首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stroke is a common cause of death and severe disability among adults in developed countries. Cigarette smoking adversely affects human health in many ways and is considered to be a risk factor for a stroke. However, the mechanism that determines the relative importance of neurotrophins in this process remains unclear. To study the effect of chronic cigarette smoking on ischemic stroke, in situ hybridization and immunohistochemistry were employed to detect the mRNA and protein expression of neurotrophin-3 (NT-3), respectively, which is thought to play a critical role in protection against neuronal death in brain ischemia. Rats, with or without chronic cigarette smoking, were subjected to 20 min of transient forebrain ischemia. Distribution and quantification of mRNA and protein of NT-3 in the whole hippocampus and the cell death in the hippocampal CA1–CA3 regions were determined in these rats. Experimental results show that chronic cigarette smoking produces a significantly delay and persistent down-regulation of ischemia-induced NT-3 mRNA and protein changes at 6–24 h post-ischemia, and seemly increases neuron death 7 days after reperfusion. These experimental results indicate that by influencing NT-3 expression, directly or indirectly, chronic cigarette smoking has a potentially harmful effect when acute brain ischemia attacks.  相似文献   

2.
Mice lacking aryl hydrocarbon (dioxin) receptor (AhR) had variable degree of hepatic fibrosis and altered liver architecture. Transforming growth factor-beta (TGF-beta), a major profibrogenic molecule in the liver, is localized to the extracellular matrix by its association to the latent TGF-beta-binding protein-1 (LTBP-1). Very recently, LTBP-1 has been shown to be negatively regulated by the AhR. Embryonic fibroblasts from AhR-null (AhR(-/-)) mice overexpress LTBP-1 and secrete four times more active TGF-beta than wild-type fibroblasts. To test whether TGF-beta and LTBP-1 overexpression colocalize within the fibrotic nodule of AhR(-/-) liver, we have characterized this hepatic portal fibrosis using collagen protein staining, immunohistochemistry and in situ hybridization. LTBP-1 mRNA and protein were overexpressed in the fibrotic region and colocalized with other indicators of fibrosis such as collagen and fibronectin and the fibroblast marker proteins alpha-actin and vimentin. TGF-beta protein also colocalized with fibrosis, although in contrast, TGF-beta mRNA expression, rather than restricted to the fibrotic compartment, was present throughout the hepatic parenchyma and exhibited similar levels in wild-type and AhR(-/-) mice. These results suggest that LTBP-1 targets TGF-beta to specific areas of the liver and that the AhR could be a negative regulator of liver fibrosis, possibly through the control of LTBP-1 and TGF-beta activities.  相似文献   

3.
Morphological changes of CA1 and CA3 pyramidal neurons in rat hippocampus at different intervals following transient forebrain ischemia were examined to determine the nature of post-ischemic cell death in these regions. In the CA1 region, swelling of small dendrites occurred at approximately 24 h reperfusion. At approximately 48 h reperfusion, swelling was found in large dendrites of many CA1 neurons and the mitochondria and endoplasmic reticulum (ER) were dilated. A small portion of neurons showed chromatin aggregation and nuclear indentation without swelling signs. At approximately 60 h reperfusion, swelling of somata was evident in many neurons. Large dense chromatin clumps with round or ovoid contour were found in other neurons. At 72 and 96 h after ischemia, many large vacuoles and glias with active phagocytosis were observed. At 7 days after ischemia, the tissue was compact and many glias were found in the region. Most of the CA3 neurons had normal appearance after ischemia. A total of 5-10% CA3 neurons exhibited shrinking nuclei and chromatin aggregation at approximately 24 h reperfusion. The number of these neurons decreased overtime and disappeared at 72 h after ischemia. These results demonstrate the co-existence of necrosis and apoptosis in the CA1 region after transient forebrain ischemia. Most CA3 neurons remained intact after ischemia while a small portion of them showed apoptotic cell death.  相似文献   

4.
It is well known that proteins encoded by the Bcl-2 gene family play a major role in the regulation of apoptosis. We have demonstrated previously that neuronal apoptosis can be induced in the hippocampus and striatum after global ischemia. Clenbuterol, a β2-adrenoceptor agonist, showed considerable activity against neuronal apoptosis. In the present study, we attempted to find out whether the members of the Bcl-2 family are induced after ischemia, and whether expression of these genes could be altered by clenbuterol. Transient forebrain ischemia was performed in male Wistar rats by clamping both common carotid arteries and reducing the blood pressure to 40 mmHg for 10 min. Clenbuterol (0.5 mg/kg, i.p.) or vehicle were injected 3 h before onset of ischemia or in non-ischemic rats. The hippocampus and striatum were taken from non-ischemic rats 3, 6 and 24 h after injection of clenbuterol, as well as from drug-treated and untreated rats 6 and 24 h after ischemia. Eighty micrograms/lane total protein were loaded on a 15% sodium dodecyl sulfate–polyacrylamide gel for western blotting. Bcl-2, Bax and Bcl-xl proteins were detectable in the non-ischemic hippocampus and the striatum. Clenbuterol up-regulated the expression of Bcl-2 protein at 3, 6 and 24 h after administration. Enhanced Bcl-xl signals were found in the non-ischemic striatum 3, 6 and 24 h after clenbuterol treatment, but no change of Bcl-xl expression by clenbuterol was seen in the non-ischemic hippocampus. Bax expression was not altered by clenbuterol in the non-ischemic hippocampus and striatum. Bcl-2 was up-regulated in both detected regions at 24 h after ischemia, while the increase in Bax and Bcl-xl protein expression had appeared already at 6 h and also 24 h after ischemia. Clenbuterol further increased the expression of Bcl-2 at 6 and 24 h after ischemia. In contrast, Bax protein level was down-regulated by clenbuterol at 6 and 24 h after ischemia. Clenbuterol also increased Bcl-xl level in the ischemic striatum.

The results suggest that global ischemia induces proto-oncogenes which are associated with apoptosis. Clenbuterol not only increased Bcl-2 expression in the non-ischemic hippocampus and striatum, but also up-regulated Bcl-2 and down-regulated Bax expression in the ischemic hippocampus and striatum. The increase in the ratio of Bcl-2 and Bax may contribute to the anti-apoptotic effect of clenbuterol. The present study indicates that pharmacological modulation of Bcl-2 family member expression could become a new strategy to interfere with neuronal damage.  相似文献   


5.
Shen H  Zhang L  Yuen D  Logan R  Jung BP  Zhang G  Eubanks JH 《Neuroscience》2002,114(3):547-556
We investigated how transient cerebral ischemia affects the gene expression, immunoreactive protein levels, and the function of the A1 subtype of adenosine receptor in the rat hippocampus at different times following reperfusion. A1 receptor mRNA levels were altered significantly in different hippocampal subfields as early as 6 h following insult. However, these changes in mRNA levels were not paralleled at the protein level, as western blotting with A1 receptor-specific antibodies revealed that hippocampal A1 adenosine receptor prevalence did not differ from sham control at either 6 or 24 h following insult. The lack of change in A1 receptor prevalence was consistent with functional examinations, as only marginal changes were observed in the ability of A1 receptors to attenuate excitatory post-synaptic potentials in the CA1 subfield at 24 h following reperfusion. These data illustrate that although the mRNA expression levels of the A1 adenosine receptor are altered by transient cerebral ischemia, the immunoreactive prevalence and function of this receptor are maintained in the post-ischemic hippocampus at times preceding the death of the vulnerable neurons.  相似文献   

6.
Cyclosporin (CsA) is widely used in the treatment of renal disease and transplantation, which are often complicated by alterations of lipid metabolism. Both chronic administration of CsA and hyperlipidaemia have been shown to evoke an early macrophage influx and have progressively led to glomerular and interstitial sclerosis. MCP-1 is the major monocyte chemoattractant secreted by stimulated mesangial cells and TGF-beta 1 is a key mediator of fibrogenesis in chronic progressive renal fibrosis. Thus, the combined effect of CsA and low-density lipoprotein (LDL) on the gene and protein expression of MCP-1 and TGF-beta 1 in cultured human mesangial cells (HMC) was explored. Both agents induced an early and persistent increase of MCP-1 and TGF-beta 1 mRNA levels and protein release. The simultaneous addition of CsA and LDL did not display any additive effect on target gene expression, but it caused a synergistic effect on MCP-1 and TGF-beta 1 protein secretion into culture medium. On the other hand, CsA and LDL had different effects on cell proliferation: the latter increased DNA synthesis, whereas CsA inhibited both spontaneous and mitogen-stimulated mesangial cell growth. The study concludes that CsA and LDL display an additive effect on TGF-beta 1 and MCP-1 synthesis and release by HMC, thus possibly co-operating to induce an early macrophage influx and the subsequent mesangial expansion and increased extracellular matrix deposition. However, in contrast they seem to modulate HMC proliferation differently, which is a further critical event intimately involved in the development of glomerulosclerosis.  相似文献   

7.
Recently, we demonstrated that transient forebrain ischemia in rats leads to an early and strong induction of basic fibroblast growth factor (bFGF) synthesis in astrocytes in the injured brain regions. In this study, in order to clarify the targets of such raised endogenous bFGF levels, the messenger RNA (mRNA) expression of its receptors (flg and bek) at in the hippocampus following transient forebrain ischemia induced by four-vessel occlusion for 20 min was investigated using an in situ hybridization technique. Transient forebrain ischemia induced an increase in the number of flg mRNA-positive cells from an early stage (24 h after ischemia) in the hippocampal CA1 subfield where delayed neuronal death occurred later (48–72 h after ischemia). This increase became more marked with the progression of neuronal death and was still evident in the same area 30 days later. The time course of the appearance and distribution pattern of flg mRNA-positive cells in the CA1 subfield were quite similar to those of bFGF mRNA-positive cells. On the other hand, in situ hybridization for bek mRNA showed only slight and transient (observed 72 h and 5 days after ischemia) increases in the number of mRNA-positive cells in the CA1 subfield following ischemia. The use of in situ hybridization and glial fibrillary acidic protein immunohistochemistry in combination demonstrated that the cells in the CA1 subfield that exhibited ischemia-induced flg or bek mRNA expression were astrocytes. These data indicate that transient forebrain ischemia induces upregulation of fibroblast growth factor-receptor expression, accompanied by increased bFGF expression in astrocytes, and suggest that the increased astrocytic bFGF levels in injured brain regions act on the astrocytes via autocrine systems and are involved in the development and maintenance of astrocytosis.  相似文献   

8.
Carvedilol a beta-adrenoreceptor antagonist with potent antioxidant properties raises high expectations in therapy of ischemia. In this study the effect of carvedilol on neuronal survival after transient forebrain ischemia in gerbils was investigated. The role of poly(ADP-ribose) polymerase (PARP-1) in this process was evaluated. Our data indicated that carvedilol administered subcutaneously in a dose of 7 or 70 mg/kg b.w. directly after 5 min of transient forebrain ischemia protects significant population of neurons in hippocampal area CA1, but has no effect after induction of prolonged 10 min ischemia. Carvedilol significantly decreased PARP activity in hippocampus that was markedly increased after both 15 min and 4 days of reperfusion following 5 min of ischemia. Moreover, carvedilol prevented NAD+ depletion after ischemic-reperfusion insult. These results indicated that carvedilol protects neurons against death and suggested that suppression of PARP activity during reperfusion could be involved in this process.  相似文献   

9.
A new animal model to study secondary intention wound healing and the effects of topically applied rhTGF-beta 1 was developed. A time course study was performed of full thickness 6 mm punch wounds placed on the backs of anesthetized pigs and treated once with either 3% methylcellulose or rhTGF-beta 1 in 3% methylcellulose or left untreated. Wounds receiving rhTGF-beta 1 had enhanced tensile strength at days 4 and 7 compared to controls. Studies of the response on days 4 and 7 to graded doses of rhTGF-beta 1 showed that a dose of 250 or 2500 ng rhTGF-beta 1 gave a similar enhanced wound strength, while 25 ng rhTGF-beta 1 had no effect. Blood flow to treated granulating wounds as measured by 141Ce microspheres indicate an increase in flow in wounds treated with 250, 500 or 2500 ng rhTGF-beta 1 compared to controls. These results indicate a possible use for rhTGF-beta 1 in enhancing wound healing clinically.  相似文献   

10.
Transforming growth factor-beta1 is a multifunctional peptide with increased expression during Alzheimer's disease and other neurodegenerative conditions which involve inflammatory mechanisms. We examined the autoregulation of transforming growth factor-beta1 and transforming growth factor-beta receptors and the effects of transforming growth factor-beta1 on complement C1q in brains of adult Fischer 344 male rats and in primary glial cultures. Perforant path transection by entorhinal cortex lesioning was used as a model for the hippocampal deafferentation of Alzheimer's disease. In the hippocampus ipsilateral to the lesion, transforming growth factor-beta1 peptide was increased >100-fold; the messenger RNAs encoding transforming growth factor-beta1, transforming growth factor-beta type I and type II receptors were also increased, but to a smaller degree. In this acute lesion paradigm, microglia are the main cell type containing transforming growth factor-beta1, transforming growth factor-beta type I and II receptor messenger RNAs, shown by immunocytochemistry in combination with in situ hybridization. Autoregulation of the transforming growth factor-beta1 system was examined by intraventricular infusion of transforming growth factor-beta1 peptide, which increased hippocampal transforming growth factor-beta1 messenger RNA levels in a dose-dependent fashion. Similarly, transforming growth factor-beta1 increased levels of transforming growth factor-beta1 messenger RNA and transforming growth factor-beta type II receptor messenger RNA (IC(50), 5pM) and increased release of transforming growth factor-beta1 peptide from primary microglia cultures. Interactions of transforming growth factor-beta1 with complement system gene expression are also indicated, because transforming growth factor-beta1 decreased C1qB messenger RNA in the cortex and hippocampus, after intraventricular infusion, and in cultured glia. These indications of autocrine regulation of transforming growth factor-beta1 in the rodent brain support a major role of microglia in neural activities of transforming growth factor-beta1 and give a new link between transforming growth factor-beta1 and the complement system. The auto-induction of the transforming growth factor-beta1 system has implications for transgenic mice that overexpress transforming growth factor-beta1 in brain cells and for its potential role in amyloidogenesis.  相似文献   

11.
Using in situ hybridization, the expression of the GABA receptor subtype B subunit 1 (GABA(B) R1) and subunit 2 (GABA(B) R2) following transient global ischemia in the gerbil hippocampus was investigated. In sham-operated animals, mRNAs of both subunits were mainly detected in hippocampal pyramidal cells and interneurons with lower expression levels of the GABA(B) R2 in the CA1 field. Four days after transient cerebral ischemia, neuronal message decreased in conjunction with neuronal death and both receptor subunits disappeared from the pyramidal cell layer. However, GABA(B) R1 and GABA(B) R2 were still expressed in a few cells. In situ hybridization of the GABA synthesizing enzyme glutamic acid decarboxylase 67 (GAD67) remained unchanged after the ischemic insult. Double-labeling experiments revealed that in the postischemic hippocampus GABA(B) R1 and GABA(B) R2 were not present in GFAP-reactive astrocytes, but that the surviving parvalbumin-containing interneurons possessed GABA(B) R1 and GABA(B) R2 mRNA.  相似文献   

12.
Ultrasound is an effective noninvasive treatment for various tendinopathies. However, how tenocytes convert ultrasound stimulation into cascades of cellular and molecular events is not well understood. The purpose of this study is to elucidate the signaling pathways of tenocytes during ultrasound stimulation. Primary cultures of tenocytes were harvested from Achilles tendons of Sprague-Dawley rats. The viability and proliferation of tenocytes, their genes expression, and the signaling pathways after ultrasound treatment with or without specific inhibitors were evaluated and analyzed. The results showed that ultrasound treatment (100 mW/cm(2) for 20 min) significantly enhanced matrix metalloproteinase 13 (MMP-13), c-Fos, and c-Jun gene expression, increased JNK and p38, but not extracellular signal-regulated kinase-1/2 (ERK1/2), phosphorylation at 5 min, and sustained up to 60 min. JNK inhibitor and p38 inhibitor, but not ERK1/2 inhibitor, attenuated ultrasound-dependent induction of MMP-13 expression, indicating that the JNK and p38 pathways are required for ultrasound-induced MMP-13 expression in tenocytes. We also found that SB431542 (transforming growth factor-beta (TGF-β) receptor kinases inhibitor) suppressed ultrasound-induced MMP?13 and c-Fos gene expression, and p38 phosphorylation. This study revealed that ultrasound treatment stimulates tenocytes proliferation and regulates their matrix metabolism through the cross-talk between TGF-β and ultrasound-induced mitogen-activated protein kinases (MAPKs) signaling pathways.  相似文献   

13.
Ultrasound is an effective noninvasive treatment for various tendinopathies. However, how tenocytes convert ultrasound stimulation into cascades of cellular and molecular events is not well understood. The purpose of this study is to elucidate the signaling pathways of tenocytes during ultrasound stimulation.

Primary cultures of tenocytes were harvested from Achilles tendons of Sprague–Dawley rats. The viability and proliferation of tenocytes, their genes expression, and the signaling pathways after ultrasound treatment with or without specific inhibitors were evaluated and analyzed.

The results showed that ultrasound treatment (100 mW/cm2 for 20 min) significantly enhanced matrix metalloproteinase 13 (MMP-13), c-Fos, and c-Jun gene expression, increased JNK and p38, but not extracellular signal-regulated kinase-1/2 (ERK1/2), phosphorylation at 5 min, and sustained up to 60 min. JNK inhibitor and p38 inhibitor, but not ERK1/2 inhibitor, attenuated ultrasound-dependent induction of MMP-13 expression, indicating that the JNK and p38 pathways are required for ultrasound-induced MMP-13 expression in tenocytes. We also found that SB431542 (transforming growth factor-beta (TGF-β) receptor kinases inhibitor) suppressed ultrasound-induced MMP‐13 and c-Fos gene expression, and p38 phosphorylation.

This study revealed that ultrasound treatment stimulates tenocytes proliferation and regulates their matrix metabolism through the cross-talk between TGF-β and ultrasound-induced mitogen-activated protein kinases (MAPKs) signaling pathways.  相似文献   

14.
Hwang IK  Yoo KY  Kim DS  Eum WS  Park JK  Park J  Kwon OS  Kang TC  Choi SY  Won MH 《Neuroscience》2004,128(3):511-518
In the previous study, we observed chronological alterations of glutamic acid decarboxylase (GAD), which is the enzyme converting glutamate into GABA. GAD isoforms (GAD65 and GAD67) differ substantially in their interactions with cofactor pyridoxal 5'-phosphate, which is catalyzed by pyridoxal kinase (PLK). In the present study, we examined the chronological changes of PLK expression and activity in the hippocampus after 5 min transient forebrain ischemia in gerbils. PLK immunoreactivity in the sham-operated group was detected weakly in the hippocampus. Ischemia-related change of PLK immunoreactivity in the hippocampus was significant in the hippocampal cornu ammonis (CA1)region, not in the hippocampal CA2/3 region and dentate gyrus. PLK immunoreactivity was observed in non-pyramidal GABAergic neurons at 30 min to 3 h after ischemic insult. At 12 h after ischemic insult, PLK immunoreactivity was shown in many CA1 pyramidal cells as well as some non-pyramidal cells. At this time point, PLK immunoreactivity and protein content was highest after ischemia. Thereafter, PLK immunoreactivity and protein content is decreased time-dependently by 4 days after ischemic insult. Four days after ischemia, some astrocytes expressed PLK in the CA1 region. The specific PLK activity was not altered following ischemic insult up to 2 days after ischemic insult. Thereafter, the specific PLK activity decreased time-dependently. However, total activity of PLK was significantly increased 12-24 h after ischemic insult, and thereafter total activity of PLK decreased. Therefore, we suggest that the over-expression of PLK in the CA1 pyramidal cells at 12 h after ischemia may induce increase of GAD in the CA1 pyramidal cells, which plays an important role in delayed neuronal death via the increase of GABA or enhancement of GABA shunt pathway.  相似文献   

15.
背景:研究表明尼古丁可以诱导动脉粥样硬化,但其具体作用机制尚不明确。 目的:探讨不同剂量尼古丁刺激下,载脂蛋白E基因敲除小鼠主动脉粥样斑块形成与外周血转化生长因子β1水平的关系。 方法:载脂蛋白E基因敲除小鼠腹膜下注射2种不同剂量的尼古丁[2 mg/(kg•d)及0.5 mg/(kg•d)]12周,对照组注射等量生理盐水。用ELISA法检测外周血转化生长因子β1水平,苏木精-伊红染色观察动脉粥样斑块的病理变化。 结果与结论:尼古丁干预12周后,低剂量尼古丁组的外周血转化生长因子β1水平低于对照组(P < 0.05),高剂量尼古丁组的外周血转化生长因子β1水平低于对照组及低剂量尼古丁组(P < 0.05)。高剂量尼古丁组的血管狭窄程度最严重,低剂量尼古丁组次之,对照组最低,各组间比较差异均具有显著性意义(P < 0.05)。低剂量尼古丁组及高剂量尼古丁组的斑块个数多于对照组(P < 0.05),高剂量尼古丁组的斑块个数与低剂量尼古丁组比较差异无显著性意义 (P > 0.05);血管狭窄率与转化生长因子β1水平呈负相关(r=-0.920,P =0.000)。结果提示尼古丁刺激增加载脂蛋白E基因敲除小鼠动脉粥样硬化斑块数量,这种作用可能与尼古丁抑制转化生长因子β1水平相关。  相似文献   

16.
Li C  Han D  Zhang F  Zhou C  Yu HM  Zhang GY 《Neuroscience letters》2007,426(3):192-197
In this study, we investigated the interactions between synapse adhesion molecules neurexin, neuroligin1, neuroligin2 and postsynaptic density protein 95 (PSD-95) in transient cerebral ischemia and possible regulatory mechanism of these interactions. Our data show that preconditioning ischemia can down-regulate the increased neurexin-neuroligin1-PSD-95 interaction induced by ischemia injury and exerts a neuroprotective effect. Pre-treatment of N-methyl-D-aspartate (NMDA) receptor antagonist ketamine can demolish this neuroprotective effect of preconditioning by increasing neurexin-neuroligin1-PSD-95 interaction. These results indicate that the neurexin-neuroligin1-PSD-95 is an important signalling module in ischemic injury and a novel possible target in therapeutics of brain ischemia.  相似文献   

17.
The influence of transient forebrain ischemia on the temporal alteration of Ca2+/calmodulin-dependent kinase II (CaM kinase II) in the rat hippocampus was analysed by the immunohistochemical method using antigen-affinity purified polyclonal antibodies against CaM kinase II of rat brain. Six to twenty-four hours after ischemia, CA1 and CA3 pyramidal cells, and dentate granule cells lost CaM kinase II immunoreactivity in neuronal perikarya, although immunoreactivity in the dendritic fields was preserved. The recovery of immunoreactivity of the CA3 pyramidal cells and dentate granule cells was noted 3 days after recirculation. Seven days after ischemia, immunoreactivity in the CA1 subfield was greatly reduced. These results suggest that CaM kinase II molecules in the CA1 subfield are preferentially located on the CA1 pyramidal cells and that CaM kinase II plays a critical role in the reconstruction of neuronal cytoskeleton and neuronal networks damaged by ischemic insult.  相似文献   

18.
Retinal pigment epithelial (RPE) cells, situated between the neurosensory retina and the vascularized choroid, form part of the blood-eye barrier and are important for homeostasis of the outer retina. These cells are able to produce a variety of cytokines which may play a role in the maintenance of the immunosuppressive milieu inside the eye and in intraocular inflammatory responses. In the present study, we investigated whether RPE cells secreted the anti-inflammatory cytokine TGF-beta2 and the proinflammatory cytokine MCP-1 in a polarized manner. Monolayers of human donor RPE cells were cultured on transwell filters. Secretion of TGF-beta2 and MCP-1 at either the apical or basal side of the RPE cell monolayers, that were not treated or stimulated with IL-1beta (200 U/ml), was analysed by ELISA. All three cell lines examined had a different TGF-beta2 secretion pattern. In two of the three donor RPE cell lines tested, TGF-beta2 secretion was polarized, but not in the same direction. TGF-beta2 secretion was not up-regulated by stimulation with IL-1beta. In contrast, IL-1beta strongly induced MCP-1 secretion preferentially into the basal compartment of all RPE monolayers tested. These data indicate that human RPE cells are able to secrete TGF-beta2 and MCP-1 in a polarized fashion. Our results suggest that MCP-1 can be secreted by RPE cells in the direction of choroidal vessels during inflammatory responses in the posterior part of the eye, which may limit damage to the neurosensory retina.  相似文献   

19.
Involvement of nerve growth factor (NGF) in the pathogenesis of delayed neuronal death (DND) of CA1 neurons in the hippocampus has been suggested. We measured regional changes in the content of tissue NGF of the hippocampus in the Mongolian gerbil after 5 min forebrain ischemia. The NGF content was found to decrease significantly in the CA3 and dentate regions by 32% two days after ischemia. By contrast in the CA1 region, the level of NGF became significantly elevated by 50% two weeks after ischemia or later. The early reduction of NGF content in the afferent area projecting to the CA1 sector might be primarily linked to the pathogenesis of DND, whereas the delayed increase within the CA1 sector might be a secondary local response mainly of reactive astroglia.  相似文献   

20.
In this study we analyzed by immunohistochemistry the expression of TGF-beta1 protein and TGF-beta receptors I and II in 4 low-grade dysplastic nodules, 2 high-grade dysplastic nodules, 6 early, 22 small, and 62 advanced hepatocellular carcinomas. The expression of TGF-beta1 protein by hepatocytes was decreased in advanced hepatocellular carcinoma compared with small or early hepatocellular carcinoma(P < .05). Frequent and intense staining of TGF-beta1 protein was noted in the sinusoidal endothelium of advanced hepatocellular carcinomas despite of its decreased staining in hepatocellular carcinoma cells. Reduced expression of TGF-beta receptors I and II compared with surrounding nontumorous tissue were noted from the early hepatocellular carcinoma stage suggesting that down-regulation of TGF-beta receptors is correlated with progression from premalignant to malignant phenotype. Reduced expression of both TGF-beta1 and TGF-beta receptor II in neoplastic hepatocytes were also significantly correlated with increased tumor size and increased proliferative activity(P < .05). These findings suggest that during hepatocarcinogenesis, the inhibitory effects of TGF-beta1 protein on hepatocellular carcinoma cells is outweighed by its effects on stromal elements, which, overall, contributes indirectly to a tumor growth stimulatory environment. Also, the growth-inhibitory effects of TGF-beta1 may have been further negated by reduced TGF-beta receptors on hepatocellular carcinoma cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号