (VSMC) by measuring [Ca(2+)](i) following substitution of [Na(+)](o) with Li(+). RESULTS: Application of Ni(2+) had no effect in non-transfected cells. ALA and EPA (25 microM) reduced the Ni(2+)-sensitive forward NCX1.1 current (at -100 mV) by 64% and reverse current (at +60 mV) by 57%, and inhibited the Ni(2+)-sensitive NCX1.3 forward and reverse currents by 79% and 76%, respectively. Neither OA nor LA (25 microM) affected the NCX1.1 currents, but both partially inhibited the forward and reverse mode NCX1.3 currents. Inhibition of NCX1.3 by ALA occurred at a much lower IC(50) ( approximately 19 nM) than for NCX1.1 ( approximately 120 nM). In cardiomyocytes and VSMC, ALA significantly reduced the Li(+)-induced rise in intracellular [Ca(2+)]. CONCLUSIONS: NCX1.3 is more sensitive to inhibition by ALA than NCX1.1. In addition, only omega-3 PUFA inhibits NCX1.1, but several classes of fatty acids inhibit NCX1.3. The differential sensitivity of NCX isoforms to fatty acids may have important implications as therapeutic approaches for hypertension, heart failure and arrhythmias.  相似文献   

16.
Although Ca(2+)/calmodulin-dependent protein kinase-II (CaMK) is known to phosphorylate different Ca(2+) cycling proteins in the cardiac sarcoplasmic reticulum (SR) and regulate its function, the status of CaMK in heart failure has not been investigated previously. In this study, we examined the hypothesis that changes in the CaMK-mediated phosphorylation of the SR Ca(2+) cycling proteins are associated with heart failure. For this purpose, heart failure in rats was induced by occluding the coronary artery for 8 weeks, and animals with >30% infarct of the left ventricle wall plus septum mass were used. Noninfarcted left ventricle was used for biochemical assessment; sham-operated animals served as control. A significant depression in SR Ca(2+) uptake and release activities was associated with a decrease in SR CaMK phosphorylation of the SR proteins, ryanodine receptor (RyR), Ca(2+) pump ATPase (SR/endoplasmic reticulum Ca(2+) ATPase [SERCA2a]), and phospholamban (PLB) in the failing heart. The SR protein contents for RyR, SERCA2a, and PLB were decreased in the failing hearts. Although the SR Ca(2+)/calmodulin-dependent CaMK activity, CaMK content, and CaMK autophosphorylation were depressed, the SR phosphatase activity was enhanced in the failing heart. On the other hand, the cAMP-dependent protein kinase-mediated phosphorylation of RyR and PLB was not affected in the failing heart. On the basis of these results, we conclude that alterations in SR CaMK-mediated phosphorylation may be partly responsible for impaired SR function in heart failure.  相似文献   

17.
Oxidative stress is intimately involved in alcoholic cardiomyopathy. Catalase is responsible for detoxification of hydrogen peroxide (H(2)O(2)) and may interfere with ethanol-induced cardiac toxicity. To test this hypothesis, a transgenic mouse line was produced to overexpress catalase (~50-fold) in the heart, ranging from sarcoplasm, the nucleus and peroxisomes within myocytes. Mechanical and intracellular Ca(2+) properties were evaluated in ventricular myocytes from catalase transgenic (CAT) and wild-type FVB mice. Protein abundance of sarco (endo) plasmic reticulum Ca(2+)-ATPase (SERCA), phospholamban (PLB), Na(+)/Ca(2+) exchanger (NCX), dihydropyridine Ca(2+) receptor (DHPR), ryanodine receptor (RyR), Akt and phosphorylated Akt (pAkt) were measured by western blot. CAT itself did not alter body and organ weights, as well as myocyte contractile properties. Acute exposure of ethanol elicited a concentration-dependent depression in cell shortening and intracellular Ca(2+) in FVB mice with maximal inhibitions of 65.4% and 35.8%, respectively. The ethanol-induced cardiac depression was significantly attenuated in myocytes from CAT with maximal inhibitions of 42.4% and 27.3%. CAT also abrogated the ethanol-induced inhibition of maximal velocity of shortening/relengthening, prolongation of relengthening duration and intracellular Ca(2+) clearing time. Cell shortening at different extracellular Ca(2+) revealed stronger myocyte-shortening amplitude under lower (0.5 mM) Ca(2+) in CAT mice. Protein expression of NCX, RyR, Akt and pAkt were elevated in myocytes from CAT mice, while those of SERCA, PLB and DHPR were not affected. In conclusion, our data suggest that catalase overexpression may protect cardiac myocytes from ethanol-induced contractile defect, partially through improved intracellular Ca(2+) handling and Akt signaling.  相似文献   

18.
心力衰竭家兔心肌细胞钙调控蛋白表达的异常   总被引:3,自引:1,他引:2  
目的探讨心力衰竭(心衰)心肌细胞钙调控蛋白表达异常的临床意义。方法 16只家兔随机分为两组,假手术组和心衰组各8只。通过超容量负荷联合压力负荷建立家兔心衰模型,利用心导管术和心脏多普勒观察手术前后家兔血流动力学及心脏结构和功能的变化。采用蛋白免疫印迹(Western blot)法测定心肌组织 L 型钙通道(LTCC)、肌浆网钙释放通道(RyR2)、肌浆网钙泵(SERCA2a)以及钠钙交换体(NCX)表达水平。结果家兔心衰组与假手术组相比,左室/体重比值、心率、左室舒张末压明显增加(P<0.01);左室短轴缩短率[(21.3±4.00)%与(36.5±1.36)%]和左室射血分数(0.45±0.07与0.70±0.02)降低(P<0.01);心肌组织 LTCC、RyR2表达下降(R_(LTCC/actin):0.287±0.029与0.624±0.009,R_(RyR2/actin):0.106±0.001与0.203±0.011,P<0.01);SERCA2a、NCX 表达增加(R_(NCX/actin:0.497±0.015与0.221±0.014,R_(SERCA2a/actin:0.611±0.036与0.433±0.008,P<0.01)。结论 LTCC 和 RyR2表达下调是心衰心肌收缩力降低的因素之一,而心衰早期 SERCA2a、NCX 表达增加可能有利于心肌舒缩功能的保持。  相似文献   

19.
Central core disease (CCD) is a human congenital myopathy characterized by fetal hypotonia and proximal muscle weakness that is linked to mutations in the gene encoding the type-1 ryanodine receptor (RyR1). CCD is thought to arise from Ca(2+)-induced damage stemming from mutant RyR1 proteins forming "leaky" sarcoplasmic reticulum (SR) Ca(2+) release channels. A novel mutation in the C-terminal region of RyR1 (I4898T) accounts for an unusually severe and highly penetrant form of CCD in humans [Lynch, P. J., Tong, J., Lehane, M., Mallet, A., Giblin, L., Heffron, J. J., Vaughan, P., Zafra, G., MacLennan, D. H. & McCarthy, T. V. (1999) Proc. Natl. Acad. Sci. USA 96, 4164--4169]. We expressed in skeletal myotubes derived from RyR1-knockout (dyspedic) mice the analogous mutation engineered into a rabbit RyR1 cDNA (I4897T). Here we show that homozygous expression of I4897T in dyspedic myotubes results in a complete uncoupling of sarcolemmal excitation from voltage-gated SR Ca(2+) release without significantly altering resting cytosolic Ca(2+) levels, SR Ca(2+) content, or RyR1-mediated enhancement of dihydropyridine receptor (DHPR) channel activity. Coexpression of both I4897T and wild-type RyR1 resulted in a 60% reduction in voltage-gated SR Ca(2+) release, again without altering resting cytosolic Ca(2+) levels, SR Ca(2+) content, or DHPR channel activity. These findings indicate that muscle weakness suffered by individuals possessing the I4898T mutation involves a functional uncoupling of sarcolemmal excitation from SR Ca(2+) release, rather than the expression of overactive or leaky SR Ca(2+) release channels.  相似文献   

20.
OBJECTIVE: We examined the functional consequences of expressing adult rabbit fast skeletal sarcoplasmic reticulum (SR) Ca(2+)-ATPase (SERCA1a) in isolated adult rat ventricular myocytes. METHODS: Myocytes were infected with a recombinant adenovirus harboring SERCA1a. Then 2 days after myocyte infection, protein expression was estimated using Western blot and SDS-PAGE analysis. We also measured the ATP-dependent oxalate-facilitated Ca(2+) uptake of myocyte homogenates and monitored Ca(2+) transient in myocytes loaded with the Ca(2+) dye, indo-1. RESULTS: SERCA1a gene expression resulted in a 36% increase in the total SERCA protein level in infected myocytes compared to controls (P<0.01), while SERCA2 and phospholamban levels did not change. This increase was associated with a 42% rise in SR Ca(2+) uptake (P<0.01), while tau (the time constant of Ca(2+) transient decay), and the time to peak fell by 32% (P<0.01) and 38% (P<0.001), respectively. Increasing the frequency of stimulation from 0.2 to 2 Hz decreased tau in both cell types (P<0.01). However, the decrease was much smaller in infected (P<0.01) than in uninfected cells (P<0.001). Isoproterenol (1 microM) further decreased tau in infected myocytes by 23% (P<0.05). In these cells, the diastolic [Ca(2+)](i) decreased by 50% (P<0.05) while the systolic [Ca(2+)](i) increased by 19% (P<0.05). No difference was found in the speed of SR Ca(2+) reloading after caffeine washout between the two cell types. CONCLUSION: Adenovirus-mediated SERCA1a gene transfer to adult rat ventricular myocytes enhances SR Ca(2+) handling to a degree similar to that observed following physiological stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号