首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Type I interferons (IFNs) are potent mediators of the innate immune response to viral infection. IFNs released from infected cells bind to a receptor (IFNAR) on neighboring cells, triggering signaling cascades that limit further infection. Subtle variations in amino acids can alter IFNAR binding and signaling outcomes. We used a new gene crossbreeding method to generate hybrid, type I human IFNs with enhanced antiviral activity against four dissimilar, highly pathogenic viruses. Approximately 1400 novel IFN genes were expressed in plants, and the resultant IFN proteins were screened for antiviral activity. Comparing the gene sequences of a final set of 12 potent IFNs to those of parent genes revealed strong selection pressures at numerous amino acids. Using three-dimensional models based on a recently solved experimental structure of IFN bound to IFNAR, we show that many but not all of the amino acids that were highly selected for are predicted to improve receptor binding.  相似文献   

2.
3.
《Antiviral research》2009,81(3):302-308
Interferons (IFNs) are cytokines with important immunomodulatory activity in vertebrates. Although type I IFNs and interleukins (IL) 29 and 28a (type III IFNs) bind to different cellular receptors and have distinct structures, most of their biological activities are redundant. Apeu virus (APEUV) is a member of the Bunyaviridae family isolated from the Brazilian rain forest. In this paper we evaluated the antiviral activity of type I and type III IFNs against APEUV. All tested IFNs were able to induce an antiviral state against the virus in a dose-dependent way. The activity of type III IFNs did not need the presence of type I IFNs. Mixing both types of IFNs did not improve the biological activity of each type alone. The tested IFNs were also able to protect human peripheral blood mononuclear cells from infection. IFN alpha2, IFN beta, IL-29 and IL-28a induced the expression of 2′,5′-oligoadenylate synthetase (2′5′OAS) and 6–16 genes. Although MxA gene was related to antiviral activity against Bunyaviruses, there was no induction of MxA in our model. We were able to show activity of type I and type III IFNs against a RNA virus, and that this activity is not dependent on MxA gene.  相似文献   

4.
Interferons (IFNs) are cytokines with important immunomodulatory activity in vertebrates. Although type I IFNs and interleukins (IL) 29 and 28a (type III IFNs) bind to different cellular receptors and have distinct structures, most of their biological activities are redundant. Apeu virus (APEUV) is a member of the Bunyaviridae family isolated from the Brazilian rain forest. In this paper we evaluated the antiviral activity of type I and type III IFNs against APEUV. All tested IFNs were able to induce an antiviral state against the virus in a dose-dependent way. The activity of type III IFNs did not need the presence of type I IFNs. Mixing both types of IFNs did not improve the biological activity of each type alone. The tested IFNs were also able to protect human peripheral blood mononuclear cells from infection. IFN alpha2, IFN beta, IL-29 and IL-28a induced the expression of 2′,5′-oligoadenylate synthetase (2′5′OAS) and 6–16 genes. Although MxA gene was related to antiviral activity against Bunyaviruses, there was no induction of MxA in our model. We were able to show activity of type I and type III IFNs against a RNA virus, and that this activity is not dependent on MxA gene.  相似文献   

5.
Site-directed in vitro mutagenesis was used to create analogs of human interferons (IFNs)-alpha 1 and -alpha 4. Analogs were expressed in vitro using SP6 RNA polymerase and a rabbit reticulocyte lysate cell-free protein synthesis system. Amino acid substitutions for the highly conserved residues at positions 33, 121, 122 and 123 greatly reduced the antiviral and antiproliferative activities on human cells of IFNs-alpha 1 and -alpha 4. In general, the amino acid substitutions had much less effect on the antiviral activities on bovine, compared with human, cells. Substitutions at positions 31, 41, 42, 124, 134, 135 and 136 had little or no effect on the biological activities of the IFN analogs. The abrogation of antiviral activity resulting from amino acid substitutions for the arginine residue at position 33 suggests that this arginine residue is required for binding to the IFN-alpha receptor on the cell surface.  相似文献   

6.
Viral activation of toll-like receptors (TLRs) on dendritic cells (DCs) leads to production of various cytokines, including antiviral type I interferons (IFNs). Synthetic ligands specific for TLRs are also able to induce the production of type I IFNs (IFNα/β) by DCs, suggesting that these ligands have potential as antiviral drugs. In this in vitro study we extensively investigated the antiviral activity of various TLR ligands. Mouse bone marrow (BM) cells were differentiated into plasmacytoid and conventional DCs (pDCs and cDCs), stimulated with various TLR ligands and tested the antiviral abilities of collected supernatants in an in vitro herpes simplex virus type 1 (HSV-1) infection model. We observed a significant IFNβ-, (but not IFNα-) dependent reduction in HSV-1 infection when a mixed pDC/cDC population was stimulated with the TLR9 ligand CpG. In the absence of pDCs, TLR stimulation resulted in less pronounced antiviral effects. The most pronounced antiviral effect was observed when both DC subsets were stimulated with poly(I:C). A similar noticeable antiviral effect was observed when fibroblasts (L929 cells) were stimulated directly with poly(I:C). These poly(I:C)-mediated antiviral effects were only partially IFNβ-mediated and probably TLR independent. These data demonstrate that TLR ligands are not only able to produce type I IFN but can indeed act as antiviral drugs. In particular poly(I:C), which exerts its antiviral effects even in the absence of DCs, may become a promising drug e.g. to prevent respiratory infections by topical intranasal application.  相似文献   

7.
8.
9.
Interferons lambda (IFN-λ) are the most recently defined members of the class III cytokine family. To investigate whether IFN-λ2 and IFN-λ3 displayed antiviral activity against influenza A virus (IAV), a number of cell lines induced with IFNs - as well as two established cell lines (A549-IFN-λ2 and A549-IFN-λ3) - were infected with IAV. Our results indicate that IFN-λ2 has statistically significant antiviral activity in A549-IFN-λ2 (P=0.0028) although less so than IFN-λ3, which reduced viral titer to 10% (P<0.0001). The reverse was observed for cells treated with IFNs, with IFN-λ2-treated A549 cells inhibiting IAV infection more efficiently than IFN-λ3-treated A549 cells. The antiviral effect on IFN-stimulated cells was most apparent on Vero cells (compared with MDCK and HeLa). Both IFNs significantly inhibited IAV replication and inhibition was observed in a dose-dependent manner, with an optimal IFN concentration of 20 ng/ml. IFN-λ2 was more potent than IFN-λ3 on Vero cells while IFN-λ3 appeared more efficient than IFN-λ2 on MDCK and HeLa cells.  相似文献   

10.
干扰素-τ的研究进展   总被引:5,自引:0,他引:5  
摘要了解干扰素τ(interferon tau,IFN-τ)研究现状。综述了近五年来干扰素-τ研究进展。干扰素-τ具有Ⅰ型干扰素的共同特性:具有抗病毒、抗细胞增生、免疫调节等功能。但IFN-τ在生物学功能方面有自身特点,它仅在胚胎滋养层细胞中表达,无需病毒诱导;另外,高浓度IFN-τ表现出较其他Ⅰ型干扰素较小的细胞毒性。IFN-τ作为一种新的Ⅰ型干扰素,它具有抗黄体溶解、抗病毒、免疫调节等生物学功能,特别是对反转录病毒抑制的高度特异性以及对自身免疫性疾病的免疫调节活性,且低细胞毒性这一特点,它将成为新型的分子药物。  相似文献   

11.
To identify functionally important regions of the human interferon (IFN)-alpha molecule, mutagenesis in vitro of human IFN-a genes was used to create analogs with deletions or specific amino acid replacements. These analogs were expressed in vitro using SP6 RNA polymerase and a rabbit reticulocyte lysate protein synthesis system. Deletion of 7 highly conserved hydrophilic amino acids from the C-terminus of human IFN-alpha 4 reduced, but did not abolish, antiviral activity on human cells. However, analogs with deletions of 15 or 25 amino acids from the C-terminus, or 28 amino acids from the N-terminus, had no measurable antiviral activity. The antiviral activity of human IFN-alpha 4 was increased by substitution of cysteine for serine at position 86, and lysine for arginine at position 121. However, other amino acid substitutions at positions 121, 122 or 123 reduced antiviral activity. The size of the side chain of the amino acid residue at position 130 was shown to be important. Replacement of the absolutely conserved leucine residue at position 131 with glutamine had little effect on antiviral activity. However, the introduction of a proline residue at this position abolished antiviral activity, probably due to the formation of a beta turn in the polypeptide chain. The antiviral activity of human IFN-alpha 4 on murine cells was increased by substitutions at positions 86, 121 and 133. This study illustrates the utility of the in vitro mutagenesis and rabbit reticulocyte lysate systems for the investigation of structure-function relationships, and extends our knowledge of the biologically active regions and species specificity of the human IFN-alpha molecule.  相似文献   

12.
Type I interferons (IFN) constitute one of the initial and most potent components of the innate immune response against viral infections. While there is only one IFN-beta gene, there are several IFN-alpha genes whose products act through the same receptor calling into question the role of these gene products against viral infection. The focus of the present study was to compare the anti-viral state of cells transiently transfected with different murine type I IFN transgenes including IFN-alpha1, -alpha4, -alpha5, -alpha6, -alpha9, and IFN-beta. Transfected cells produced biologically active IFN ranging from 6 to 46 units/ml. L929 and 3T12.3 cells transfected with the IFN-beta transgene consistently showed a 2-4 fold reduction in herpes simplex virus type 1 (HSV-1) and HSV-2 viral titers compared with cells transfected with the IFN-alpha transgenes which were much less consistent based on HSV species and cell type. Parallel with the reduction in viral titers, cells transfected with the IFN-beta transgene showed the complete absence or significant reduction in viral immediate early, early, and late gene expression. Collectively, the results suggest that the IFN-beta transgene is superior to IFN-alpha transgenes against HSV infection in vitro in part due to a reduction in viral gene expression. These results indicate events downstream of the type I IFN receptor distinguish between the subtypes of IFN-alpha species relative to the activation of genes ultimately responsible for the establishment of the anti-HSV state.  相似文献   

13.
14.
Type 1 interferons (IFN) bind specifically to the corresponding receptor, IFNAR. Agonists and antagonists for IFNAR have potential therapeutic value in the treatment of viral infections and systemic lupus erythematosus, respectively. Specific sequences on the surface of IFN, IFN receptor recognition peptides (IRRPs) mediate the binding and signal transduction when IFN interacts with IFNAR. Structural features of two such IRRPs, IRRP-1 and IRRP-3, were used as templates to design small molecule mimetics. In silico screening was used to identify the molecular structural features mimicking their surface characteristics. A set of 26 compounds were synthesized and their ability to interfere with IFN-IFNAR interactions was investigated. Two compounds exhibited antagonist activity, specifically, blocking IFN-inducible Stat phosphorylation Stat complex-DNA binding. Design principles revealed here pave the way toward a novel series of small molecules as antagonists for IFN-IFNAR interactions.  相似文献   

15.
16.
《Antiviral research》2011,89(3):329-333
Interferons lambda (IFN-λ) are the most recently defined members of the class III cytokine family. To investigate whether IFN-λ2 and IFN-λ3 displayed antiviral activity against influenza A virus (IAV), a number of cell lines induced with IFNs – as well as two established cell lines (A549-IFN-λ2 and A549-IFN-λ3) – were infected with IAV. Our results indicate that IFN-λ2 has statistically significant antiviral activity in A549-IFN-λ2 (P = 0.0028) although less so than IFN-λ3, which reduced viral titer to 10% (P < 0.0001). The reverse was observed for cells treated with IFNs, with IFN-λ2-treated A549 cells inhibiting IAV infection more efficiently than IFN-λ3-treated A549 cells. The antiviral effect on IFN-stimulated cells was most apparent on Vero cells (compared with MDCK and HeLa). Both IFNs significantly inhibited IAV replication and inhibition was observed in a dose-dependent manner, with an optimal IFN concentration of 20 ng/ml. IFN-λ2 was more potent than IFN-λ3 on Vero cells while IFN-λ3 appeared more efficient than IFN-λ2 on MDCK and HeLa cells.  相似文献   

17.
Introduction: Type-III interferons (IFN-λ), the most recently discovered family of IFNs, shares common features with other family members, but also has many distinctive activities. IFN-λ uniquely has a different receptor complex, and a more focused pattern of tissue expression and signaling effects, from other classes of IFNs. Multiple genome-wide association studies (GWAS) and subsequent validation reports suggest a pivotal role for polymorphisms near the IFNL3 gene in hepatitis C clearance and control, as also for several other epithelial cell tropic viruses. Apart from its antiviral activity, IFN-λ possesses anti-tumor, immune-inflammatory and homeostatic functions. The overlapping effects of IFN-λ with type I IFN, with a restricted tissue expression pattern renders IFN-λ an attractive therapeutic target for viral infection, cancer and autoimmune diseases, with limited side effects.

Areas covered: This review will summarize the current and future therapeutic opportunities offered by this most recently discovered family of interferons.

Expert opinion: Our knowledge on IFN-λ is rapidly expanding. Though there are many remaining questions and challenges that require elucidation, the unique characteristics of IFN-λ increases enthusiasm that multiple therapeutic options will emerge.  相似文献   

18.
Interferon: cellular executioner or white knight?   总被引:3,自引:0,他引:3  
Interferons (IFNs) are a family of pleiotropic cytokines that typically exhibit antiviral, antiproliferative, antitumor, and immunomodulatory properties. While their complex mechanisms of action remain unclear, IFNs are used clinically in the treatment of viral infections, such as hepatitis B and hepatitis C, and remain the primary treatment for a limited number of malignancies, such as melanoma, hairy cell leukemia, and non-Hodgkin's lymphoma and in autoimmune diseases such as multiple sclerosis. IFNs not only regulate somatic cell growth and division but also influence cell survival through the modulation of apoptosis. Paradoxically, IFNs are described to be both pro- and anti-apoptotic in nature. The biological effects of IFNs are primarily mediated via activation of the JAK/STAT pathway, formation of the ISGF3 and STAT1:STAT1 protein complexes, and the subsequent induction of IFN-stimulated genes. However, the activation of JAK/STAT-independent signal transduction pathways also contribute to IFN-mediated responses. To further demonstrate the complexity of the downstream events following stimulation, oligonucleotide microarray studies have shown that in excess of 300 genes are induced following treatment with IFN, some of which are crucial to the induction of apoptosis and cell growth control. In this review we describe the recent advances made in elucidating the various signaling pathways that are activated by IFNs and how these diverse signals contribute to the regulation of cell growth and apoptosis and inhibition of viral replication. Furthermore, we highlight the role of specific signaling molecules and the function(s) of particular IFN-stimulated genes that have been implicated in determining cell fate in response to IFN, as well as the clinical experience of IFN immunotherapy.  相似文献   

19.
Luo R  Fang L  Jin H  Jiang Y  Wang D  Chen H  Xiao S 《Antiviral research》2011,91(2):99-101
The newly identified type III interferons (IFNs), also known as IFN-λ1/IL-29, IFN-λ2/IL-28A and IFN-λ3/IL-28B, like type I IFNs, have antiviral activity against a broad spectrum of viruses. We therefore examined whether type III IFNs, as well as type I IFNs, has the ability to inhibit porcine reproductive and respiratory syndrome virus (PRRSV) replication in MARC-145 cells. We found that replication of PRRSV in MARC-145 cells was significantly reduced following treatment with IFN-λ1, IFN-λ2 and IFN-λ3, respectively, and such inhibition was dose-dependent. However, type III IFNs (IFN-λ1, IFN-λ2 and IFN-λ3) was less effective than type I IFNs (IFN-α and IFN-β) in antiviral activity against PRRSV. Mixture of two types of IFNs could not improve the antiviral activity of each type alone. In addition, all types of IFNs in our study were able to induce the expression of ISG56, 2′,5′-OAS and MxA in MARC-145 cells. These data demonstrate that type III IFNs had antiviral activity against PRRSV and may serve as useful antiviral agents against infectious swine diseases.  相似文献   

20.
Type I interferons (IFNs) are pleiotropic cytokines, initially described for their antiviral activity. These cytokines exhibit a long record of clinical use in patients with some types of cancer, viral infections and chronic inflammatory diseases. It is now well established that IFN action mostly relies on their ability to modulate host innate and adaptive immune responses. Work in recent years has begun to elucidate the mechanisms by which type I IFNs modify the immune response, and this is now recognized to be due to effects on multiple cell types, including monocytes, dendritic cells (DCs), NK cells, T and B lymphocytes. An ensemble of results from both animal models and in vitro studies emphasized the key role of type I IFNs in the development and function of DCs, suggesting the existence of a natural alliance between these cytokines and DCs in linking innate to adaptive immunity. The identification of IFN signatures in DCs and their dysregulation under pathological conditions will therefore be pivotal to decipher the complexity of this DC-IFN interaction and to better exploit the therapeutic potential of these cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号